期刊文献+
共找到980篇文章
< 1 2 49 >
每页显示 20 50 100
Prediction of Lung Cancer Stage Using Tumor Gene Expression Data
1
作者 Yadi Gu 《Journal of Cancer Therapy》 2024年第8期287-302,共16页
Lung cancer remains a significant global health challenge and identifying lung cancer at an early stage is essential for enhancing patient outcomes. The study focuses on developing and optimizing gene expression-based... Lung cancer remains a significant global health challenge and identifying lung cancer at an early stage is essential for enhancing patient outcomes. The study focuses on developing and optimizing gene expression-based models for classifying cancer types using machine learning techniques. By applying Log2 normalization to gene expression data and conducting Wilcoxon rank sum tests, the researchers employed various classifiers and Incremental Feature Selection (IFS) strategies. The study culminated in two optimized models using the XGBoost classifier, comprising 10 and 74 genes respectively. The 10-gene model, due to its simplicity, is proposed for easier clinical implementation, whereas the 74-gene model exhibited superior performance in terms of Specificity, AUC (Area Under the Curve), and Precision. These models were evaluated based on their sensitivity, AUC, and specificity, aiming to achieve high sensitivity and AUC while maintaining reasonable specificity. 展开更多
关键词 Lung cancer Detection Stage Prediction Gene Expression data Xgboost Machine Learning
暂未订购
Modeling Liver Cancer and Leukemia Data Using Arcsine-Gaussian Distribution
2
作者 Farouq Mohammad A.Alam Sharifah Alrajhi +1 位作者 Mazen Nassar Ahmed Z.Afify 《Computers, Materials & Continua》 SCIE EI 2021年第5期2185-2202,共18页
The main objective of this paper is to discuss a general family of distributions generated from the symmetrical arcsine distribution.The considered family includes various asymmetrical and symmetrical probability dist... The main objective of this paper is to discuss a general family of distributions generated from the symmetrical arcsine distribution.The considered family includes various asymmetrical and symmetrical probability distributions as special cases.A particular case of a symmetrical probability distribution from this family is the Arcsine–Gaussian distribution.Key statistical properties of this distribution including quantile,mean residual life,order statistics and moments are derived.The Arcsine–Gaussian parameters are estimated using two classical estimation methods called moments and maximum likelihood methods.A simulation study which provides asymptotic distribution of all considered point estimators,90%and 95%asymptotic confidence intervals are performed to examine the estimation efficiency of the considered methods numerically.The simulation results show that both biases and variances of the estimators tend to zero as the sample size increases,i.e.,the estimators are asymptotically consistent.Also,when the sample size increases the coverage probabilities of the confidence intervals increase to the nominal levels,while the corresponding length decrease and approach zero.Two real data sets from the medicine filed are used to illustrate the flexibility of the Arcsine–Gaussian distribution as compared with the normal,logistic,and Cauchy models.The proposed distribution is very versatile to fit real applications and can be used as a good alternative to the traditional gaussian distribution. 展开更多
关键词 Liver cancer data leukemia data normal distribution moments estimation maximum likelihood estimation
在线阅读 下载PDF
Elastic restricted Boltzmann machines for cancer data analysis
3
作者 Sai Zhang Muxuan Liang +4 位作者 Zhongjun Zhou Chen Zhang Ning Chen Ting Chen Jianyang Zeng 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2017年第2期159-172,共14页
Background: Restricted Boltzmann machines (RBMs) are endowed with the universal power of modeling (binary) joint distributions. Meanwhile, as a result of their confining network structure, training RBMs confronts... Background: Restricted Boltzmann machines (RBMs) are endowed with the universal power of modeling (binary) joint distributions. Meanwhile, as a result of their confining network structure, training RBMs confronts less difficulties when dealing with approximation and inference issues. But little work has been developed to fully exploit the capacity of these models to analyze cancer data, e.g., cancer genomic, transcriptomic, proteomic and epigenomic data. On the other hand, in the cancer data analysis task, the number of features/predictors is usually much larger than the sample size, which is known as the '~ 〉〉 N" problem and is also ubiquitous in other bioinformatics and computational biology fields. The "p 〉〉 N" problem puts the bias-variance trade-off in a more crucial place when designing statistical learning methods. However, to date, few RBM models have been particularly designed to address this issue. Methods: We propose a novel RBMs model, called elastic restricted Boltzmann machines (eRBMs), which incorporates the elastic regularization term into the likelihood function, to balance the model complexity and sensitivity. Facilitated by the classic contrastive divergence (CD) algorithm, we develop the elastic contrastive divergence (eCD) algorithm which can train eRBMs efficiently. Results: We obtain several theoretical results on the rationality and properties of our model. We further evaluate the power of our model based on a challenging task -- predicting dichotomized survival time using the molecular profiling of tumors. The test results show that the prediction performance of eRBMs is much superior to that of the state-of-the-art methods. Conclusions: The proposed eRBMs are capable of dealing with the "p 〉〉 N" problems and have superior modeling performance over traditional methods. Our novel model is a promising method for future cancer data analysis. 展开更多
关键词 RBMs REGULARIZATION cancer data analysis survival time prediction
原文传递
Identification of cancer patients using claims data from health insurance systems: A real-world comparative study 被引量:4
4
