The cyclic injection and production of fluids into and from underground gas storage(UGS)may lead to caprock failure,such as capillary sealing failure,hydraulic fracturing,shear failure,and fault slipping or dilation.T...The cyclic injection and production of fluids into and from underground gas storage(UGS)may lead to caprock failure,such as capillary sealing failure,hydraulic fracturing,shear failure,and fault slipping or dilation.The dynamic sealing capacity of a caprock-fault system is a critical constraint for safe operation,and is a key factor in determining the maximum operating pressure(MOP).This study proposed an efficient semi-analytical method for calculating changes in the in situ stress within the caprock.Next,the parameters of dynamic pore pressure,in situ stresses,and deformations obtained from reservoir simulations and geomechanical modeling were used for inputs for the analytical solution.Based on the calculated results,an experimental scheme for the coupled cyclic stress-permeability testing of caprock was designed.The stability analysis indicated that the caprock was not prone to fatigue shear failure under the current injection and production strategy,supported by the experimental results.The experimental results further reveal that the sealing capacity of caprock plugs may remain stable.This phenomenon is attributed to cyclic stress causing pore connectivity and microcrack initiation in certain plugs,while leading to pore compaction in others.A comparison between the dynamic pore pressure and the minimum principal stress suggests that the risk of tensile failure is extremely low.Furthermore,although the faults remain stable under the current injection and production strategies,the continuous increase in injection pressure may lead to an increased tendency for fault slip and dilation,which can cause fault slip ultimately.The MOPs corresponding to each failure mode were calculated.The minimum value of approximately 36.5 MPa at capillary sealing failure indicated that the gas breakthrough in the caprock occurred earlier than rock failure.Therefore,this minimumvalue can be used as the MOP for the target UGS.展开更多
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships w...Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships with antioxidant activity and oxidative stability,gas chromatography-mass spectrometry was performed to characterize the associated fatty acid profiles.The antioxidant activity of vegetable oils,based on their DPPH-scavenging capacity(expressed as IC_(50) values),was used to assess their impact on human health,and their oxidative stability was characterized by performing lipid oxidation analysis to determine the oxidative induction time of fats and oils.In addition,correlation analyses were performed to examine associations between the fatty acid composition of the oils and DPPH-scavenging capacity and oxidative stability.The results revealed that among the assessed oils,coffee seed oil has the highest saturated fatty acid content(355.10 mg/g),whereas Garddenia jaminoides oil has the highest unsaturated fatty acid content(844.84 mg/g).Coffee seed oil was also found have the lowest DPPH IC_(50) value(2.30 mg/mL)and the longest oxidation induction time(17.09 h).Correlation analysis revealed a significant linear relationship(P<0.05)between oxidative stability and unsaturated fatty acid content,with lower contents tending to be associated with better oxidative stability.The findings of this study provide reference data for the screening of functional edible vegetable oils.展开更多
Background Oxidative stress significantly impacts growth performance and liver function in piglets.Ferulic acid(FA)works as an antioxidant,however,the role and mechanism of FA in the regulation of diquat-induced oxida...Background Oxidative stress significantly impacts growth performance and liver function in piglets.Ferulic acid(FA)works as an antioxidant,however,the role and mechanism of FA in the regulation of diquat-induced oxidative stress in piglets are less known.This study was designed to investigate the effects of FA on growth performance and antioxi-dant capacity in piglets with diquat challenge.Methods Thirty-two healthy DLY(Duroc×Landrace×Yorkshire)piglets(13.24±0.19 kg)were randomly divided into one of two diets including 0 or 4 g/kg FA for 14 d.On d 15,all pigs were intraperitoneally injected diquat or sterile saline.Results Dietary supplementation with ferulic acid(FA)significantly improved the average daily gain(ADG)and decreased feed-gain ratio(F/G)of piglets.Here,dietary FA supplementation reduced serum aspartate aminotrans-ferase(AST),alanine aminotransferase(ALT)activities in diquat challenged piglets.Furthermore,diquat infusion increased reactive oxygen radicals(ROS)level in liver,decreased the activities of total superoxide dismutase(T-SOD)and glutathione peroxidase(GSH-Px),total antioxidant capacity(T-AOC)and increased malondialdehyde(MDA)con-tent in the liver and serum.Supplementation with FA significantly increased T-AOC and T-SOD activities and decreased MDA and ROS levels.FA down-regulated gene and protein expression of Keap1,and up-regulated protein expression of Nrf2 and HO-1 in the liver of piglets with diquat challenge.Importantly,diquat challenge increased the ratio of late apoptosis,increased serum levels of IL-1β,IL-18 and lactate dehydrogenase(LDH),and up-regulated pyroptosis-related genes in the liver.FA supplementation reduced the ratio of late apoptosis and down-regulated mRNA expression of Caspase-1.Accordingly,FA addition reduced concentration of IL-1β,IL-18,and LDH under diquat challenge.Conclusions Diquat-induced oxidative stress reduced growth performance and impaired liver function in piglets.Dietary FA supplementation enhanced the antioxidant capacity and reduced the degree of hepatocyte pyroptosis,thereby alleviating the oxidative damage in the liver and mitigating the impact of diquat on growth performance of piglets.展开更多
The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a block...The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a blockchain-enabled manufacturing collaboration framework is proposed,with a focus on the production capacity matching problem for blockchainbased peer-to-peer(P2P)collaboration.First,a digital model of production capacity description is built for trustworthy and transparent sharing over the blockchain.Second,an optimization problem is formulated for P2P production capacity matching with objectives to maximize both social welfare and individual benefits of all participants.Third,a feasible solution based on an iterative double auction mechanism is designed to determine the optimal price and quantity for production capacity matching with a lack of personal information.It facilitates automation of the matching process while protecting users'privacy via blockchainbased smart contracts.Finally,simulation results from the Hyperledger Fabric-based prototype show that the proposed approach increases social welfare by 1.4%compared to the Bayesian game-based approach,makes all participants profitable,and achieves 90%fairness of enterprises.展开更多
