期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
考虑CapsNet算法的未知故障预报应用研究
1
作者 崔博文 陶小创 原艳斌 《现代防御技术》 北大核心 2024年第3期151-158,共8页
针对现有故障预报模型自身不具备未知故障识别能力,需重新收集数据对模型进行训练或借助其他组件对未知故障进行学习识别的问题,提出基于CapsNet模型的未知故障预报方法。该方法可有效处理复杂装备的多维状态感知信号,实现装备故障的精... 针对现有故障预报模型自身不具备未知故障识别能力,需重新收集数据对模型进行训练或借助其他组件对未知故障进行学习识别的问题,提出基于CapsNet模型的未知故障预报方法。该方法可有效处理复杂装备的多维状态感知信号,实现装备故障的精确感知,在出现未知故障时可自适应地调整模型并对未知故障进行预报。构建转换矩阵,由低层胶囊的特征预测出相对应的高层特征的存在及姿态。详细介绍了动态路由算法将低层胶囊生成的预测向量整合到对其表示同意的高层胶囊并形成特征向量的过程。在CapsNet最后一层胶囊实现故障特征分类的过程提出阈值判断法,通过合理选择阈值λ的取值范围,使胶囊网络模型能完美地区分已知与未知故障,实现故障的精确预报。使用提出的方法对经过良好训练的系列CapsNets模型进行性能验证。通过实验可以发现,提出的方法能较好地实现未知故障预报,可证实该方法的可行性。 展开更多
关键词 capsnet算法 未知故障 故障预报 精确感知 复杂装备
在线阅读 下载PDF
一种面向多视角交通标志识别的CapsNet集成算法 被引量:3
2
作者 屈治华 王琳 +1 位作者 邵毅明 邓天民 《重庆理工大学学报(自然科学)》 CAS 北大核心 2020年第10期160-168,共9页
为解决传统卷积神经网络在交通标志识别过程中因最大池化层的固有缺陷导致无法对图像的姿态、位置等实例化参数进行检测的问题,提出了一种基于Bagging集成的CapsNet交通标志识别算法。以CapsNet作为基分类器构建Bagging集成框架,设定可... 为解决传统卷积神经网络在交通标志识别过程中因最大池化层的固有缺陷导致无法对图像的姿态、位置等实例化参数进行检测的问题,提出了一种基于Bagging集成的CapsNet交通标志识别算法。以CapsNet作为基分类器构建Bagging集成框架,设定可自适应过采样倍率的SMOTE算法对少数类样本进行过采样,提升算法整体识别精度。在同等测试环境下选取多种算法,针对德国交通标志数据库(GTSRB)和经过仿射变换后的多视角数据集的识别精度、耗时和泛化能力进行对比。实验结果表明:所提出算法的识别精度为99.07%,且在偏转角度达到30°时,准确率仍能保持77.58%,可有效提高多视角下交通标志的识别精度。 展开更多
关键词 智能交通 交通标志识别 capsnet 集成算法 多视角图像识别
在线阅读 下载PDF
基于BGRU-CapsNet的情感分析算法研究 被引量:2
3
作者 应伟志 于青 《天津理工大学学报》 2021年第5期7-12,共6页
提出了一种基于双向门控循环神经网络(bidirectional gated recurrent neural network,BGRU)和胶囊网络(capsule network,CapsNet)的混合神经网络情感分析模型。其目的是对内在的部分-整体关系进行编码,探索语法和句法特征,全面丰富表... 提出了一种基于双向门控循环神经网络(bidirectional gated recurrent neural network,BGRU)和胶囊网络(capsule network,CapsNet)的混合神经网络情感分析模型。其目的是对内在的部分-整体关系进行编码,探索语法和句法特征,全面丰富表征。每个句子的语义由BGRU表示,缩短了相互依赖特征之间的距离。设计了基于动态路由的CapsNet来提取更丰富的文本信息,提高了文本的表达能力。实验证明,将BGRU和CapsNet相结合可以提高情感分析的性能。 展开更多
关键词 双向门控循环神经网络(bidirectional gated recurrent neural network BGRU) 情感分析 胶囊网络(capsule network capsnet) 动态路由算法
在线阅读 下载PDF
胶囊网络对复杂现实场景中的物体识别 被引量:2
4
作者 姜虹 贾帅宇 姚红革 《西安工业大学学报》 CAS 2019年第6期712-719,共8页
为了提高复杂场景目标图像的识别准确率,本文基于胶囊网络中的向量神经元的思想,在CapsNet网络基础上提出了一种改进的胶囊网络,用于实现复杂现实场景中的物体识别。改进的胶囊网络由两个卷积层和三个具有不同维度的胶囊层构成,在CapsNe... 为了提高复杂场景目标图像的识别准确率,本文基于胶囊网络中的向量神经元的思想,在CapsNet网络基础上提出了一种改进的胶囊网络,用于实现复杂现实场景中的物体识别。改进的胶囊网络由两个卷积层和三个具有不同维度的胶囊层构成,在CapsNet网络结构的基础上进行了优化,在其CapsNet初级胶囊层之前增加了一层卷积层,并且在网络识别结构的后半部分增加了过滤胶囊层。该网络胶囊层中低层特征利用姿态关系对高层特征进行了预测,并采用动态路由算法和筛分决策机制最终选择性激活高级特征胶囊结构。实验结果表明,相较于CapsNet网络,文中网络对于同一复杂场景下目标图像的识别准确率提高了3.2%,且重构效果也较CapsNet有所提升,降低了复杂场景对于识别物体的干扰,提高了物体表征能力。 展开更多
