期刊文献+
共找到525篇文章
< 1 2 27 >
每页显示 20 50 100
Could Plant Height Compensate for Temporal and Spatial Limitations of Canopy Spectra for Inversion of Plant Nitrogen Accumulation in Rice?
1
作者 WANG Xiaoke XU Guiling +7 位作者 FENG Yuehua SONG Zhengli GUO Yanjun Muhammad Usama LATIF LU Linya Somsana PHONENASAY XU Xiangjun CUI BingPing 《Rice science》 2025年第4期467-471,I0037-I0042,共11页
Recently,information acquired at the canopy top,such as spectral and textural data,has been widely used to estimate plant nitrogen(N)accumulation(PNA).The response of crops to N uptake involves not only changes in hor... Recently,information acquired at the canopy top,such as spectral and textural data,has been widely used to estimate plant nitrogen(N)accumulation(PNA).The response of crops to N uptake involves not only changes in horizontal canopy top information but also an increase in vertical plant height(PH).It remains unclear whether the fusion of spectral indices with PH can improve the estimation performance of PNA models based on spectral remote sensing across different growth stages. 展开更多
关键词 temporal limitations RICE nitrogen accumulation canopy top information spatial limitations plant height spectral remote sensing canopy spectra
在线阅读 下载PDF
Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency
2
作者 Xiaoxia Guo Wanmao Liu +6 位作者 Yunshan Yang Guangzhou Liu Bo Ming Ruizhi Xie Keru Wang Shaokun Li Peng Hou 《Journal of Integrative Agriculture》 2025年第4期1424-1435,共12页
The distributions of light and nitrogen within a plant's canopy reflect the growth adaptation of crops to the environment and are conducive to improving the carbon assimilation ability.So can the yield in crop pro... The distributions of light and nitrogen within a plant's canopy reflect the growth adaptation of crops to the environment and are conducive to improving the carbon assimilation ability.So can the yield in crop production be maximized by improving the light and nitrogen distributions without adding any additional inputs?In this study,the effects of different nitrogen application rates and planting densities on the canopy light and nitrogen distributions of two highyielding maize cultivars(XY335 and DH618)and the regulatory effects of canopy physiological characteristics on radiation use efficiency(RUE)and yield were studied based on high-yield field experiments in Qitai,Xinjiang Uygur Autonomous Region,China,during 2019 and 2020.The results showed that the distribution of photosynthetically active photon flux density(PPFD)in the maize canopy decreased from top to bottom,while the vertical distribution of specific leaf nitrogen(SLN)initially increased and then decreased from top to bottom in the canopy.When SLN began to decrease,the PPDF values of XY335 and DH618 were 0.5 and 0.3,respectively,corresponding to 40.6 and49.3%of the total leaf area index(LAI).Nitrogen extinction coefficient(K_(N))/light extinction coefficient(K_(L))ratio in the middle and lower canopy of XY335(0.32)was 0.08 higher than that of DH618(0.24).The yield and RUE of XY335(17.2 t ha^(-1)and 1.8g MJ^(-1))were 7.0%(1.1 t ha^(-1))and 13.7%(0.2 g MJ^(-1))higher than those of DH618(16.1 t ha^(-1)and 1.6 g MJ^(-1)).Therefore,better light conditions(where the proportion of LAI in the upper and middle canopy was small)improved the light distribution when SLN started to decline,thus helping to mobilize the nitrogen distribution and maintain a high K_(N)and K_(N)/K_(L)ratio.In addition,K_(N)/K_(L)was a key parameter for yield improvement when the maize nutrient requirements were met at 360 kg N ha^(-1).At this level,an appropriately optimized high planting density could promote nitrogen utilization and produce higher yields and greater efficiency.The results of this study will be important for achieving high maize yields and the high efficiency cultivation and breeding of maize in the future. 展开更多
