To exchange experiences and progress in standardization capacity building at home and abroad,the sub-forum on capacity building and creating leadership in standardization was held on July 9.The sub-forum was hosted by...To exchange experiences and progress in standardization capacity building at home and abroad,the sub-forum on capacity building and creating leadership in standardization was held on July 9.The sub-forum was hosted by the Qingdao Municipal People’s Government and co-organized by the International Standardization Training Base(Qingdao),Qingdao University,International Standardization Outstanding Contribution Foundation,and Shandong National Standards Center of Technical Evaluation,which was expected to inject new vitality into the industrial development and provide new ideas for improving the talent cultivation system.展开更多
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships w...Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships with antioxidant activity and oxidative stability,gas chromatography-mass spectrometry was performed to characterize the associated fatty acid profiles.The antioxidant activity of vegetable oils,based on their DPPH-scavenging capacity(expressed as IC_(50) values),was used to assess their impact on human health,and their oxidative stability was characterized by performing lipid oxidation analysis to determine the oxidative induction time of fats and oils.In addition,correlation analyses were performed to examine associations between the fatty acid composition of the oils and DPPH-scavenging capacity and oxidative stability.The results revealed that among the assessed oils,coffee seed oil has the highest saturated fatty acid content(355.10 mg/g),whereas Garddenia jaminoides oil has the highest unsaturated fatty acid content(844.84 mg/g).Coffee seed oil was also found have the lowest DPPH IC_(50) value(2.30 mg/mL)and the longest oxidation induction time(17.09 h).Correlation analysis revealed a significant linear relationship(P<0.05)between oxidative stability and unsaturated fatty acid content,with lower contents tending to be associated with better oxidative stability.The findings of this study provide reference data for the screening of functional edible vegetable oils.展开更多
Background Oxidative stress significantly impacts growth performance and liver function in piglets.Ferulic acid(FA)works as an antioxidant,however,the role and mechanism of FA in the regulation of diquat-induced oxida...Background Oxidative stress significantly impacts growth performance and liver function in piglets.Ferulic acid(FA)works as an antioxidant,however,the role and mechanism of FA in the regulation of diquat-induced oxidative stress in piglets are less known.This study was designed to investigate the effects of FA on growth performance and antioxi-dant capacity in piglets with diquat challenge.Methods Thirty-two healthy DLY(Duroc×Landrace×Yorkshire)piglets(13.24±0.19 kg)were randomly divided into one of two diets including 0 or 4 g/kg FA for 14 d.On d 15,all pigs were intraperitoneally injected diquat or sterile saline.Results Dietary supplementation with ferulic acid(FA)significantly improved the average daily gain(ADG)and decreased feed-gain ratio(F/G)of piglets.Here,dietary FA supplementation reduced serum aspartate aminotrans-ferase(AST),alanine aminotransferase(ALT)activities in diquat challenged piglets.Furthermore,diquat infusion increased reactive oxygen radicals(ROS)level in liver,decreased the activities of total superoxide dismutase(T-SOD)and glutathione peroxidase(GSH-Px),total antioxidant capacity(T-AOC)and increased malondialdehyde(MDA)con-tent in the liver and serum.Supplementation with FA significantly increased T-AOC and T-SOD activities and decreased MDA and ROS levels.FA down-regulated gene and protein expression of Keap1,and up-regulated protein expression of Nrf2 and HO-1 in the liver of piglets with diquat challenge.Importantly,diquat challenge increased the ratio of late apoptosis,increased serum levels of IL-1β,IL-18 and lactate dehydrogenase(LDH),and up-regulated pyroptosis-related genes in the liver.FA supplementation reduced the ratio of late apoptosis and down-regulated mRNA expression of Caspase-1.Accordingly,FA addition reduced concentration of IL-1β,IL-18,and LDH under diquat challenge.Conclusions Diquat-induced oxidative stress reduced growth performance and impaired liver function in piglets.Dietary FA supplementation enhanced the antioxidant capacity and reduced the degree of hepatocyte pyroptosis,thereby alleviating the oxidative damage in the liver and mitigating the impact of diquat on growth performance of piglets.展开更多
The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a block...The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a blockchain-enabled manufacturing collaboration framework is proposed,with a focus on the production capacity matching problem for blockchainbased peer-to-peer(P2P)collaboration.First,a digital model of production capacity description is built for trustworthy and transparent sharing over the blockchain.Second,an optimization problem is formulated for P2P production capacity matching with objectives to maximize both social welfare and individual benefits of all participants.Third,a feasible solution based on an iterative double auction mechanism is designed to determine the optimal price and quantity for production capacity matching with a lack of personal information.It facilitates automation of the matching process while protecting users'privacy via blockchainbased smart contracts.Finally,simulation results from the Hyperledger Fabric-based prototype show that the proposed approach increases social welfare by 1.4%compared to the Bayesian game-based approach,makes all participants profitable,and achieves 90%fairness of enterprises.展开更多
This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ra...This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ratio and thickness of steel tube influence the bond strength characteristics.The results show that as the enhancement of the steel tube wall thickness,the ultimate bond strength at the interface improves significantly,whereas the initial bond strength exhibits only slight variations.The influence of steel fiber volumetric ratio presents a nonlinear trend,with initial bond strength decreasing at low fiber content and increasing significantly as fiber content rises.Additionally,finite element(FE)simulations were applied to replicate the experimental conditions,and the outcomes showed strong correlation with the experimental data,confirming the exactitude of the FE model in predicting the bond behavior at the UHPC-Steel interface.These findings provide valuable insights for optimizing the design of UHPC-Filled steel tubes in high-performance structure.展开更多