Revealing the structure evolution of interfacial active species during a dynamic catalytic process is a challenging but pivotal issue for the rational design of high-performance catalysts.Here,we successfully prepare ...Revealing the structure evolution of interfacial active species during a dynamic catalytic process is a challenging but pivotal issue for the rational design of high-performance catalysts.Here,we successfully prepare sub-nanometric Pt clusters(~0.8 nm)encapsulated within the defects of CeO_(2)nanorods via an in-situ defect engineering methodology.The as-prepared Pt@d-CeO_(2)catalyst significantly boosts the activity and stability in the water-gas shift(WGS)reaction compared to other analogs.Based on controlled experiments and complementary(in-situ)spectroscopic studies,a reversible encapsulation induced by active site transformation between the Pt^(2+)-terminal hydroxyl and Pt^(δ+)-O vacancy species at the interface is revealed,which enables to evoke the enhanced performance.Our findings not only offer practical guidance for the design of high-efficiency catalysts but also bring a new understanding of the exceptional performance of WGS in a holistic view,which shows a great application potential in materials and catalysis.展开更多
Background Hexafluoropropylene oxide dimer acid(GenX),a substitute for per-and polyfluoroalkyl substances,has been widely detected in various environmental matrices and foods recently,attracting great attention.Howeve...Background Hexafluoropropylene oxide dimer acid(GenX),a substitute for per-and polyfluoroalkyl substances,has been widely detected in various environmental matrices and foods recently,attracting great attention.However,a systematic characterization of its reproductive toxicity is still missing.This study aims to explore the male reproductive toxicity caused by GenX exposure and the potential cellular and molecular regulatory mechanisms behind it.Results Normally developing mice were exposed to GenX,and testicular tissue was subsequently analyzed and validated using single-cell RNA sequencing.Our results revealed that GenX induced severe testicular damage,disrupted the balance between undifferentiated and differentiated spermatogonial stem cells,and led to strong variation in the cellular dynamics of spermatogenesis.Furthermore,GenX exposure caused global upregulation of testicular somatic cellular inflammatory responses,increased abnormal macrophage differentiation,and attenuated fibroblast adhesion,disorganizing the somatic-germline interactions.Conclusions In conclusion,this study revealed complex cellular dynamics and transcriptome changes in mouse testis after GenX exposure,providing a valuable resource for understanding its reproductive toxicity.展开更多
This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ra...This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ratio and thickness of steel tube influence the bond strength characteristics.The results show that as the enhancement of the steel tube wall thickness,the ultimate bond strength at the interface improves significantly,whereas the initial bond strength exhibits only slight variations.The influence of steel fiber volumetric ratio presents a nonlinear trend,with initial bond strength decreasing at low fiber content and increasing significantly as fiber content rises.Additionally,finite element(FE)simulations were applied to replicate the experimental conditions,and the outcomes showed strong correlation with the experimental data,confirming the exactitude of the FE model in predicting the bond behavior at the UHPC-Steel interface.These findings provide valuable insights for optimizing the design of UHPC-Filled steel tubes in high-performance structure.展开更多
Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coup...Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coupled micromechanical resonators,highlighting the latest advancements in four key areas:internal resonance,synchronization,frequency combs,and mode localization.The origin,development,and potential applications of each of these dynamic phenomena within mode-coupled micromechanical systems are investigated,with the goal of inspiring new ideas and directions for researchers in this field.展开更多
Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization proces...Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film,resulting in the differences of additive distribution.We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface,and prepared perovskite solar cells with a certified efficiency of 23.75%.Furthermore,this work also demonstrates an efficiency of 20.18%for the large-area perovskite solar module(PSM)with an aperture area of 60.84 cm^(2).The PSM possesses remarkable continuous operation stability for maximum power point tracking of T_(90)>1000 h in ambient air.展开更多
In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways Hi...In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways High-Speed 5 Electric Multiple Unit and proposed a mathematical model and capacity optimization method for an onboard energy storage system using lithium batteries and supercapacitors as storage media.Firstly,considering the electrical characteristics,weight,and volume of the storage media,a mathematical model of the energy storage system was established.Secondly,to tackle problems related to energy consumption and power quality,an energy management strategy was proposed that comprehensively considers peak shaving and valley filling and power quality by controlling the charge/discharge thresholds of the storage system.Thecapacity optimization adopted a bilevel programming model,with the series/parallel number of storage modules as variables,considering constraints imposed by the Direct Current to Direct Current converter,train load,and space.An improved Particle Swarm Optimization algorithm and linear programming solver were used to solve specific cases.The results show that the proposed onboard energy storage system can effectively achieve energy savings,reduce consumption,and improve power qualitywhile meeting the load and space limitations of the train.展开更多
Since the discovery of carbon dots(CDs)in 2004,the unique photoluminescence phenomenon of CDs has attracted widespread attention.However,the molecular weight of CDs has not been adequately quantified at present,due to...Since the discovery of carbon dots(CDs)in 2004,the unique photoluminescence phenomenon of CDs has attracted widespread attention.However,the molecular weight of CDs has not been adequately quantified at present,due to CDs are atomically imprecise and their molecular weight distribution is broad.In this paper,a series of Pluronic-modified CDs were prepared and the structure of the CDs was briefly analyzed.Subsequently,a molecular weight measurement method based on colligative properties was developed,and the correction coefficient in the algorithm was briefly analyzed.The calculated molecular weight was applied to the determination of surface adsorption capacity.This work provided a method for averaging the molecular weight of atomically imprecise particulate materials,which is expected to provide new opportunities in related fields.展开更多