关键词 MAIZE canopy N distribution canopy light distribution radiation use efficiency
在线阅读 下载PDF
Optimizing canopy-spacing configuration increases soybean yield under high planting density 被引量:2
3
作者 Ruidong Li Cailong Xu +4 位作者 Zongsheng Wu Yifan Xu Shi Sun Wenwen Song Cunxiang Wu 《The Crop Journal》 2025年第1期233-245,共13页
Dense cropping increases crop yield but intensifies resource competition,which reduces single plant yield and limits potential yield growth.Optimizing canopy spacing could enhance resource utilization,support crop mor... Dense cropping increases crop yield but intensifies resource competition,which reduces single plant yield and limits potential yield growth.Optimizing canopy spacing could enhance resource utilization,support crop morphological development and increase yield.Here,a three-year study was performed to verify the feasibility of adjusting row spacing to further enhance yield in densely planted soybeans.Of three row-spacing configurations(40-40,20-40,and 20-60 cm)and two planting densities(normal 180,000 plants ha 1 and high 270,000 plants ha 1).The differences in canopy structure,plant morphological development,photosynthetic capacity and their impact on yield were analyzed.Row spacing configurations have a significant effect on canopy transmittance(CT).The 20-60 cm row spacing configuration increased CT and creates a favorable canopy light environment,in which plant height is reduced,while branching is promoted.This approach reduces plant competition,optimizes the developments of leaf area per plant,specific leaf area,leaf area development rate,leaf area duration and photosynthetic physiological indices(F_(v)/F_(m),ETR,P_(n)).The significant increase of 11.9%-34.2%in canopy apparent photosynthesis(CAP)is attributed to the significant optimization of plant growth and photosynthetic physiology through CT,an important contributing factor to yield increases.The yield in the 20-60 cm treatment is 4.0%higher than in equidistant planting under normal planting density,but 5.9%under high density,primarily driven by CAP and pod number.These findings suggest that suitable row spacing configurations optimize the light environment for plants,promote source-sink transformation in soybeans,and further improve yield.In practice,a 20-60 cm row spacing configuration could be employed for high-density soybean planting to achieve a more substantial yield gain. 展开更多
关键词 Soybean Planting density Row-spacing configuration canopy transmittance Yield
在线阅读 下载PDF
Managing cotton canopy architecture for machine picking cotton via high plant density and plant growth retardants 被引量:1
4
作者 LAKSHMANAN Sankar SOMASUNDARAM Selvaraj +4 位作者 SHRI RANGASAMI Silambiah ANANTHARAJU Pokkharu VIJAYALAKSHMI Dhashnamurthi RAGAVAN Thiruvengadam DHAMODHARAN Paramasivam 《Journal of Cotton Research》 2025年第1期102-114,共13页
Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planti... Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity. 展开更多
关键词 COTTON High density planting system Plant growth retardant canopy management Defoliators Machine picking Yield improvement
在线阅读 下载PDF
Dynamic Prediction Model of Crop Canopy Temperature Based on VMD-LSTM
5
作者 WANG Yuxi HUANG Lyuwen DUAN Xiaolin 《智慧农业(中英文)》 2025年第3期143-159,共17页