In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways Hi...In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways High-Speed 5 Electric Multiple Unit and proposed a mathematical model and capacity optimization method for an onboard energy storage system using lithium batteries and supercapacitors as storage media.Firstly,considering the electrical characteristics,weight,and volume of the storage media,a mathematical model of the energy storage system was established.Secondly,to tackle problems related to energy consumption and power quality,an energy management strategy was proposed that comprehensively considers peak shaving and valley filling and power quality by controlling the charge/discharge thresholds of the storage system.Thecapacity optimization adopted a bilevel programming model,with the series/parallel number of storage modules as variables,considering constraints imposed by the Direct Current to Direct Current converter,train load,and space.An improved Particle Swarm Optimization algorithm and linear programming solver were used to solve specific cases.The results show that the proposed onboard energy storage system can effectively achieve energy savings,reduce consumption,and improve power qualitywhile meeting the load and space limitations of the train.展开更多
To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concret...To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.展开更多
Since the discovery of carbon dots(CDs)in 2004,the unique photoluminescence phenomenon of CDs has attracted widespread attention.However,the molecular weight of CDs has not been adequately quantified at present,due to...Since the discovery of carbon dots(CDs)in 2004,the unique photoluminescence phenomenon of CDs has attracted widespread attention.However,the molecular weight of CDs has not been adequately quantified at present,due to CDs are atomically imprecise and their molecular weight distribution is broad.In this paper,a series of Pluronic-modified CDs were prepared and the structure of the CDs was briefly analyzed.Subsequently,a molecular weight measurement method based on colligative properties was developed,and the correction coefficient in the algorithm was briefly analyzed.The calculated molecular weight was applied to the determination of surface adsorption capacity.This work provided a method for averaging the molecular weight of atomically imprecise particulate materials,which is expected to provide new opportunities in related fields.展开更多
[Objectives]To synthesize evidence on HIIT versus moderate-intensity continuous training(MICT)or routine rehabilitation in stroke survivors.[Methods]We systematically searched 8 databases(PubMed,EMBASE,CENTRAL,Web of ...[Objectives]To synthesize evidence on HIIT versus moderate-intensity continuous training(MICT)or routine rehabilitation in stroke survivors.[Methods]We systematically searched 8 databases(PubMed,EMBASE,CENTRAL,Web of Science,SPORTSDiscus,PsycINFO,SCOPUS,CINAHL)up to May 2025.Seventeen randomized controlled trials(RCTs;total n=1142)met inclusion criteria:adults with stroke,device-based HIIT(≥70%HRR/VO 2peak),and outcomes assessing VO 2peak,6-min walk distance(6MWD),or Berg Balance Scale(BBS).Methodological quality was evaluated using the PEDro scale.Pooled effect sizes(Hedges'g)were calculated via random-effects models,with heterogeneity quantified by I^(2).[Results]HIIT significantly improved peak oxygen uptake(VO 2peak)versus controls(g=0.59,95%CI:0.44-0.75,p<0.001;I^(2)=16.29%).Low heterogeneity and symmetrical funnel plots supported robustness.HIIT also enhanced walking endurance(6MWD:g=0.32,95%CI:0.16-0.48,p<0.01;I^(2)=30%).In contrast,no significant benefit was observed for balance function(BBS:g=0.07,95%CI:-0.13-0.26,p=0.50;I^(2)=0%).[Conclusions]HIIT is a safe and highly effective intervention for enhancing aerobic capacity and walking function post-stroke.Its benefits are maximized at higher intensities and longer durations but do not extend to balance improvement.Integrating HIIT into stroke rehabilitation protocols is strongly recommended to promote functional independence.展开更多
Agriculture,significantly impacted by climate change and climate variability,serves as the primary livelihood for smallholder farmers in South Asia.This study aims to examine and evaluate the factors influencing small...Agriculture,significantly impacted by climate change and climate variability,serves as the primary livelihood for smallholder farmers in South Asia.This study aims to examine and evaluate the factors influencing smallholder farmers'adaptive capacity(AC)in addressing these risks through surveys from 633 households across Nepal,India,and Bangladesh.The findings reveal that AC is influenced by various indicators categorized under eight principal factors.The first three factors,which explain about one-third of the variance in each country,include distinct significant indicators for each nation:in Nepal,these indicators are landholding size,skill-development training,knowledge of improved seed varieties,number of income sources,access to markets,and access to financial institutions;in India,they encompass ac-cess to agricultural-input information,knowledge of seed varieties,access to markets,access to crop insurance,changing the sowing/harvesting times of crops,and access to financial ser-vices;in Bangladesh,the key factors are access to financial institutions,community coopera-tion,changing the sowing/harvesting times of crops,knowledge of improved seed varieties,and access to agricultural-input information.Notably,indicators such as trust in weather in-formation,changing sowing/harvesting times of crops,and crop insurance were identified as important determinants of AC,which have been overlooked in previous studies.展开更多
MnCO_(3)represents a potentially high-capacity and low-cost anode candidate to replace graphite for enhancing energy density of commercial lithium-ion batteries,but it suffers from poor electrical conductivity and ser...MnCO_(3)represents a potentially high-capacity and low-cost anode candidate to replace graphite for enhancing energy density of commercial lithium-ion batteries,but it suffers from poor electrical conductivity and serious volumetric change,largely hindering its practical applications.展开更多
This study focuses on the preparation,and optimization of the nanoemulsions coorporating with pumpkin seed oil,grape seed oil,and grapefruit essential oil using the phase inversion temperature(PIT)technique.The resear...This study focuses on the preparation,and optimization of the nanoemulsions coorporating with pumpkin seed oil,grape seed oil,and grapefruit essential oil using the phase inversion temperature(PIT)technique.The research investigated the impact of surfactant types and concentrations on critical nanoemulsion properties,including droplet size,polydispersity index(PDI),and zeta potential.Using a Box-Behnken Design(BBD)model,the formulation was optimized containing 6.0%plant oils,10.0%Tween 80,2.0%Span 80,and 1.0%lecithin to achieve nano-sized droplets(33.52 nm),with a low PDI(0.205),and a stable zeta potential(15.49 mV).The antioxidant activity,was evaluated through 2,2-diphenyl-1-picrylhydrazyl(DPPH)radical scavenging assays,demonstrating its outstanding efficacy.And the optimized nanoemulsion showed a radical-scavenging capacity exceeding 2250μg ascorbic acid equivalents/g,significantly outperforming non-nanoemulsified oils.Stability testing under various environmental conditions highlighted exceptional robustness,with refrigerated samples maintaining structural integrity,minimal particle size growth,and consistent physicochemical properties over a 30-day storage period.The results suggest that the plant oil-based nanoemulsions exhibit strong antioxidant potential,offering a promising natural treatment for their application in cosmeceutical and therapeutic formulations.展开更多