Captive model tests are one of the most common methods to calculate the maneuvering hydrodynamic coefficients and characteristics of surface and underwater vehicles.Considerable attention must be paid to selecting and...Captive model tests are one of the most common methods to calculate the maneuvering hydrodynamic coefficients and characteristics of surface and underwater vehicles.Considerable attention must be paid to selecting and designing the most suitable laboratory equipment for towing tanks.A computational fluid dynamics(CFD)-based method is implemented to determine the loads acting on the towing facility of the submarine model.A reversed topology is also used to ensure the appropriateness of the load cells in the developed method.In this study,the numerical simulations were evaluated using the experimental results of the SUBOFF benchmark submarine model of the Defence Advanced Research Projects Agency.The maximum and minimum loads acting on the 2.5-meter submarine model were measured by determining the body’s lightest and heaviest maneuvering test scenarios.In addition to having sufficient endurance against high loads,the precision in measuring the light load was also investigated.The horizontal planar motion mechanism(HPMM)facilities in the National Iranian Marine Laboratory were developed by locating the load cells inside the submarine model.The results were presented as a case study.A numerical-based method was developed to obtain the appropriate load measurement facilities.Load cells of HPMM test basins can be selected by following the two-way procedure presented in this study.展开更多
The global energy demand is increasing rapidly,and it is imperative to develop shale hydrocarbon re-sources vigorously.The prerequisite for enhancing the exploitation efficiency of shale reservoirs is the systematic e...The global energy demand is increasing rapidly,and it is imperative to develop shale hydrocarbon re-sources vigorously.The prerequisite for enhancing the exploitation efficiency of shale reservoirs is the systematic elucidation of the occurrence characteristics,flow behavior,and enhanced oil recovery(EOR)mechanisms of shale oil within commonly developed nanopores.Molecular dynamics(MD)technique can simulate the occurrence,flow,and extraction processes of shale oil at the nanoscale,and then quantitatively characterize various fluid properties,flow characteristics,and action mechanisms under different reservoir conditions by calculating and analyzing a series of MD parameters.However,the existing review on the application of MD simulation in shale oil reservoirs is not systematic enough and lacks a summary of technical challenges and solutions.Therefore,recent MD studies on shale oil res-ervoirs were summarized and analyzed.Firstly,the applicability of force fields and ensembles of MD in shale reservoirs with different reservoir conditions and fluid properties was discussed.Subsequently,the calculation methods and application examples of MD parameters characterizing various properties of fluids at the microscale were summarized.Then,the application of MD simulation in the study of shale oil occurrence characteristics,flow behavior,and EOR mechanisms was reviewed,along with the elucidation of corresponding micro-mechanisms.Moreover,influencing factors of pore structure,wall properties,reservoir conditions,fluid components,injection/production parameters,formation water,and inorganic salt ions were analyzed,and some new conclusions were obtained.Finally,the main challenges associated with the application of MD simulations to shale oil reservoirs were discussed,and reasonable prospects for future MD research directions were proposed.The purpose of this review is to provide theoretical basis and methodological support for applying MD simulation to study shale oil reservoirs.展开更多
This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models ...This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models offer insights, they fall short in presenting a holistic view of complex urban challenges. System dynamics (SD) models that are often utilized to provide holistic, systematic understanding of a research subject, like the urban system, emerge as valuable tools, but data scarcity and theoretical inadequacy pose challenges. The research reviews relevant papers on recent SD model applications in urban sustainability since 2018, categorizing them based on nine key indicators. Among the reviewed papers, data limitations and model assumptions were identified as ma jor challenges in applying SD models to urban sustainability. This led to exploring the transformative potential of big data analytics, a rare approach in this field as identified by this study, to enhance SD models’ empirical foundation. Integrating big data could provide data-driven calibration, potentially improving predictive accuracy and reducing reliance on simplified assumptions. The paper concludes by advocating for new approaches that reduce assumptions and promote real-time applicable models, contributing to a comprehensive understanding of urban sustainability through the synergy of big data and SD models.展开更多
Efficient and stable photocathodes with versatility are of significance in photoassisted lithium-ion batteries(PLIBs),while there is always a request on fast carrier transport in electrochemical active photocathodes.P...Efficient and stable photocathodes with versatility are of significance in photoassisted lithium-ion batteries(PLIBs),while there is always a request on fast carrier transport in electrochemical active photocathodes.Present work proposes a general approach of creating bulk heterojunction to boost the carrier mobility of photocathodes by simply laser assisted embedding of plasmonic nanocrystals.When employed in PLIBs,it was found effective for synchronously enhanced photocharge separation and transport in light charging process.Additionally,experimental photon spectroscopy,finite difference time domain method simulation and theoretical analyses demonstrate that the improved carrier dynamics are driven by the plasmonic-induced hot electron injection from metal to TiO_(2),as well as the enhanced conductivity in TiO2 matrix due to the formation of oxygen vacancies after Schottky contact.Benefiting from these merits,several benchmark values in performance of TiO2-based photocathode applied in PLIBs are set,including the capacity of 276 mAh g^(−1) at 0.2 A g^(−1) under illumination,photoconversion efficiency of 1.276%at 3 A g^(−1),less capacity and Columbic efficiency loss even through 200 cycles.These results exemplify the potential of the bulk heterojunction strategy in developing highly efficient and stable photoassisted energy storage systems.展开更多