[Objective]Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production.This study focuses on kiwifruit and grapes to address the cha... [Objective]Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production.This study focuses on kiwifruit and grapes to address the challenges in accurately predicting crop canopy temperature.[Methods]A dynamic prediction model for crop canopy temperature was developed based on Long Short-Term Memory(LSTM),Variational Mode Decomposition(VMD),and the Rime Ice Morphology-based Optimization Algorithm(RIME)optimization algorithm,named RIME-VMD-RIME-LSTM(RIME2-VMDLSTM).Firstly,crop canopy temperature data were collected by an inspection robot suspended on a cableway.Secondly,through the performance of multiple pre-test experiments,VMD-LSTM was selected as the base model.To reduce crossinterference between different frequency components of VMD,the K-means clustering algorithm was applied to cluster the sample entropy of each component,reconstructing them into new components.Finally,the RIME optimization algorithm was utilized to optimize the parameters of VMD and LSTM,enhancing the model's prediction accuracy.[Results and Discussions]The experimental results demonstrated that the proposed model achieved lower Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)(0.3601 and 0.2543°C,respectively)in modeling different noise environments than the comparator model.Furthermore,the R2 value reached a maximum of 0.9947.[Conclusions]This model provides a feasible method for dynamically predicting crop canopy temperature and offers data support for assessing crop growth status in agricultural parks. 展开更多
关键词 canopy temperature temperature prediction LSTM RIME VMD
在线阅读 下载PDF
Applying palaeoecological analogues to contemporary challenges:community-level effects of canopy gaps caused by systematic decline of a prevalent tree species
6
作者 Julia Webb Anne E.Goodenough 《Journal of Forestry Research》 2025年第1期293-310,共18页
Temperate woodland vegetation is initially determined by spatiotemporal and historical factors,mediated by complex biotic interactions.However,catastrophic events such as disease outbreaks(e.g.,sweet chestnut blight,a... Temperate woodland vegetation is initially determined by spatiotemporal and historical factors,mediated by complex biotic interactions.However,catastrophic events such as disease outbreaks(e.g.,sweet chestnut blight,ash dieback),infestations of insect pests,and human-accelerated climate change can create canopy gaps due to systematic decline in,or loss of,tree species that was once an important part of the canopy.Resultant cascade effects have the potential to alter the composition of woodland ecosystems quickly and radically,but inherent lag times make primary research into these effects challenging.Here,we explore change in woodland vegetation at 10 sites in response to canopy opening using the Elm Decline,a rapid loss of Ulmus in woodlands across northwestern Europe~5800 years ago that coexisted alongside other stressors such as increasing human activity,as a palaeoecological analogue.For arboreal taxa,community evenness significantly decreased,within-site turnover significantly increased,and richness remained unchanged.Changes in arboreal taxa were highly site-specific but there was a substantial decline in woody climbing taxa,especially Hedera(ivy),across the majority of sites.For shrub taxa,richness significantly increased but evenness and turnover remained consistent.Interestingly,however,there was a significant increase in abundance of shrubs at 70%of sites,including Calluna(heather),Ilex(holly)and Corylus(hazel),suggesting structural change.Surprisingly,there was no change in richness,evenness or turnover for herb taxa,possibly because change was highly variable spatially.However,there was a marked uptick in the disturbance indicator Plantago(plantain).Overall,these findings suggest that woodlands with sustained reduction in,or loss of,a tree species that once formed an important part of the canopy has profound,but often spatially idiosyncratic,impacts on vegetation diversity(richness),composition(evenness),stability(turnover),and on abundance of specific taxa,especially within the shrub layer.Use of this palaeoecological analogue,which was itself complicated by cooccurring changes in human activity,provides a valuable empirical insight into possible cascade effects of similar change in canopy opening in contemporary settings,including Ash Dieback. 展开更多