BACKGROUND The primary issue in managing edentulous patients is the severely resorbed mandibular ridge,particularly in older individuals with diminished adaptive capacities.This compromised situation leads to the fabr...BACKGROUND The primary issue in managing edentulous patients is the severely resorbed mandibular ridge,particularly in older individuals with diminished adaptive capacities.This compromised situation leads to the fabrication of inadequate dentures that lack retention and stability,potentially causing psychosocial issues.AIM To determine the difference in retentive capacity between three attachment systems in implant-retained overdentures.METHODS Three edentulous mandibular models were fabricated using heat-cured polymethacrylate resin,with two implant replicas placed in the intra-foraminal region of each model.30 acrylic resin mandibular overdentures were fabricated with provisions for three different overdenture attachment systems:A prefabricated ball/O-ring attachment,a locator attachment system,and an equator attachment system.Each model was subjected to 15000 pulls using a universal testing machine to remove the overdenture from the acrylic model and the force data were recorded.RESULTS The ball/O-ring attachment system demonstrated superior retentive capacity for 15 years,while the locator and equator attachment systems maintained excellent retentive capacity for 5 years.CONCLUSION The ball/O-ring attachment system outperformed better than the other two attachment systems regarding retentive capacity.The locator and equator attachment systems presented sufficient retentive abilities until 15000 cycles.After 7500 cycles,significant differences in retentive force between the systems evolved.展开更多
The Fe–Mn damping alloys possess considerable damping capacity,but their yield strength is rather low.The 800 MPa Fe–Mn alloy with expected damping capacity was designed by the combination of grain refinement and ε...The Fe–Mn damping alloys possess considerable damping capacity,but their yield strength is rather low.The 800 MPa Fe–Mn alloy with expected damping capacity was designed by the combination of grain refinement and ε-martensite introduction.The yield strength can be greatly raised to around 700 MPa by refining grain size from 88.4 to 1.8μm.Although there exist numerous stacking faults in the fine-grained alloy,the damping capacity is strongly deteriorated due to the suppression of thermally activated ε-martensite.We demonstrate that the stacking faults cannot provide effective contribution to damping capacity and hence introduce a considerable volume fraction of stress/strain-induced ε-martensite to raise damping sources,including ε-martensite and γ/ε interfaces,etc.,by a small pre-strain.From this,the damping capacity can be improved,and the yield strength can be further enhanced from nearly 700 MPa to around 800 MPa.Thus,the combination of high yield strength and good damping capacity is realized.展开更多
Clay deposits typically exhibit significant degrees of heterogeneity and anisotropy in their strength and stiffness properties.Such non-monotonic responses can significantly impact the stability analysis and design of...Clay deposits typically exhibit significant degrees of heterogeneity and anisotropy in their strength and stiffness properties.Such non-monotonic responses can significantly impact the stability analysis and design of overlying shallow foundations.In this study,the undrained bearing capacity of shallow foundations resting on inhomogeneous and anisotropic clay layers subjected to oblique-eccentric combined loading is investigated through a comprehensive series of finite element limit analysis(FELA)based on the well-established lower-bound theorem and second-order cone programming(SOCP).The heterogeneity of normally consolidated(NC)clays is simulated by adopting a well-known general model of undrained shear strength increasing linearly with depth.In contrast,for overconsolidated(OC)clays,the variation of undrained shear strength with depth is considered to follow a bilinear trend.Furthermore,the inherent anisotropy is accounted for by adopting different values of undrained shear strength along different directions within the soil medium,employing an iterative-based algorithm.The results of numerical simulations are utilized to investigate the influences of natural soil heterogeneity and inherent anisotropy on the ultimate bearing capacity,failure envelope,and failure mechanism of shallow foundations subjected to the various combinations of vertical-horizontal(V-H)and vertical-moment(V-M)loads.展开更多
Background Organic selenium(Se)has gained recognition in poultry nutrition as a feed additive to boost production and Se deposition in eggs and tissues,owing to its high bioavailability,efficient tissue accumulation a...Background Organic selenium(Se)has gained recognition in poultry nutrition as a feed additive to boost production and Se deposition in eggs and tissues,owing to its high bioavailability,efficient tissue accumulation and minimal toxicity.Selenium-enriched yeast(SeY)is a well-established source,while selenium-enriched lactobacilli(SeL),a newer alternative,offers the added benefits of probiotics.This study examined the effects of SeY and SeL on egg quality,antioxidant capacity,Se deposition,and gut health in laying hens.After a two-week pre-treatment with a Sedeficient diet(SeD),450 Hy-Line Brown laying hens(30-week-old)were assigned into five dietary groups with six replicates of 15 hens each.The groups included a SeD,SeD supplemented with 1.5 mg Se/kg from SeY(SeY15),or 1.5,3.0,and 6.0 mg Se/kg from SeL(SeL15,SeL30,SeL60).The feeding trial lasted for 12 weeks.Results SeY15 and SeL15 improved the feed-to-egg ratio(P<0.05)in the latter stages.Haugh units were significantly increased(P<0.05)in the SeY15 and SeL30 groups,while darker yolk color(P<0.05)was observed in the SeY15,SeL15,and SeL60 groups.All Se-supplemented diets increased Se content in whole eggs,albumen,and yolk(P<0.05),while SeL groups showed a dose-dependent effect.Antioxidant enzyme activities increased,and MDA content decreased in the serum(P<0.05),with SeY15 showing the highest GSH-Px levels(P<0.05).SeL60 increased serum alkaline phosphatase and aspartate transaminase,and distorted the liver architecture(P<0.05).Se-diets reduced concentrations of reactive oxygen species(ROS)in the ileum and liver(P<0.05).SeL15 improved the ileal villus height-tocrypt depth ratio(P<0.05).SeY15 and/or SeL15 up-regulated TXNRD1 and SEPHS1 mRNA while down-regulating SCLY expression in the liver.SeY15 altered ileal microbiota by increasing both beneficial and pathogenic bacteria,whereas SeL15 predominantly boosted beneficial bacteria.Conclusion SeL integrates the antioxidant properties of organic Se with the probiotic benefits on gut health,resulting in a performance-enhancing effect comparable to that of SeY.However,high SeL level(6.0 mg Se/kg)compromised productivity and metabolic functions while enhancing Se deposition.展开更多