Water scarcity and environment deterioration have become main constraints to sustainable economic and social development.Scientifically assessing Water Resources Carrying Capacity(WRCC)is essential for the optimal all...Water scarcity and environment deterioration have become main constraints to sustainable economic and social development.Scientifically assessing Water Resources Carrying Capacity(WRCC)is essential for the optimal allocation of regional water resources.The hilly area at the northern foot of Yanshan Mountains is a key water conservation zone and an important water source for Beijing,Tianjin and Hebei.Grasping the current status and temporal trends of water quality and WRCC in representative small watersheds within this region is crucial for supporting rational water resources allocation and environment protection efforts.This study focuses on Pingquan City,a typical watershed in northern Hebei Province.Firstly,evaluation index systems for surface water quality,groundwater quality and WRCC were estab-lished based on the Pressure-State-Response(PSR)framework.Then,comprehensive evaluations of water quality and WRCC at the sub-watershed scale were conducted using the Varying Fuzzy Pattern Recogni-tion(VFPR)model.Finally,the rationality of the evaluation results was verified,and future scenarios were projected.Results showed that:(1)The average comprehensive evaluation scores for surface water and groundwater quality in the sub-watersheds were 1.44 and 1.46,respectively,indicating that both met the national Class II water quality standard and reflected a high-quality water environment.(2)From 2010 to 2020,the region's WRCC steadily improved,with scores rising from 2.99 to 2.83 and an average of 2.90,suggesting effective water resources management in Pingquan City.(3)According to scenario-based predic-tion,WRCC may slightly decline between 2025 and 2030,reaching 2.92 and 2.94,respectively,relative to 2020 levels.Therefore,future efforts should focus on strengthening scientific management and promoting the efficient use of water resources.Proactive measures are necessary to mitigate emerging contradiction and ensure the long-term stability and sustainability of the water resources system in the region.The evalua-tion system and spatiotemporal evolution patterns proposed in this study can provide a scientific basis for refined water resource management and ecological conservation in similar hilly areas.展开更多
To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concret...To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.展开更多
The charge carrier transport and recombination dynamics in the quantum dots-based light-emitting diodes(QLEDs)featuring multiple emitting layers(M-EMLs)has a great impact on the device performance.In this work,QLEDs b...The charge carrier transport and recombination dynamics in the quantum dots-based light-emitting diodes(QLEDs)featuring multiple emitting layers(M-EMLs)has a great impact on the device performance.In this work,QLEDs based on M-EMLs separated by polyethyleneimine ethoxylated(PEIE)layer with different stacking sequences of blue(B),green(G),and red(R)QDs layer were used to intuitively explore the injection,transportation and recombination processes of the charge carriers in QLEDs by using the time-resolved electroluminescence(TrEL)spectra.From the TrEL spectra mea-surements,green and red emissions were obtained first in the QLEDs with the EMLs sequences of G/PEIE/B/PEIE/R and B/PEIE/R/PEIE/G along the direction of light emission,respectively.While the QLEDs adopt EMLs sequences of B/PEIE/G/PEIE/R,the blue,green and red emissions were obtained nearly at the same time.The above phenomenon can be attributed to different charge carrier transmission and radiation recombination process in the EMLs due to different valence band offsets and conduction band offsets between R-,G-and B-QDs by using different sequences of EMLs.White emission with coordi-nates of(0.31,0.31)and correlated color temperature(CCT)of 5916 K was obtained in the QLEDs with the EMLs se-quences of B/PEIE/G/PEIE/R,which can be attributed to the relative uniform emission of B-,G-and R-QDs due to the effec-tive injection and radiation recombination of charge carriers in each of the EMLs.The above results have great significance for further understanding and improving the performance of QLEDs with M-EMLs.展开更多
To exchange experiences and progress in standardization capacity building at home and abroad,the sub-forum on capacity building and creating leadership in standardization was held on July 9.The sub-forum was hosted by...To exchange experiences and progress in standardization capacity building at home and abroad,the sub-forum on capacity building and creating leadership in standardization was held on July 9.The sub-forum was hosted by the Qingdao Municipal People’s Government and co-organized by the International Standardization Training Base(Qingdao),Qingdao University,International Standardization Outstanding Contribution Foundation,and Shandong National Standards Center of Technical Evaluation,which was expected to inject new vitality into the industrial development and provide new ideas for improving the talent cultivation system.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42072166)Natural Science Foundation of Heilongjiang Province of China(Grant No.LH2020D004)Key R&D Program of Heilongjiang Province of China(Grant No.JD2023SJ26)。
文摘The cyclic injection and production of fluids into and from underground gas storage(UGS)may lead to caprock failure,such as capillary sealing failure,hydraulic fracturing,shear failure,and fault slipping or dilation.The dynamic sealing capacity of a caprock-fault system is a critical constraint for safe operation,and is a key factor in determining the maximum operating pressure(MOP).This study proposed an efficient semi-analytical method for calculating changes in the in situ stress within the caprock.Next,the parameters of dynamic pore pressure,in situ stresses,and deformations obtained from reservoir simulations and geomechanical modeling were used for inputs for the analytical solution.Based on the calculated results,an experimental scheme for the coupled cyclic stress-permeability testing of caprock was designed.The stability analysis indicated that the caprock was not prone to fatigue shear failure under the current injection and production strategy,supported by the experimental results.The experimental results further reveal that the sealing capacity of caprock plugs may remain stable.This phenomenon is attributed to cyclic stress causing pore connectivity and microcrack initiation in certain plugs,while leading to pore compaction in others.A comparison between the dynamic pore pressure and the minimum principal stress suggests that the risk of tensile failure is extremely low.Furthermore,although the faults remain stable under the current injection and production strategies,the continuous increase in injection pressure may lead to an increased tendency for fault slip and dilation,which can cause fault slip ultimately.The MOPs corresponding to each failure mode were calculated.The minimum value of approximately 36.5 MPa at capillary sealing failure indicated that the gas breakthrough in the caprock occurred earlier than rock failure.Therefore,this minimumvalue can be used as the MOP for the target UGS.