关键词 canopy opening Community composition Palaeoecological analogue Disturbance Cascade effects
在线阅读 下载PDF
隐于山野 瓜鲁雅Canopy住宅
7
作者 西溪(编译) 《室内设计与装修》 2025年第2期28-33,共6页
Canopy住宅位于巴西的海滨城市瓜鲁雅。项目的选址经过深思熟虑,不仅要严格遵守建筑用地的限制,还要确保对周围自然环境的影响降到最低。建筑坐落在热带雨林中一个陡峭的山坡上,这样的地形条件为设计和施工带来了不小的挑战,团队必须在... Canopy住宅位于巴西的海滨城市瓜鲁雅。项目的选址经过深思熟虑,不仅要严格遵守建筑用地的限制,还要确保对周围自然环境的影响降到最低。建筑坐落在热带雨林中一个陡峭的山坡上,这样的地形条件为设计和施工带来了不小的挑战,团队必须在入口通道的设计、景观视野的最大化利用以及施工的实际可行性之间找到微妙的平衡。 展开更多
关键词 建筑用地 海滨城市 住宅 自然环境 热带雨林 canopy 地形条件 最大化利用
在线阅读 下载PDF
Impacts of UAV–LiDAR flight altitude and forest canopy on the estimation accuracy of understory terrain
8
作者 HU Zhongyang WANG Lun +2 位作者 CHEN Xiangyu YU Kunyong LIU Jian 《Journal of Mountain Science》 2025年第7期2485-2496,共12页
Unmanned aerial vehicle light detection and ranging(UAV–LiDAR)is a new method for collecting understory terrain data.The high estimation accuracy of understory terrain is crucial for accurate tree height measurement ... Unmanned aerial vehicle light detection and ranging(UAV–LiDAR)is a new method for collecting understory terrain data.The high estimation accuracy of understory terrain is crucial for accurate tree height measurement and forest resource surveys.The UAV–LiDAR flight altitude and forest canopy cover significantly impact the accuracy of understory terrain estimation.However,since no research examined their combined effects,we aimed to investigate this relationship.This will help optimize UAV–LiDAR flight parameters for understory terrain estimation and forest surveys across various canopy cover.This study analyzed the impacts of three flight altitudes and three canopy cover on the estimation accuracy of understory terrain.The results showed that when canopy cover exceeded a specific value,UAV–LiDAR flight altitudes significantly affected understory terrain estimation.Given a forest canopy cover,the reduction in ground point coverage increased significantly as the flight altitude increased;given a flight altitude,the higher the canopy cover,the more significant the reduction in ground point coverage.In forests with a canopy cover≥0.9,there were substantial differences in the accuracies of understory digital elevation models(DEMs)generated using UAV–LiDAR at different flight altitudes.For forests with a canopy cover<0.9,the mean absolute error(MAE)of understory DEMs from UAV–LiDAR at different flight altitudes was≤0.17 m and the root mean square error(RMSE)was≤0.24 m.However,for forests with a canopy cover≥0.9,the UAV–LiDAR flight altitude significantly affected the accuracy of understory DEMs.At the same flight altitude,the MAE and RMSE of the estimated elevation for forests with a canopy cover≥0.9 were approximately twice those of the estimated elevation for forests with a canopy cover<0.9.In forests with low canopy cover,it is possible to improve data collection efficiency by selecting a higher flight altitude.However,UAV–LiDAR flight altitudes significantly affected understory terrain estimation in forests with high canopy cover,it is essential to adopt terrain-following flight modes,reduce flight altitudes,and maintain a consistent flight altitude during longterm monitoring in high canopy cover forests. 展开更多
关键词 UAV-LiDAR Flight altitude Understory terrain estimation Forest canopy cover DEM
原文传递
旅途的风景 希尔顿Canopy开普敦Longkloof酒店
9
作者 西溪(编译) 《室内设计与装修》 2025年第11期22-25,共4页