The exploration of the coupling and coordination between urban innovation capability(IC)and industrial transformation(IF)serves as a novel perspective for interpreting the increasingly severe phenomenon of population ...The exploration of the coupling and coordination between urban innovation capability(IC)and industrial transformation(IF)serves as a novel perspective for interpreting the increasingly severe phenomenon of population shrinkage during the industrialization process.This study investigated the evolutionary characteristics of IC and IF in shrinking and growing cities in Northeast China from 2010 to 2020.It uses entropy weighted model,coupling coordination degree,the Dagum Gini coefficient,and geographic detectors to analyze the coordinated development of IC and IF in the context of population shrinkage.The study analyzed the spatiotemporal patterns and driving mechanisms for their coordinated development.The results show that:1)both urban IC and IF exhibited an overall positive trend during the study period.Shrinking cities depend more on IF to address the challenges of population shrinkage,while growing cities mainly rely on innovation-driven development.2)The coupling gap between IC and IF in shrinking and growing cities has widened over time,with the coordination level of shrinking cities steadily decreasing.Cities with serious disorder are concentrated in northern Heilongjiang Province,while most cities in Jilin Province experience moderate disorder.Liaoning Province,however,shows generally good coupling coordination.3)Human capital is the key factor driving coupling coordination in both types of cities.Shrinking cities rely on economic and financial development,with the‘repair-type’logic that emphasizes short-term economic growth and resource compensation.In contrast,the coupling of growing cities relies on basic support capabilities,with the‘optimization-type’logic focused on enhancing endogenous resilience and systemic coordination.Exploring the coordination between urban innovation capabilities and industrial transformation can provide a new perspective for research on population shrinkage,which holds certain theoretical and practical significance for implementing the new round of revitalization strategy in Northeast China.展开更多
Nitrous acid(HONO)is a crucial source of OH radicals in the troposphere,significantly enhancing secondary pollutants like secondary organic aerosols(SOA)and peroxyacetyl nitrates(PAN).While prior research has examined...Nitrous acid(HONO)is a crucial source of OH radicals in the troposphere,significantly enhancing secondary pollutants like secondary organic aerosols(SOA)and peroxyacetyl nitrates(PAN).While prior research has examined HONO sources and their total impacts on secondary pollution,the specific enhancement capacity of each individual HONO source remains underexplored.This study uses observational data from 2015 to 2018 for HONO,SOA,and PAN across six sites in China,combined with WRF-Chem model adding six potential HONO sources to evaluate their capacity:traffic emissions(E_traffic),soil emissions(E_soil),indoor-outdoor exchange(E_indoor),nitrate photolysis(P_nit),and NO_(2) heterogeneous reactions on aerosol and ground surfaces(Het_a,Het_g).The simulated HONO contributions near the ground in urban Beijing were:12%from NO+OH(default source),10%-20%from E_traffic,1%-12%from P_nit,2%-10%from Het_a,and 50%-70% from Het_g.For SOA and PAN,we calculated incremental contributions enhanced by each HONO source and derived enhancement ratios(ERs)normalized against HONO’s contribution:~7 for P_nit,~2 for Het_a,~0.9 for Het_g,~0.8 for E_soil,~0.3 for E_traffic,and~0.1 for E_indoor.HONO sources’capacity to enhance secondary pollutants varies,being larger for aerosol-related sources.Vertical analysis on HONO concentration,spatial distribution,RO_(x) radical cycling rates,and OH enhancements revealed that aerosol-related HONO sources,especially P_nit,contribute more to secondary pollution.Future research should focus more on assessing real-world impacts of HONO sources,besides identifying their budgets.Additionally,uptake coefficient(γ)and nitrate photolysis frequency(J_(nitrate))critically affect HONO and secondary pollutant formation,necessitating further investigations.展开更多
A self-centering bridge bent equipped with energy-dissipation(ED)beams is proposed.Quasi-static tests are conducted on self-centering bridge bents,both with and without ED beams,to validate the accuracy of the corresp...A self-centering bridge bent equipped with energy-dissipation(ED)beams is proposed.Quasi-static tests are conducted on self-centering bridge bents,both with and without ED beams,to validate the accuracy of the corresponding numerical models.The effects of various param-eters,such as the web area of ED beams,prestressing force of tendons,tendon arrangements,and number of column segments,on the seismic performance of self-centering bridge bents with ED beams are evaluated using the validated numerical model.The results demonstrate that the nu-merical models accurately replicate the quasi-static test results,with average errors in the lateral force remaining below 9.6%.The web area of ED beams significantly affects the strength,cumulative energy dissipation,and relative self-centering index(RSI)of the self-centering bridge bents.Increasing the prestressing force enhances the lateral force and self-centering capability of the bridge bents but has minimal effect on their ED capacity.Reducing the num-ber of segments in each column enhances the lateral force and cumulative hysteretic energy dissipation of the self-centering bridge bents while exerting an insignificant effect on the RSI.Thus,the proposed novel system is highly suitable for doubleor multicolumn piers supporting bridges in regions prone to strong earthquakes.展开更多
文摘To exchange experiences and progress in standardization capacity building at home and abroad,the sub-forum on capacity building and creating leadership in standardization was held on July 9.The sub-forum was hosted by the Qingdao Municipal People’s Government and co-organized by the International Standardization Training Base(Qingdao),Qingdao University,International Standardization Outstanding Contribution Foundation,and Shandong National Standards Center of Technical Evaluation,which was expected to inject new vitality into the industrial development and provide new ideas for improving the talent cultivation system.