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.
文摘Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships with antioxidant activity and oxidative stability,gas chromatography-mass spectrometry was performed to characterize the associated fatty acid profiles.The antioxidant activity of vegetable oils,based on their DPPH-scavenging capacity(expressed as IC_(50) values),was used to assess their impact on human health,and their oxidative stability was characterized by performing lipid oxidation analysis to determine the oxidative induction time of fats and oils.In addition,correlation analyses were performed to examine associations between the fatty acid composition of the oils and DPPH-scavenging capacity and oxidative stability.The results revealed that among the assessed oils,coffee seed oil has the highest saturated fatty acid content(355.10 mg/g),whereas Garddenia jaminoides oil has the highest unsaturated fatty acid content(844.84 mg/g).Coffee seed oil was also found have the lowest DPPH IC_(50) value(2.30 mg/mL)and the longest oxidation induction time(17.09 h).Correlation analysis revealed a significant linear relationship(P<0.05)between oxidative stability and unsaturated fatty acid content,with lower contents tending to be associated with better oxidative stability.The findings of this study provide reference data for the screening of functional edible vegetable oils.
基金Sichuan Science and Technology Program(No.2021ZDZX0009).
文摘Background Oxidative stress significantly impacts growth performance and liver function in piglets.Ferulic acid(FA)works as an antioxidant,however,the role and mechanism of FA in the regulation of diquat-induced oxidative stress in piglets are less known.This study was designed to investigate the effects of FA on growth performance and antioxi-dant capacity in piglets with diquat challenge.Methods Thirty-two healthy DLY(Duroc×Landrace×Yorkshire)piglets(13.24±0.19 kg)were randomly divided into one of two diets including 0 or 4 g/kg FA for 14 d.On d 15,all pigs were intraperitoneally injected diquat or sterile saline.Results Dietary supplementation with ferulic acid(FA)significantly improved the average daily gain(ADG)and decreased feed-gain ratio(F/G)of piglets.Here,dietary FA supplementation reduced serum aspartate aminotrans-ferase(AST),alanine aminotransferase(ALT)activities in diquat challenged piglets.Furthermore,diquat infusion increased reactive oxygen radicals(ROS)level in liver,decreased the activities of total superoxide dismutase(T-SOD)and glutathione peroxidase(GSH-Px),total antioxidant capacity(T-AOC)and increased malondialdehyde(MDA)con-tent in the liver and serum.Supplementation with FA significantly increased T-AOC and T-SOD activities and decreased MDA and ROS levels.FA down-regulated gene and protein expression of Keap1,and up-regulated protein expression of Nrf2 and HO-1 in the liver of piglets with diquat challenge.Importantly,diquat challenge increased the ratio of late apoptosis,increased serum levels of IL-1β,IL-18 and lactate dehydrogenase(LDH),and up-regulated pyroptosis-related genes in the liver.FA supplementation reduced the ratio of late apoptosis and down-regulated mRNA expression of Caspase-1.Accordingly,FA addition reduced concentration of IL-1β,IL-18,and LDH under diquat challenge.Conclusions Diquat-induced oxidative stress reduced growth performance and impaired liver function in piglets.Dietary FA supplementation enhanced the antioxidant capacity and reduced the degree of hepatocyte pyroptosis,thereby alleviating the oxidative damage in the liver and mitigating the impact of diquat on growth performance of piglets.
基金supported in part by the National Natural Science Foundation of China(62273310)the Natural Science Foundation of Zhejiang Province of China(LY22F030006,LZ24F030009)
文摘The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a blockchain-enabled manufacturing collaboration framework is proposed,with a focus on the production capacity matching problem for blockchainbased peer-to-peer(P2P)collaboration.First,a digital model of production capacity description is built for trustworthy and transparent sharing over the blockchain.Second,an optimization problem is formulated for P2P production capacity matching with objectives to maximize both social welfare and individual benefits of all participants.Third,a feasible solution based on an iterative double auction mechanism is designed to determine the optimal price and quantity for production capacity matching with a lack of personal information.It facilitates automation of the matching process while protecting users'privacy via blockchainbased smart contracts.Finally,simulation results from the Hyperledger Fabric-based prototype show that the proposed approach increases social welfare by 1.4%compared to the Bayesian game-based approach,makes all participants profitable,and achieves 90%fairness of enterprises.