关键词 胶囊网络 capsnet 复杂场景 动态路由算法
在线阅读 下载PDF
基于胶囊网络的三维模型识别 被引量:1
5
作者 曹小威 曲志坚 +1 位作者 徐玲玲 刘晓红 《计算机应用》 CSCD 北大核心 2020年第5期1309-1314,共6页
为解决传统卷积神经网络中大量池化层的引入导致特征信息丢失的问题,依据胶囊网络(CapsNet)使用向量神经元保存特征空间信息的特性,提出了一种用以识别三维模型的网络模型3DSPNCapsNet。使用新的网络结构,提取更具代表性的特征的同时降... 为解决传统卷积神经网络中大量池化层的引入导致特征信息丢失的问题,依据胶囊网络(CapsNet)使用向量神经元保存特征空间信息的特性,提出了一种用以识别三维模型的网络模型3DSPNCapsNet。使用新的网络结构,提取更具代表性的特征的同时降低了模型复杂度,并提出基于动态路由(DR)算法的DRL算法来优化胶囊权重的迭代计算过程。在ModelNet10上的实验结果表明,相比3DCapsNet以及VoxNet,该网络取得了更好的识别效果,在原始测试集上3DSPNCapsNet的平均识别准确率达到95%,同时验证了该网络对旋转三维模型的识别能力。适当扩展旋转训练集之后,所提网络对各角度旋转模型的平均识别率达到81%。实验结果表明,3DSPNCapsNet对三维模型及其旋转具有良好的识别能力。 展开更多
关键词 胶囊网络 动态路由算法 池化 三维模型识别 旋转
在线阅读 下载PDF
基于粒子群优化以及深度胶囊网络的轴承故障诊断 被引量:4
6
作者 张振良 刘君强 +1 位作者 张曦 黄亮 《计算机与数字工程》 2021年第2期333-339,352,共8页
针对发动机轴承损坏情况严重以及基于模型方法预测精度不稳定的问题,提出一种基于深度胶囊网络和粒子群优化算法的轴承故障预测方法。通过将观测振动信号自适应降噪后,基于粒子群优化算法进行稀疏盲分离,得到轴承振动信号,通过S变换获... 针对发动机轴承损坏情况严重以及基于模型方法预测精度不稳定的问题,提出一种基于深度胶囊网络和粒子群优化算法的轴承故障预测方法。通过将观测振动信号自适应降噪后,基于粒子群优化算法进行稀疏盲分离,得到轴承振动信号,通过S变换获取时域图以及轴承振动特征,其次将时域图经由卷积层卷积,输入到胶囊层进行预测。将高低胶囊层之间的算法转化为数学优化问题,提升传输效率,最后得出高层胶囊的预测向量。结合具体轴承监测数据进行实例分析,与基于数据的浅卷积网络以及经验模态分解预测相比,算法体现了更稳定更精确的预测性能。 展开更多
关键词 故障诊断 粒子群优化 深度胶囊网络 动态路由算法
在线阅读 下载PDF
多尺度混合注意力胶囊网络的海洋鱼类识别 被引量:3
7
作者 许学斌 刘燊莲 +1 位作者 路龙宾 刘晨光 《光电子.激光》 CAS CSCD 北大核心 2022年第11期1158-1164,共7页
针对胶囊网络(capsule network,CapsNet)特征提取结构单一和数据处理中参数量过大的问题,提出多尺度混合注意力胶囊网络模型。首先,在网络初始端添加不同尺度的卷积核来多角度提取特征,并引入混合注意力机制,通过聚焦更具分辨性的特征... 针对胶囊网络(capsule network,CapsNet)特征提取结构单一和数据处理中参数量过大的问题,提出多尺度混合注意力胶囊网络模型。首先,在网络初始端添加不同尺度的卷积核来多角度提取特征,并引入混合注意力机制,通过聚焦更具分辨性的特征区域来降低复杂背景干扰。其次,采用局部剪枝算法优化动态路由,减少参数量,缩短模型训练时间。最后,在海洋鱼类数据集F4K(Fish4Knowledge)上验证,结果表明,与传统残差网络(residual network50,ResNet-50)、双线性网络(bilinear convolutional neural network,B-CNN)、分层精简双线性注意力网络(spatial transformation network and hierarchical compact bilinear pooling,STN-H-CBP)以及CapsNet模型相比,该算法识别精度为98.65%,比ResNet-50模型提升了5.92%;训练时间为2.2 h,相比于CapsNet缩短了近40 min,验证了该算法的可行性。 展开更多
关键词 胶囊网络(capsnet) 图像识别 动态路由算法 注意力机制 多卷积核
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部