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.
文摘Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships with antioxidant activity and oxidative stability,gas chromatography-mass spectrometry was performed to characterize the associated fatty acid profiles.The antioxidant activity of vegetable oils,based on their DPPH-scavenging capacity(expressed as IC_(50) values),was used to assess their impact on human health,and their oxidative stability was characterized by performing lipid oxidation analysis to determine the oxidative induction time of fats and oils.In addition,correlation analyses were performed to examine associations between the fatty acid composition of the oils and DPPH-scavenging capacity and oxidative stability.The results revealed that among the assessed oils,coffee seed oil has the highest saturated fatty acid content(355.10 mg/g),whereas Garddenia jaminoides oil has the highest unsaturated fatty acid content(844.84 mg/g).Coffee seed oil was also found have the lowest DPPH IC_(50) value(2.30 mg/mL)and the longest oxidation induction time(17.09 h).Correlation analysis revealed a significant linear relationship(P<0.05)between oxidative stability and unsaturated fatty acid content,with lower contents tending to be associated with better oxidative stability.The findings of this study provide reference data for the screening of functional edible vegetable oils.
基金Sichuan Science and Technology Program(No.2021ZDZX0009).
文摘Background Oxidative stress significantly impacts growth performance and liver function in piglets.Ferulic acid(FA)works as an antioxidant,however,the role and mechanism of FA in the regulation of diquat-induced oxidative stress in piglets are less known.This study was designed to investigate the effects of FA on growth performance and antioxi-dant capacity in piglets with diquat challenge.Methods Thirty-two healthy DLY(Duroc×Landrace×Yorkshire)piglets(13.24±0.19 kg)were randomly divided into one of two diets including 0 or 4 g/kg FA for 14 d.On d 15,all pigs were intraperitoneally injected diquat or sterile saline.Results Dietary supplementation with ferulic acid(FA)significantly improved the average daily gain(ADG)and decreased feed-gain ratio(F/G)of piglets.Here,dietary FA supplementation reduced serum aspartate aminotrans-ferase(AST),alanine aminotransferase(ALT)activities in diquat challenged piglets.Furthermore,diquat infusion increased reactive oxygen radicals(ROS)level in liver,decreased the activities of total superoxide dismutase(T-SOD)and glutathione peroxidase(GSH-Px),total antioxidant capacity(T-AOC)and increased malondialdehyde(MDA)con-tent in the liver and serum.Supplementation with FA significantly increased T-AOC and T-SOD activities and decreased MDA and ROS levels.FA down-regulated gene and protein expression of Keap1,and up-regulated protein expression of Nrf2 and HO-1 in the liver of piglets with diquat challenge.Importantly,diquat challenge increased the ratio of late apoptosis,increased serum levels of IL-1β,IL-18 and lactate dehydrogenase(LDH),and up-regulated pyroptosis-related genes in the liver.FA supplementation reduced the ratio of late apoptosis and down-regulated mRNA expression of Caspase-1.Accordingly,FA addition reduced concentration of IL-1β,IL-18,and LDH under diquat challenge.Conclusions Diquat-induced oxidative stress reduced growth performance and impaired liver function in piglets.Dietary FA supplementation enhanced the antioxidant capacity and reduced the degree of hepatocyte pyroptosis,thereby alleviating the oxidative damage in the liver and mitigating the impact of diquat on growth performance of piglets.
基金supported in part by the National Natural Science Foundation of China(62273310)the Natural Science Foundation of Zhejiang Province of China(LY22F030006,LZ24F030009)
文摘The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a blockchain-enabled manufacturing collaboration framework is proposed,with a focus on the production capacity matching problem for blockchainbased peer-to-peer(P2P)collaboration.First,a digital model of production capacity description is built for trustworthy and transparent sharing over the blockchain.Second,an optimization problem is formulated for P2P production capacity matching with objectives to maximize both social welfare and individual benefits of all participants.Third,a feasible solution based on an iterative double auction mechanism is designed to determine the optimal price and quantity for production capacity matching with a lack of personal information.It facilitates automation of the matching process while protecting users'privacy via blockchainbased smart contracts.Finally,simulation results from the Hyperledger Fabric-based prototype show that the proposed approach increases social welfare by 1.4%compared to the Bayesian game-based approach,makes all participants profitable,and achieves 90%fairness of enterprises.
基金supported by grants from the Natural Science Foundation of Fujian Province(2021J011062)Minjiang Scholars Funding(GY-633Z21067).
文摘This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ratio and thickness of steel tube influence the bond strength characteristics.The results show that as the enhancement of the steel tube wall thickness,the ultimate bond strength at the interface improves significantly,whereas the initial bond strength exhibits only slight variations.The influence of steel fiber volumetric ratio presents a nonlinear trend,with initial bond strength decreasing at low fiber content and increasing significantly as fiber content rises.Additionally,finite element(FE)simulations were applied to replicate the experimental conditions,and the outcomes showed strong correlation with the experimental data,confirming the exactitude of the FE model in predicting the bond behavior at the UHPC-Steel interface.These findings provide valuable insights for optimizing the design of UHPC-Filled steel tubes in high-performance structure.