近日,希尔顿Canopy开普敦Longkloof酒店正式开业,标志着Canopy品牌首次进驻南非,为开普敦的酒店业注入新鲜活力。酒店选址极具巧思,坐落于经过翻新升级的历史区域Longkloof的核心地带,周围有新开业的购物中心、办公空间和科技初创中心。
关键词 南非 希尔顿canopy Longkloof酒店 酒店业 开普敦
在线阅读 下载PDF
Review on physiological and ecological characteristics and agronomic regulatory pathways of intercropping to delay root and canopy senescence of crops
10
作者 Wen Yin Qiang Chai +8 位作者 Zhilong Fan Falong Hu Lianhao Zhao Hong Fan Wei He Cai Zhao Aizhong Yu Yali Sun Feng Wang 《Journal of Integrative Agriculture》 2025年第1期1-22,共22页
Intercropping has been widely used in arid and semi-arid regions because of its high yield,stable productivity,and efficient utilization of resources.However,in recent years,the high yield of traditional intercropping... Intercropping has been widely used in arid and semi-arid regions because of its high yield,stable productivity,and efficient utilization of resources.However,in recent years,the high yield of traditional intercropping is mainly attributed to the large amount of purchased resources such as water and fertilizer,plastic film,and mechanical power.These lead to a decline in cultivated land quality and exacerbate intercrops'premature root and canopy senescence.So,the application of traditional intercropping faces major challenges in crop production.This paper analyzes the manifestations,occurrence mechanisms,and agronomic regulatory pathways of crop senescence.The physiological and ecological characteristics of intercropping to delay root and canopy senescence of crops are reviewed in this paper.The main agronomic regulatory pathways of intercropping to delay root and canopy senescence of crops are based on above-and blow-ground interactions,including collocation of crop varieties,spatial arrangement,water and fertilizer management,and tillage and mulch practices.Future research fields of intercropping to delay root and canopy senescence should focus on the aspects of selecting and breeding special varieties,application of molecular biology techniques,and developing or applying models to predict and evaluate the root and canopy senescence process of intercrops.Comprehensive analysis and evaluation of different research results could provide a basis for enhancing intercropping delay root and canopy senescence through adopting innovative technologies for regulating the physio-ecological characteristics of intercrops.This would support developing and adopting high-yield,efficient,and sustainable intercropping systems in arid and semi-arid areas with high population density,limited land,and abundant light and heat resources. 展开更多
关键词 INTERCROPPING root and canopy senescence photosynthetic physiology ecological adaptability regulatory pathway
在线阅读 下载PDF
Maize tasseling date forecast from canopy height time series estimated by UAV LiDAR data
11
作者 Yadong Liu Chenwei Nie +11 位作者 Liang Li Lei Shi Shuaibing Liu Fei Nan Minghan Cheng Xun Yu Yi Bai Xiao Jia Liming Li Yali Bai Dameng Yin Xiuliang Jin 《The Crop Journal》 2025年第3期975-990,共16页
Timely identification and forecast of maize tasseling date(TD)are very important for agronomic management,yield prediction,and crop phenotype estimation.Remote sensing-based phenology monitoring has mostly relied on t... Timely identification and forecast of maize tasseling date(TD)are very important for agronomic management,yield prediction,and crop phenotype estimation.Remote sensing-based phenology monitoring has mostly relied on time series spectral index data of the complete growth season.A recent development in maize phenology detection research is to use canopy height(CH)data instead of spectral indices,but its robustness in multiple treatments and stages has not been confirmed.Meanwhile,because data of a complete growth season are needed,the need for timely