文摘Revealing the structure evolution of interfacial active species during a dynamic catalytic process is a challenging but pivotal issue for the rational design of high-performance catalysts.Here,we successfully prepare sub-nanometric Pt clusters(~0.8 nm)encapsulated within the defects of CeO_(2)nanorods via an in-situ defect engineering methodology.The as-prepared Pt@d-CeO_(2)catalyst significantly boosts the activity and stability in the water-gas shift(WGS)reaction compared to other analogs.Based on controlled experiments and complementary(in-situ)spectroscopic studies,a reversible encapsulation induced by active site transformation between the Pt^(2+)-terminal hydroxyl and Pt^(δ+)-O vacancy species at the interface is revealed,which enables to evoke the enhanced performance.Our findings not only offer practical guidance for the design of high-efficiency catalysts but also bring a new understanding of the exceptional performance of WGS in a holistic view,which shows a great application potential in materials and catalysis.
基金supported by the Guangdong Provincial Key Area Research and Development Program[grant number 2022B0202090002]China Postdoctoral Science Foundation[grant number 2024M760977].
文摘Background Hexafluoropropylene oxide dimer acid(GenX),a substitute for per-and polyfluoroalkyl substances,has been widely detected in various environmental matrices and foods recently,attracting great attention.However,a systematic characterization of its reproductive toxicity is still missing.This study aims to explore the male reproductive toxicity caused by GenX exposure and the potential cellular and molecular regulatory mechanisms behind it.Results Normally developing mice were exposed to GenX,and testicular tissue was subsequently analyzed and validated using single-cell RNA sequencing.Our results revealed that GenX induced severe testicular damage,disrupted the balance between undifferentiated and differentiated spermatogonial stem cells,and led to strong variation in the cellular dynamics of spermatogenesis.Furthermore,GenX exposure caused global upregulation of testicular somatic cellular inflammatory responses,increased abnormal macrophage differentiation,and attenuated fibroblast adhesion,disorganizing the somatic-germline interactions.Conclusions In conclusion,this study revealed complex cellular dynamics and transcriptome changes in mouse testis after GenX exposure,providing a valuable resource for understanding its reproductive toxicity.
基金supported by grants from the Natural Science Foundation of Fujian Province(2021J011062)Minjiang Scholars Funding(GY-633Z21067).
文摘This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ratio and thickness of steel tube influence the bond strength characteristics.The results show that as the enhancement of the steel tube wall thickness,the ultimate bond strength at the interface improves significantly,whereas the initial bond strength exhibits only slight variations.The influence of steel fiber volumetric ratio presents a nonlinear trend,with initial bond strength decreasing at low fiber content and increasing significantly as fiber content rises.Additionally,finite element(FE)simulations were applied to replicate the experimental conditions,and the outcomes showed strong correlation with the experimental data,confirming the exactitude of the FE model in predicting the bond behavior at the UHPC-Steel interface.These findings provide valuable insights for optimizing the design of UHPC-Filled steel tubes in high-performance structure.
基金supported by the National Key Research and Development Program of China(No.2022YFB3203600)the National Natural Science Foundation of China(Nos.12202355,12132013,and 12172323)the Zhejiang Provincial Natural Science Foundation of China(No.LZ22A020003)。
文摘Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coupled micromechanical resonators,highlighting the latest advancements in four key areas:internal resonance,synchronization,frequency combs,and mode localization.The origin,development,and potential applications of each of these dynamic phenomena within mode-coupled micromechanical systems are investigated,with the goal of inspiring new ideas and directions for researchers in this field.
基金supported by National Natural Science Foundation of China(62104082)Guangdong Basic and Applied Basic Research Foundation(2022A1515010746,2022A1515011228,and 2022B1515120006)the Science and Technology Program of Guangzhou(202201010458).
文摘Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film,resulting in the differences of additive distribution.We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface,and prepared perovskite solar cells with a certified efficiency of 23.75%.Furthermore,this work also demonstrates an efficiency of 20.18%for the large-area perovskite solar module(PSM)with an aperture area of 60.84 cm^(2).The PSM possesses remarkable continuous operation stability for maximum power point tracking of T_(90)>1000 h in ambient air.
基金funded by the National Natural Science Foundation of China(52167013)the Key Program of Natural Science Foundation of Gansu Province(24JRRA225)Natural Science Foundation of Gansu Province(23JRRA891).
文摘In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways High-Speed 5 Electric Multiple Unit and proposed a mathematical model and capacity optimization method for an onboard energy storage system using lithium batteries and supercapacitors as storage media.Firstly,considering the electrical characteristics,weight,and volume of the storage media,a mathematical model of the energy storage system was established.Secondly,to tackle problems related to energy consumption and power quality,an energy management strategy was proposed that comprehensively considers peak shaving and valley filling and power quality by controlling the charge/discharge thresholds of the storage system.Thecapacity optimization adopted a bilevel programming model,with the series/parallel number of storage modules as variables,considering constraints imposed by the Direct Current to Direct Current converter,train load,and space.An improved Particle Swarm Optimization algorithm and linear programming solver were used to solve specific cases.The results show that the proposed onboard energy storage system can effectively achieve energy savings,reduce consumption,and improve power qualitywhile meeting the load and space limitations of the train.