基金funded by the National Natural Science Foundation of China(52167013)the Key Program of Natural Science Foundation of Gansu Province(24JRRA225)Natural Science Foundation of Gansu Province(23JRRA891).
文摘In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways High-Speed 5 Electric Multiple Unit and proposed a mathematical model and capacity optimization method for an onboard energy storage system using lithium batteries and supercapacitors as storage media.Firstly,considering the electrical characteristics,weight,and volume of the storage media,a mathematical model of the energy storage system was established.Secondly,to tackle problems related to energy consumption and power quality,an energy management strategy was proposed that comprehensively considers peak shaving and valley filling and power quality by controlling the charge/discharge thresholds of the storage system.Thecapacity optimization adopted a bilevel programming model,with the series/parallel number of storage modules as variables,considering constraints imposed by the Direct Current to Direct Current converter,train load,and space.An improved Particle Swarm Optimization algorithm and linear programming solver were used to solve specific cases.The results show that the proposed onboard energy storage system can effectively achieve energy savings,reduce consumption,and improve power qualitywhile meeting the load and space limitations of the train.
文摘To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.
文摘Since the discovery of carbon dots(CDs)in 2004,the unique photoluminescence phenomenon of CDs has attracted widespread attention.However,the molecular weight of CDs has not been adequately quantified at present,due to CDs are atomically imprecise and their molecular weight distribution is broad.In this paper,a series of Pluronic-modified CDs were prepared and the structure of the CDs was briefly analyzed.Subsequently,a molecular weight measurement method based on colligative properties was developed,and the correction coefficient in the algorithm was briefly analyzed.The calculated molecular weight was applied to the determination of surface adsorption capacity.This work provided a method for averaging the molecular weight of atomically imprecise particulate materials,which is expected to provide new opportunities in related fields.
文摘[Objectives]To synthesize evidence on HIIT versus moderate-intensity continuous training(MICT)or routine rehabilitation in stroke survivors.[Methods]We systematically searched 8 databases(PubMed,EMBASE,CENTRAL,Web of Science,SPORTSDiscus,PsycINFO,SCOPUS,CINAHL)up to May 2025.Seventeen randomized controlled trials(RCTs;total n=1142)met inclusion criteria:adults with stroke,device-based HIIT(≥70%HRR/VO 2peak),and outcomes assessing VO 2peak,6-min walk distance(6MWD),or Berg Balance Scale(BBS).Methodological quality was evaluated using the PEDro scale.Pooled effect sizes(Hedges'g)were calculated via random-effects models,with heterogeneity quantified by I^(2).[Results]HIIT significantly improved peak oxygen uptake(VO 2peak)versus controls(g=0.59,95%CI:0.44-0.75,p<0.001;I^(2)=16.29%).Low heterogeneity and symmetrical funnel plots supported robustness.HIIT also enhanced walking endurance(6MWD:g=0.32,95%CI:0.16-0.48,p<0.01;I^(2)=30%).In contrast,no significant benefit was observed for balance function(BBS:g=0.07,95%CI:-0.13-0.26,p=0.50;I^(2)=0%).[Conclusions]HIIT is a safe and highly effective intervention for enhancing aerobic capacity and walking function post-stroke.Its benefits are maximized at higher intensities and longer durations but do not extend to balance improvement.Integrating HIIT into stroke rehabilitation protocols is strongly recommended to promote functional independence.
基金The Alliance of International Science Organizations(ANSO),No.ANSO-CR-PP-2021-06The Second Tibetan Plateau Scientific Expedition and Research,No.2019QZKK0603。
文摘Agriculture,significantly impacted by climate change and climate variability,serves as the primary livelihood for smallholder farmers in South Asia.This study aims to examine and evaluate the factors influencing smallholder farmers'adaptive capacity(AC)in addressing these risks through surveys from 633 households across Nepal,India,and Bangladesh.The findings reveal that AC is influenced by various indicators categorized under eight principal factors.The first three factors,which explain about one-third of the variance in each country,include distinct significant indicators for each nation:in Nepal,these indicators are landholding size,skill-development training,knowledge of improved seed varieties,number of income sources,access to markets,and access to financial institutions;in India,they encompass ac-cess to agricultural-input information,knowledge of seed varieties,access to markets,access to crop insurance,changing the sowing/harvesting times of crops,and access to financial ser-vices;in Bangladesh,the key factors are access to financial institutions,community coopera-tion,changing the sowing/harvesting times of crops,knowledge of improved seed varieties,and access to agricultural-input information.Notably,indicators such as trust in weather in-formation,changing sowing/harvesting times of crops,and crop insurance were identified as important determinants of AC,which have been overlooked in previous studies.
基金supported by the National Natural Science Foundation of China(Nos.52102088 and 22075026)support from Teli Fellowship,Beijing Institute of Technology,and facility support from Analysis&Testing Center,and Experimental Center of Materials Sciences&Engineering at Beijing Institute of Technology.
文摘MnCO_(3)represents a potentially high-capacity and low-cost anode candidate to replace graphite for enhancing energy density of commercial lithium-ion batteries,but it suffers from poor electrical conductivity and serious volumetric change,largely hindering its practical applications.
基金Ho Chi Minh City University of Technology(HCMUT),VNU-HCM,for supporting this study.