in-season TD identification remains unmet.This study proposed an approach to timely identify and forecast the maize TD.We obtained RGB and light detection and ranging(Li DAR)data using the unmanned aerial vehicle platform over plots of different maize varieties under multiple treatments.After CH estimation,the feature points(inflection point)from the Logistic curve of the CH time series were extracted as TD.We examined the impact of various independent variables(day of year vs.accumulated growing degree days(AGDD)),sensors(RGB and Li DAR),time series denoise methods,different feature points,and temporal resolution on TD identification.Lastly,we used early CH time series data to predict height growth and further forecast TD.The results showed that using the 99th percentile of plot scale digital surface model and the minimum digital terrain model from Li DAR to estimate maize CH was the most stable across treatments and stages(R~2:0.928 to0.943).For TD identification,the best performance was achieved by using Li DAR data with AGDD as the independent variable,combined with the knee point method,resulting in RMSE of 2.95 d.The high accuracy was maintained at temporal resolutions as coarse as 14 d.TD forecast got more accurate as the CH time series extended.The optimal timing for forecasting TD was when the CH exceeded half of its maximum.Using only Li DAR CH data below 1.6 m and empirical growth rate estimates,the forecasted TD showed an RMSE of 3.90 d.In conclusion,this study exploited the growth characteristics of maize height to provide a practical approach for the timely identification and forecast of maize TD. 展开更多
关键词 MAIZE Phenology forecast canopy height time series UAV LiDAR Logistic curve
在线阅读 下载PDF
A new wavy-canopy architecture shaped by interlaced application of EDAH increases maize yield and lodging resistance at high density
12
作者 Bo Hong Cheng Huang +9 位作者 Zhen-Yuan Chen Hui-Min Chen Jing Wang Xin Liu Zhi-Wei Wang Yi-Hsuan Lin Xian-Min Chen Si Shen Xiao-Gui Liang Shun-Li Zhou 《The Crop Journal》 2025年第2期536-544,共9页
High-density planting increases maize yield but also canopy crowding and stalk lodging.Aiming this contradiction,a wavy canopy was created using interlaced chemical application(IC)of a plant growth retardant at the V1... High-density planting increases maize yield but also canopy crowding and stalk lodging.Aiming this contradiction,a wavy canopy was created using interlaced chemical application(IC)of a plant growth retardant at the V14 stage with three densities(60,000,75,000,and 90,000 plants ha-1,indicated by D1,D2,and D3,respectively)for two seasons.The results showed that the IC-treated wavy canopy featuring both natural height(IC-H)and dwarfed(IC-L)plants,improved light transmission by 8.54%,8.49%,and 16.49%on average than the corresponding controls(CK)at D1,D2,and D3,respectively.The alleviation of canopy crowding stimulated leaf photosynthesis,sugar availability,basal-internode strength,and decreased plant lodging ratios in both IC-H and IC-L,particularly under higher densities.Meanwhile,the IC populations produced significantly higher yield than CK,with an average increase of 3.38%,16.70%,and 15.28%at D1,D2,and D3,respectively.Collectively,this study proposed a new wavy canopy strategy using plant growth retardant to simultaneously increase yield performance and lodging resistance,thus offering a sustainable solution for further development of high-density maize production. 展开更多
关键词 High density Wavy canopy architecture Light intensity Lodging resistance Maize yield
在线阅读 下载PDF
WWCD优化Canopy-K-means的雷达信号分选算法
13
作者 王之腾 李尚远 +2 位作者 纪存孝 刘畅 严子路 《陆军工程大学学报》 2025年第1期20-26,共7页
雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的... 雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的问题,提出了一种基于优化K-means的雷达信号分选算法。通过将水波中心扩散(water wave center diffusion,WWCD)优化算法和Canopy算法相结合,实现了Canopy算法距离阈值的优选,并为后续K-means聚类优化了K值的选择,有效降低了K-means算法对初始聚类数选择的敏感性。实验中,主要通过3个UCI公开数据集和3类频率跳变雷达脉冲数据进行聚类分选效果验证,并与常见的DBSCAN、OPTICS、Canopy-K-means等聚类算法进行了聚类效果对比。结果表明,所提方法有较高的聚类分选准确率,且对初始参数的设置不敏感。 展开更多
关键词 雷达信号分选 水波中心扩散优化 canopy算法 K-MEANS算法
在线阅读 下载PDF
基于改进Canopy的FCM聚类算法分析
14
作者 楚俞 《数字技术与应用》 2025年第8期206-208,共3页
为解决以往FCM(Fuzzy-C Means)聚类算法应用过程中存在的主要问题,有效提升相关算法在具体实践过程中的收敛速度,保障算法性能,现分别针对Canopy算法以及FCM聚类算法的具体概念进行分析与阐述,本文结合实际提出了在改进Canopy算法基础上... 为解决以往FCM(Fuzzy-C Means)聚类算法应用过程中存在的主要问题,有效提升相关算法在具体实践过程中的收敛速度,保障算法性能,现分别针对Canopy算法以及FCM聚类算法的具体概念进行分析与阐述,本文结合实际提出了在改进Canopy算法基础上的FCM聚类算法设计思路,同时基于具体数据集针对FCM聚类算法的性能变化情况及其对于簇中心选定的有效性进行了相应验证,旨在最大限度地改善以往FCM算法应用过程中的聚类时间周期,有效抑制相关算法的迭代进程,使其能够在搜索能力以及寻优能力等层面展现出更加积极的状态。 展开更多
关键词 收敛速度 改进canopy算法 簇中心 FCM聚类算法
在线阅读 下载PDF
Emotional responses evoked by tree canopy landscape elements:a study based on two evaluation approaches
15
作者 Wei Lin Tianyi Yao Chengcheng Zeng 《Journal of Forestry Research》 2025年第1期193-207,共15页
Tree canopy landscapes are an important component of urban forests and have the potential to influence human emotions.However,their influence on emotional responses remains unclear.The aims of this study were:(1)to de... Tree canopy landscapes are an important component of urban forests and have the potential to influence human emotions.However,their influence on emotional responses remains unclear.The aims of this study were:(1)to determine whether the canopy landscape affects human emotions;(2)to clarify the influence of canopy landscape on individual emotional indicators;and(3)to identify the ratio of canopy landscape elements with the most beneficial effects on human emotions.Different canopy landscape images were generated,and the self-reported emotions and neural activity of the subjects assessed before and after they viewed the images.The results of the statistical analysis were intuitively displayed by a ternary phase diagram.We found that the canopy landscape affected human emotions and different proportions of canopy landscape elements led to significant differences in excitement,depression and confusion.Higher proportions of blue elements and lower proportions of green and other elements characterized the canopy landscape with the most beneficial effect on human emotions.These findings will promote further research on canopy landscapes,inform the planning and design of urban forests,and contribute to the field of landscape architecture. 展开更多
关键词 Emotional response Neural activity canopy landscape
在线阅读 下载PDF
基于马氏距离和Canopy改进K-means的交通聚类算法
16
作者 徐文进 马越 杜咏慧 《计算机与数字工程》 2024年第6期1630-1635,1649,共7页
在对交通数据的研究中经常会使用到聚类算法,且不同的聚类算法有不同的特性。K-means作为其中的一种聚类算法,具有较高的准确性和实用性,但其准确性易受主观选取K值和确定初始聚类中心的影响。为了优化聚类中心和K值的选取问题,提出MC-K... 在对交通数据的研究中经常会使用到聚类算法,且不同的聚类算法有不同的特性。K-means作为其中的一种聚类算法,具有较高的准确性和实用性,但其准确性易受主观选取K值和确定初始聚类中心的影响。为了优化聚类中心和K值的选取问题,提出MC-Kmeans算法。在所提方法中,首先通过Canopy算法选取K值,然后依据马氏距离的计算准则来确定初始聚类中心,最后将K值和聚类中心的值作为K-means的参数进行聚类。将MC-Kmeans算法应用到某时间段的纽约出租车交通数据中进行实际的验证。结果表明,与K-means算法比较,所提方法准确度更高,与实际交通情况更加相匹配,更能反映区域内的交通热点情况。 展开更多
关键词 K-MEANS canopy算法 马氏距离 交通
在线阅读 下载PDF
核电站控制棒驱动机构Canopy焊缝焊接温度场和应力-应变场模拟 被引量:4
17
作者 米大为 沈天阔 +4 位作者 宿希慧 郭宝超 邹小平 孙广 吴超平 《精密成形工程》 北大核心 2024年第2期182-189,共8页
目的研究机加工和拉拔2种成形方式下得到的填充环对Canopy焊缝的影响,获取焊接焊缝成形、焊接残余应力和变形的相关数据,以指导Canopy焊缝焊接工艺。方法采用数值模拟的方法,建立Canopy焊缝焊接数值分析模型,模拟焊接温度场、焊接残余... 目的研究机加工和拉拔2种成形方式下得到的填充环对Canopy焊缝的影响,获取焊接焊缝成形、焊接残余应力和变形的相关数据,以指导Canopy焊缝焊接工艺。方法采用数值模拟的方法,建立Canopy焊缝焊接数值分析模型,模拟焊接温度场、焊接残余应力和焊接残余变形。结果拉拔成形环焊接熔池高度为9 mm,机加工成形环焊接熔池高度为8.3 mm;机加工成形环焊接最大残余应力为255.6 MPa,而拉拔成形环焊接最大残余应力为277.8 MPa,均出现在管座紧贴焊缝的位置;机加工成形环焊接残余变形为0.19 mm,拉拔成形环焊接残余变形为0.186 mm,最大残余变形均出现在焊接起始位置附近,在焊缝与管座交接的位置。结论熔池形貌直接影响了热影响区域的大小,拉拔Y型环焊接熔池高度更大,焊接的热影响区域更大;拉拔Y型环焊接残余应力略大于机加工Y型环焊接残余应力;机加工成形环和拉拔成形环焊接残余变形相近。 展开更多