文摘Since the discovery of carbon dots(CDs)in 2004,the unique photoluminescence phenomenon of CDs has attracted widespread attention.However,the molecular weight of CDs has not been adequately quantified at present,due to CDs are atomically imprecise and their molecular weight distribution is broad.In this paper,a series of Pluronic-modified CDs were prepared and the structure of the CDs was briefly analyzed.Subsequently,a molecular weight measurement method based on colligative properties was developed,and the correction coefficient in the algorithm was briefly analyzed.The calculated molecular weight was applied to the determination of surface adsorption capacity.This work provided a method for averaging the molecular weight of atomically imprecise particulate materials,which is expected to provide new opportunities in related fields.
文摘Captive model tests are one of the most common methods to calculate the maneuvering hydrodynamic coefficients and characteristics of surface and underwater vehicles.Considerable attention must be paid to selecting and designing the most suitable laboratory equipment for towing tanks.A computational fluid dynamics(CFD)-based method is implemented to determine the loads acting on the towing facility of the submarine model.A reversed topology is also used to ensure the appropriateness of the load cells in the developed method.In this study,the numerical simulations were evaluated using the experimental results of the SUBOFF benchmark submarine model of the Defence Advanced Research Projects Agency.The maximum and minimum loads acting on the 2.5-meter submarine model were measured by determining the body’s lightest and heaviest maneuvering test scenarios.In addition to having sufficient endurance against high loads,the precision in measuring the light load was also investigated.The horizontal planar motion mechanism(HPMM)facilities in the National Iranian Marine Laboratory were developed by locating the load cells inside the submarine model.The results were presented as a case study.A numerical-based method was developed to obtain the appropriate load measurement facilities.Load cells of HPMM test basins can be selected by following the two-way procedure presented in this study.
基金supported by the National Natural Science Foundation of China(52304021,52104022,52204031)the Natural Science Foundation of Sichuan Province(2022NSFSC0205,2024NSFSC0201,2023NSFSC0947)the National Science and Technology Major Projects of China(2017ZX05049006-010).
文摘The global energy demand is increasing rapidly,and it is imperative to develop shale hydrocarbon re-sources vigorously.The prerequisite for enhancing the exploitation efficiency of shale reservoirs is the systematic elucidation of the occurrence characteristics,flow behavior,and enhanced oil recovery(EOR)mechanisms of shale oil within commonly developed nanopores.Molecular dynamics(MD)technique can simulate the occurrence,flow,and extraction processes of shale oil at the nanoscale,and then quantitatively characterize various fluid properties,flow characteristics,and action mechanisms under different reservoir conditions by calculating and analyzing a series of MD parameters.However,the existing review on the application of MD simulation in shale oil reservoirs is not systematic enough and lacks a summary of technical challenges and solutions.Therefore,recent MD studies on shale oil res-ervoirs were summarized and analyzed.Firstly,the applicability of force fields and ensembles of MD in shale reservoirs with different reservoir conditions and fluid properties was discussed.Subsequently,the calculation methods and application examples of MD parameters characterizing various properties of fluids at the microscale were summarized.Then,the application of MD simulation in the study of shale oil occurrence characteristics,flow behavior,and EOR mechanisms was reviewed,along with the elucidation of corresponding micro-mechanisms.Moreover,influencing factors of pore structure,wall properties,reservoir conditions,fluid components,injection/production parameters,formation water,and inorganic salt ions were analyzed,and some new conclusions were obtained.Finally,the main challenges associated with the application of MD simulations to shale oil reservoirs were discussed,and reasonable prospects for future MD research directions were proposed.The purpose of this review is to provide theoretical basis and methodological support for applying MD simulation to study shale oil reservoirs.
基金sponsored by the U.S.Department of Housing and Urban Development(Grant No.NJLTS0027-22)The opinions expressed in this study are the authors alone,and do not represent the U.S.Depart-ment of HUD’s opinions.
文摘This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models offer insights, they fall short in presenting a holistic view of complex urban challenges. System dynamics (SD) models that are often utilized to provide holistic, systematic understanding of a research subject, like the urban system, emerge as valuable tools, but data scarcity and theoretical inadequacy pose challenges. The research reviews relevant papers on recent SD model applications in urban sustainability since 2018, categorizing them based on nine key indicators. Among the reviewed papers, data limitations and model assumptions were identified as ma jor challenges in applying SD models to urban sustainability. This led to exploring the transformative potential of big data analytics, a rare approach in this field as identified by this study, to enhance SD models’ empirical foundation. Integrating big data could provide data-driven calibration, potentially improving predictive accuracy and reducing reliance on simplified assumptions. The paper concludes by advocating for new approaches that reduce assumptions and promote real-time applicable models, contributing to a comprehensive understanding of urban sustainability through the synergy of big data and SD models.
基金supported by the project of the National Natural Science Foundation of China(52202115 and 52172101)Guangdong Basic and Applied Basic Research Foundation(2024A1515012325)+2 种基金the Natural Science Foundation of Chongqing,China(CSTB2022NSCQ-MSX1085)the Shaanxi Science and Technology Innovation Team(2023-CXTD-44)the Fundamental Research Funds for the Central Universities(G2022KY0604).