文摘This study focuses on the preparation,and optimization of the nanoemulsions coorporating with pumpkin seed oil,grape seed oil,and grapefruit essential oil using the phase inversion temperature(PIT)technique.The research investigated the impact of surfactant types and concentrations on critical nanoemulsion properties,including droplet size,polydispersity index(PDI),and zeta potential.Using a Box-Behnken Design(BBD)model,the formulation was optimized containing 6.0%plant oils,10.0%Tween 80,2.0%Span 80,and 1.0%lecithin to achieve nano-sized droplets(33.52 nm),with a low PDI(0.205),and a stable zeta potential(15.49 mV).The antioxidant activity,was evaluated through 2,2-diphenyl-1-picrylhydrazyl(DPPH)radical scavenging assays,demonstrating its outstanding efficacy.And the optimized nanoemulsion showed a radical-scavenging capacity exceeding 2250μg ascorbic acid equivalents/g,significantly outperforming non-nanoemulsified oils.Stability testing under various environmental conditions highlighted exceptional robustness,with refrigerated samples maintaining structural integrity,minimal particle size growth,and consistent physicochemical properties over a 30-day storage period.The results suggest that the plant oil-based nanoemulsions exhibit strong antioxidant potential,offering a promising natural treatment for their application in cosmeceutical and therapeutic formulations.
文摘BACKGROUND The primary issue in managing edentulous patients is the severely resorbed mandibular ridge,particularly in older individuals with diminished adaptive capacities.This compromised situation leads to the fabrication of inadequate dentures that lack retention and stability,potentially causing psychosocial issues.AIM To determine the difference in retentive capacity between three attachment systems in implant-retained overdentures.METHODS Three edentulous mandibular models were fabricated using heat-cured polymethacrylate resin,with two implant replicas placed in the intra-foraminal region of each model.30 acrylic resin mandibular overdentures were fabricated with provisions for three different overdenture attachment systems:A prefabricated ball/O-ring attachment,a locator attachment system,and an equator attachment system.Each model was subjected to 15000 pulls using a universal testing machine to remove the overdenture from the acrylic model and the force data were recorded.RESULTS The ball/O-ring attachment system demonstrated superior retentive capacity for 15 years,while the locator and equator attachment systems maintained excellent retentive capacity for 5 years.CONCLUSION The ball/O-ring attachment system outperformed better than the other two attachment systems regarding retentive capacity.The locator and equator attachment systems presented sufficient retentive abilities until 15000 cycles.After 7500 cycles,significant differences in retentive force between the systems evolved.
基金supported by Fundamental Research Funds for Central Universities(Grant No.N2107009)Reviving-Liaoning Excellence Plan(Grant No.XLYC2203186).
文摘The Fe–Mn damping alloys possess considerable damping capacity,but their yield strength is rather low.The 800 MPa Fe–Mn alloy with expected damping capacity was designed by the combination of grain refinement and ε-martensite introduction.The yield strength can be greatly raised to around 700 MPa by refining grain size from 88.4 to 1.8μm.Although there exist numerous stacking faults in the fine-grained alloy,the damping capacity is strongly deteriorated due to the suppression of thermally activated ε-martensite.We demonstrate that the stacking faults cannot provide effective contribution to damping capacity and hence introduce a considerable volume fraction of stress/strain-induced ε-martensite to raise damping sources,including ε-martensite and γ/ε interfaces,etc.,by a small pre-strain.From this,the damping capacity can be improved,and the yield strength can be further enhanced from nearly 700 MPa to around 800 MPa.Thus,the combination of high yield strength and good damping capacity is realized.
文摘Clay deposits typically exhibit significant degrees of heterogeneity and anisotropy in their strength and stiffness properties.Such non-monotonic responses can significantly impact the stability analysis and design of overlying shallow foundations.In this study,the undrained bearing capacity of shallow foundations resting on inhomogeneous and anisotropic clay layers subjected to oblique-eccentric combined loading is investigated through a comprehensive series of finite element limit analysis(FELA)based on the well-established lower-bound theorem and second-order cone programming(SOCP).The heterogeneity of normally consolidated(NC)clays is simulated by adopting a well-known general model of undrained shear strength increasing linearly with depth.In contrast,for overconsolidated(OC)clays,the variation of undrained shear strength with depth is considered to follow a bilinear trend.Furthermore,the inherent anisotropy is accounted for by adopting different values of undrained shear strength along different directions within the soil medium,employing an iterative-based algorithm.The results of numerical simulations are utilized to investigate the influences of natural soil heterogeneity and inherent anisotropy on the ultimate bearing capacity,failure envelope,and failure mechanism of shallow foundations subjected to the various combinations of vertical-horizontal(V-H)and vertical-moment(V-M)loads.
基金supported by the National Natural Science Foundation of China(32302774)Beijing Innovation Consortium of Agriculture Research System(BAIC04)+1 种基金China Agriculture Research System(CARS-40)the Agricultural Science and Technology Innovation Program of the Feed Research Institute of the Chinese Academy of Agricultural Sciences(CAASIFR-ZDRW202402).
文摘Background Organic selenium(Se)has gained recognition in poultry nutrition as a feed additive to boost production and Se deposition in eggs and tissues,owing to its high bioavailability,efficient tissue accumulation and minimal toxicity.Selenium-enriched yeast(SeY)is a well-established source,while selenium-enriched lactobacilli(SeL),a newer alternative,offers the added benefits of probiotics.This study examined the effects of SeY and SeL on egg quality,antioxidant capacity,Se deposition,and gut health in laying hens.After a two-week pre-treatment with a Sedeficient diet(SeD),450 Hy-Line Brown laying hens(30-week-old)were assigned into five dietary groups with six replicates of 15 hens each.The groups included a SeD,SeD supplemented with 1.5 mg Se/kg from SeY(SeY15),or 1.5,3.0,and 6.0 mg Se/kg from SeL(SeL15,SeL30,SeL60).The feeding trial lasted for 12 weeks.Results SeY15 and SeL15 improved the feed-to-egg ratio(P<0.05)in the latter stages.Haugh units were significantly increased(P<0.05)in the SeY15 and SeL30 groups,while darker yolk color(P<0.05)was observed in the SeY15,SeL15,and SeL60 groups.All Se-supplemented diets increased Se content in whole eggs,albumen,and yolk(P<0.05),while SeL groups showed a dose-dependent effect.Antioxidant enzyme activities increased,and MDA content decreased in the serum(P<0.05),with SeY15 showing the highest GSH-Px levels(P<0.05).SeL60 increased serum alkaline phosphatase and aspartate transaminase,and distorted the liver architecture(P<0.05).Se-diets reduced concentrations of reactive oxygen species(ROS)in the ileum and liver(P<0.05).SeL15 improved the ileal villus height-tocrypt depth ratio(P<0.05).SeY15 and/or SeL15 up-regulated TXNRD1 and SEPHS1 mRNA while down-regulating SCLY expression in the liver.SeY15 altered ileal microbiota by increasing both beneficial and pathogenic bacteria,whereas SeL15 predominantly boosted beneficial bacteria.Conclusion SeL integrates the antioxidant properties of organic Se with the probiotic benefits on gut health,resulting in a performance-enhancing effect comparable to that of SeY.However,high SeL level(6.0 mg Se/kg)compromised productivity and metabolic functions while enhancing Se deposition.