关键词 焊接模拟 焊接温度场 焊接应力 焊接变形 canopy焊缝
在线阅读 下载PDF
基于改进的Canopy-k-means的大跨屋盖表面风荷载分区方法 被引量:1
18
作者 李玉学 纪君 董阳 《河北科技大学学报》 CAS 北大核心 2024年第5期530-538,共9页
针对k-means聚类算法在大跨屋盖结构表面风荷载分区计算中,聚类数k值随机选取容易导致结果不稳定和计算效率低等问题,提出改进的Canopy-k-means聚类算法。首先,引入Canopy算法并对其初始阈值和聚类中心的选取方式进行改进,减少初始值选... 针对k-means聚类算法在大跨屋盖结构表面风荷载分区计算中,聚类数k值随机选取容易导致结果不稳定和计算效率低等问题,提出改进的Canopy-k-means聚类算法。首先,引入Canopy算法并对其初始阈值和聚类中心的选取方式进行改进,减少初始值选取的盲目性,以提高风荷载分区结果的可靠性;其次,通过改进Canopy算法对风荷载数据集进行预处理,快速准确地确定聚类数k值;第三,将改进Canopy算法与k-means结合使用,实现最优分类数k值的精准识别,使得改进的Canopy-k-means聚类算法进行大跨屋盖结构表面风荷载分区时能够快速准确地得到分区结果;最后,以一大跨柱面屋盖干煤棚结构为例,基于风洞试验所得结构表面风荷载数据测试结果,采用所提改进的Canopy-k-means聚类算法对其表面风荷载进行分区计算。结果表明,采用改进的Canopy-k-means聚类算法,将0°、50°和90°风向角时大跨屋盖表面风荷载划分为了3个不同的分区,其对应的SD值分别为2.36、3.51和2.52,较传统k-means聚类算法所得对应值明显降低,类内紧凑性和类间分散性明显提升。所提改进Canopy-k-means聚类算法能够快速准确地得到最优分区结果,对大跨屋盖表面风荷载分区具有工程参考价值。 展开更多
关键词 薄壳结构 风荷载测压 风荷载分区 K-MEANS聚类算法 canopy算法
在线阅读 下载PDF
Rice canopy temperature is affected by nitrogen fertilizer 被引量:1
19
作者 Min Jiang Zhang Chen +3 位作者 Yuan Li Xiaomin Huang Lifen Huang Zhongyang Huo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期824-835,共12页
Canopy temperature strongly influences crop yield formation and is closely related to plant physiological traits.However, the effects of nitrogen treatment on canopy temperature and rice growth have yet to be comprehe... Canopy temperature strongly influences crop yield formation and is closely related to plant physiological traits.However, the effects of nitrogen treatment on canopy temperature and rice growth have yet to be comprehensively examined. We conducted a two-year field experiment with three rice varieties(HD-5, NJ-9108, and YJ-805) and three nitrogen treatments(zero-N control(CK), 200 kg ha~(–1)(MN), and 300 kg ha~(–1)(HN)). We measured canopy temperature using a drone equipped with a high-precision camera at the six stages of the growth period. Generally,canopy temperature was significantly higher for CK than for MN and HN during the tillering, jointing, booting, and heading stages. The temperature was not significantly different among the nitrogen treatments between the milky and waxy stages. The canopy temperature of different rice varieties was found to follow the order: HD-5>NJ-9108>YJ-805, but the difference was not significant. The canopy temperature of rice was mainly related to plant traits, such as shoot fresh weight(correlation coefficient r=–0.895), plant water content(–0.912), net photosynthesis(–0.84), stomatal conductance(–0.91), transpiration rate(–0.90), and leaf stomatal area(–0.83). A structural equation model(SEM) showed that nitrogen fertilizer was an important factor affecting the rice canopy temperature.Our study revealed:(1) A suite of plant traits was associated with the nitrogen effects on canopy temperature,(2) the heading stage was the best time to observe rice canopy temperature, and(3) at that stage, canopy temperature was negatively correlated with rice yield, panicle number, and grain number per panicle. This study suggests that canopy temperature can be a convenient and accurate indicator of rice growth and yield prediction. 展开更多
关键词 canopy temperature RICE physiological and biochemical characteristics YIELD
在线阅读 下载PDF
The influences of canopy temperature measuring on the derived crop water stress index 被引量:1
20
作者 WANG Hongxi LI Fei +4 位作者 SHEN Hongtao LI Mengyu YIN Gongchao FANG Qin SHAO Liwei 《中国生态农业学报(中英文)》 CAS CSCD 北大核心 2024年第9期1503-1519,共17页
Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the... Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management. 展开更多
关键词 canopy temperature Measuring time Measuring height and direction Crop water stress index
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部