文摘Efficient and stable photocathodes with versatility are of significance in photoassisted lithium-ion batteries(PLIBs),while there is always a request on fast carrier transport in electrochemical active photocathodes.Present work proposes a general approach of creating bulk heterojunction to boost the carrier mobility of photocathodes by simply laser assisted embedding of plasmonic nanocrystals.When employed in PLIBs,it was found effective for synchronously enhanced photocharge separation and transport in light charging process.Additionally,experimental photon spectroscopy,finite difference time domain method simulation and theoretical analyses demonstrate that the improved carrier dynamics are driven by the plasmonic-induced hot electron injection from metal to TiO_(2),as well as the enhanced conductivity in TiO2 matrix due to the formation of oxygen vacancies after Schottky contact.Benefiting from these merits,several benchmark values in performance of TiO2-based photocathode applied in PLIBs are set,including the capacity of 276 mAh g^(−1) at 0.2 A g^(−1) under illumination,photoconversion efficiency of 1.276%at 3 A g^(−1),less capacity and Columbic efficiency loss even through 200 cycles.These results exemplify the potential of the bulk heterojunction strategy in developing highly efficient and stable photoassisted energy storage systems.
基金financially supported by China Geological Survey Project(No.DD20220954)Open Funding Project of the Key Laboratory of Groundwater Sciences and Engineering,Ministry of Natural Resources(No.SK202301-4)+2 种基金Science and Technology Innovation Foundation of Comprehensive Survey&Command Center for Natural Resources(No.KC20240003)Yanzhao Shanshui Science and Innovation Fund of Langfang Integrated Natural Resources Survey Center,China Geological Survey(No.YZSSJJ202401-001)Open Foundation of the Key Laboratory of Coupling Process and Effect of Natural Resources Elements(No.2022KFKTC009).
文摘Water scarcity and environment deterioration have become main constraints to sustainable economic and social development.Scientifically assessing Water Resources Carrying Capacity(WRCC)is essential for the optimal allocation of regional water resources.The hilly area at the northern foot of Yanshan Mountains is a key water conservation zone and an important water source for Beijing,Tianjin and Hebei.Grasping the current status and temporal trends of water quality and WRCC in representative small watersheds within this region is crucial for supporting rational water resources allocation and environment protection efforts.This study focuses on Pingquan City,a typical watershed in northern Hebei Province.Firstly,evaluation index systems for surface water quality,groundwater quality and WRCC were estab-lished based on the Pressure-State-Response(PSR)framework.Then,comprehensive evaluations of water quality and WRCC at the sub-watershed scale were conducted using the Varying Fuzzy Pattern Recogni-tion(VFPR)model.Finally,the rationality of the evaluation results was verified,and future scenarios were projected.Results showed that:(1)The average comprehensive evaluation scores for surface water and groundwater quality in the sub-watersheds were 1.44 and 1.46,respectively,indicating that both met the national Class II water quality standard and reflected a high-quality water environment.(2)From 2010 to 2020,the region's WRCC steadily improved,with scores rising from 2.99 to 2.83 and an average of 2.90,suggesting effective water resources management in Pingquan City.(3)According to scenario-based predic-tion,WRCC may slightly decline between 2025 and 2030,reaching 2.92 and 2.94,respectively,relative to 2020 levels.Therefore,future efforts should focus on strengthening scientific management and promoting the efficient use of water resources.Proactive measures are necessary to mitigate emerging contradiction and ensure the long-term stability and sustainability of the water resources system in the region.The evalua-tion system and spatiotemporal evolution patterns proposed in this study can provide a scientific basis for refined water resource management and ecological conservation in similar hilly areas.
文摘To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.
文摘The charge carrier transport and recombination dynamics in the quantum dots-based light-emitting diodes(QLEDs)featuring multiple emitting layers(M-EMLs)has a great impact on the device performance.In this work,QLEDs based on M-EMLs separated by polyethyleneimine ethoxylated(PEIE)layer with different stacking sequences of blue(B),green(G),and red(R)QDs layer were used to intuitively explore the injection,transportation and recombination processes of the charge carriers in QLEDs by using the time-resolved electroluminescence(TrEL)spectra.From the TrEL spectra mea-surements,green and red emissions were obtained first in the QLEDs with the EMLs sequences of G/PEIE/B/PEIE/R and B/PEIE/R/PEIE/G along the direction of light emission,respectively.While the QLEDs adopt EMLs sequences of B/PEIE/G/PEIE/R,the blue,green and red emissions were obtained nearly at the same time.The above phenomenon can be attributed to different charge carrier transmission and radiation recombination process in the EMLs due to different valence band offsets and conduction band offsets between R-,G-and B-QDs by using different sequences of EMLs.White emission with coordi-nates of(0.31,0.31)and correlated color temperature(CCT)of 5916 K was obtained in the QLEDs with the EMLs se-quences of B/PEIE/G/PEIE/R,which can be attributed to the relative uniform emission of B-,G-and R-QDs due to the effec-tive injection and radiation recombination of charge carriers in each of the EMLs.The above results have great significance for further understanding and improving the performance of QLEDs with M-EMLs.
文摘To exchange experiences and progress in standardization capacity building at home and abroad,the sub-forum on capacity building and creating leadership in standardization was held on July 9.The sub-forum was hosted by the Qingdao Municipal People’s Government and co-organized by the International Standardization Training Base(Qingdao),Qingdao University,International Standardization Outstanding Contribution Foundation,and Shandong National Standards Center of Technical Evaluation,which was expected to inject new vitality into the industrial development and provide new ideas for improving the talent cultivation system.