基金Under the auspices of National Natural Science Foundation of China(No.42471227,42171198)。
文摘The exploration of the coupling and coordination between urban innovation capability(IC)and industrial transformation(IF)serves as a novel perspective for interpreting the increasingly severe phenomenon of population shrinkage during the industrialization process.This study investigated the evolutionary characteristics of IC and IF in shrinking and growing cities in Northeast China from 2010 to 2020.It uses entropy weighted model,coupling coordination degree,the Dagum Gini coefficient,and geographic detectors to analyze the coordinated development of IC and IF in the context of population shrinkage.The study analyzed the spatiotemporal patterns and driving mechanisms for their coordinated development.The results show that:1)both urban IC and IF exhibited an overall positive trend during the study period.Shrinking cities depend more on IF to address the challenges of population shrinkage,while growing cities mainly rely on innovation-driven development.2)The coupling gap between IC and IF in shrinking and growing cities has widened over time,with the coordination level of shrinking cities steadily decreasing.Cities with serious disorder are concentrated in northern Heilongjiang Province,while most cities in Jilin Province experience moderate disorder.Liaoning Province,however,shows generally good coupling coordination.3)Human capital is the key factor driving coupling coordination in both types of cities.Shrinking cities rely on economic and financial development,with the‘repair-type’logic that emphasizes short-term economic growth and resource compensation.In contrast,the coupling of growing cities relies on basic support capabilities,with the‘optimization-type’logic focused on enhancing endogenous resilience and systemic coordination.Exploring the coordination between urban innovation capabilities and industrial transformation can provide a new perspective for research on population shrinkage,which holds certain theoretical and practical significance for implementing the new round of revitalization strategy in Northeast China.
基金supported by the National Natural Science Foundation of China(Nos.92044302,42075108,42107124,41822703,91544221,91844301,and 22222610)Beijing National Laboratory for Molecular Sciences(No.BNLMS-CXXM-202011)the Natural Science Foundation of Yunnan Province(No.202302AN360006)。
文摘Nitrous acid(HONO)is a crucial source of OH radicals in the troposphere,significantly enhancing secondary pollutants like secondary organic aerosols(SOA)and peroxyacetyl nitrates(PAN).While prior research has examined HONO sources and their total impacts on secondary pollution,the specific enhancement capacity of each individual HONO source remains underexplored.This study uses observational data from 2015 to 2018 for HONO,SOA,and PAN across six sites in China,combined with WRF-Chem model adding six potential HONO sources to evaluate their capacity:traffic emissions(E_traffic),soil emissions(E_soil),indoor-outdoor exchange(E_indoor),nitrate photolysis(P_nit),and NO_(2) heterogeneous reactions on aerosol and ground surfaces(Het_a,Het_g).The simulated HONO contributions near the ground in urban Beijing were:12%from NO+OH(default source),10%-20%from E_traffic,1%-12%from P_nit,2%-10%from Het_a,and 50%-70% from Het_g.For SOA and PAN,we calculated incremental contributions enhanced by each HONO source and derived enhancement ratios(ERs)normalized against HONO’s contribution:~7 for P_nit,~2 for Het_a,~0.9 for Het_g,~0.8 for E_soil,~0.3 for E_traffic,and~0.1 for E_indoor.HONO sources’capacity to enhance secondary pollutants varies,being larger for aerosol-related sources.Vertical analysis on HONO concentration,spatial distribution,RO_(x) radical cycling rates,and OH enhancements revealed that aerosol-related HONO sources,especially P_nit,contribute more to secondary pollution.Future research should focus more on assessing real-world impacts of HONO sources,besides identifying their budgets.Additionally,uptake coefficient(γ)and nitrate photolysis frequency(J_(nitrate))critically affect HONO and secondary pollutant formation,necessitating further investigations.
基金The National Natural Science Foundation of China(No.52278189)Zhejiang Provincial Natural Science Foundation of China(No.LY24E080002).
文摘A self-centering bridge bent equipped with energy-dissipation(ED)beams is proposed.Quasi-static tests are conducted on self-centering bridge bents,both with and without ED beams,to validate the accuracy of the corresponding numerical models.The effects of various param-eters,such as the web area of ED beams,prestressing force of tendons,tendon arrangements,and number of column segments,on the seismic performance of self-centering bridge bents with ED beams are evaluated using the validated numerical model.The results demonstrate that the nu-merical models accurately replicate the quasi-static test results,with average errors in the lateral force remaining below 9.6%.The web area of ED beams significantly affects the strength,cumulative energy dissipation,and relative self-centering index(RSI)of the self-centering bridge bents.Increasing the prestressing force enhances the lateral force and self-centering capability of the bridge bents but has minimal effect on their ED capacity.Reducing the num-ber of segments in each column enhances the lateral force and cumulative hysteretic energy dissipation of the self-centering bridge bents while exerting an insignificant effect on the RSI.Thus,the proposed novel system is highly suitable for doubleor multicolumn piers supporting bridges in regions prone to strong earthquakes.