作者 Hongrui Tian Ruiping Xu +7 位作者 Fenglei Li Chuanhai Guo Lixin Zhang Zhen Liu Mengfei Liu Yaqi Pan Zhonghu He Yang Ke 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2019年第4期699-706,共8页
Objective: To evaluate the accuracy of identifying cancer patients by use of medical claims data in a health insurance system in China, and provide the basis for establishing the claims-based cancer surveillance syste... Objective: To evaluate the accuracy of identifying cancer patients by use of medical claims data in a health insurance system in China, and provide the basis for establishing the claims-based cancer surveillance system in China.Methods: We chose Hua County, Henan Province as the study site, and randomly selected 300 and 1,200 qualified inpatient electronic medical records(EMRs) as well as the New Rural Cooperative Medical Scheme(NCMS) claims records for cancer patients in Hua County People’s Hospital(HCPH) and Anyang Cancer Hospital(ACH) in 2017. Diagnostic information for NCMS claims was evaluated on an individual level, and sensitivity and positive predictive value(PPV) were calculated taking the EMRs as the gold standard.Results: The sensitivity of NCMS was 95.2%(93.8%-96.3%) and 92.0%(88.3%-94.8%) in ACH and HCPH,respectively. The PPV of the NCMS was 97.8%(96.7%-98.5%) in ACH and 89.0%(84.9%-92.3%) in HCPH.Overall, the weighted and combined sensitivity and PPV of NCMS in Hua County was 93.1% and 92.1%,respectively. Significantly higher sensitivity and PPV in identifying patients with common cancers than noncommon cancers were detected in HCPH and ACH separately(P<0.01).Conclusions: Identification of cancer patients by use of the NCMS is accurate on individual level, and it is therefore feasible to conduct claims-based cancer surveillance in areas not covered by cancer registries in China. 展开更多
关键词 NCMS CLAIMS data cancer SURVEILLANCE sensitivity POSITIVE PREDICTIVE VALUE
在线阅读 下载PDF
An enrichment model using regular health examination data for early detection of colorectal cancer 被引量:3
5
作者 Qiang Shi Zhaoya Gao +8 位作者 Pengze Wu Fanxiu Heng Fuming Lei Yanzhao Wang Qingkun Gao Qingmin Zeng Pengfei Niu Cheng Li Jin Gu 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2019年第4期686-698,共13页
Objective: Challenges remain in current practices of colorectal cancer(CRC) screening, such as low compliance,low specificities and expensive cost. This study aimed to identify high-risk groups for CRC from the genera... Objective: Challenges remain in current practices of colorectal cancer(CRC) screening, such as low compliance,low specificities and expensive cost. This study aimed to identify high-risk groups for CRC from the general population using regular health examination data.Methods: The study population consist of more than 7,000 CRC cases and more than 140,000 controls. Using regular health examination data, a model detecting CRC cases was derived by the classification and regression trees(CART) algorithm. Receiver operating characteristic(ROC) curve was applied to evaluate the performance of models. The robustness and generalization of the CART model were validated by independent datasets. In addition, the effectiveness of CART-based screening was compared with stool-based screening.Results: After data quality control, 4,647 CRC cases and 133,898 controls free of colorectal neoplasms were used for downstream analysis. The final CART model based on four biomarkers(age, albumin, hematocrit and percent lymphocytes) was constructed. In the test set, the area under ROC curve(AUC) of the CART model was 0.88 [95%confidence interval(95% CI), 0.87-0.90] for detecting CRC. At the cutoff yielding 99.0% specificity, this model’s sensitivity was 62.2%(95% CI, 58.1%-66.2%), thereby achieving a 63-fold enrichment of CRC cases. We validated the robustness of the method across subsets of test set with diverse CRC incidences, aging rates, genders ratio, distributions of tumor stages and locations, and data sources. Importantly, CART-based screening had the higher positive predictive value(1.6%) than fecal immunochemical test(0.3%).Conclusions: As an alternative approach for the early detection of CRC, this study provides a low-cost method using regular health examination data to identify high-risk individuals for CRC for further examinations. The approach can promote early detection of CRC especially in developing countries such as China, where annual health examination is popular but regular CRC-specific screening is rare. 展开更多
关键词 Classification and regression trees COLORECTAL cancer REGULAR health examination data ROUTINE lab test biomarkers
暂未订购
The diagnostic rules of peripheral lung cancer preliminary study based on data mining technique 被引量:5
6
作者 Yongqian Qiang Youmin Guo +3 位作者 Xue Li Qiuping Wang Hao Chen Duwu Cui 《Journal of Nanjing Medical University》 2007年第3期190-195,共6页
Objective: To discuss the clinical and imaging diagnostic rules of peripheral lung cancer by data mining technique, and to explore new ideas in the diagnosis of peripheral lung cancer, and to obtain early-stage techn... Objective: To discuss the clinical and imaging diagnostic rules of peripheral lung cancer by data mining technique, and to explore new ideas in the diagnosis of peripheral lung cancer, and to obtain early-stage technology and knowledge support of computer-aided detecting (CAD). Methods: 58 cases of peripheral lung cancer confirmed by clinical pathology were collected. The data were imported into the database after the standardization of the clinical and CT findings attributes were identified. The data was studied comparatively based on Association Rules (AR) of the knowledge discovery process and the Rough Set (RS) reduction algorithm and Genetic Algorithm(GA) of the generic data analysis tool (ROSETTA), respectively. Results: The genetic classification algorithm of ROSETTA generates 5 000 or so diagnosis rules. The RS reduction algorithm of Johnson's Algorithm generates 51 diagnosis rules and the AR algorithm generates 123 diagnosis rules. Three data mining methods basically consider gender, age, cough, location, lobulation sign, shape, ground-glass density attributes as the main basis for the diagnosis of peripheral lung cancer. Conclusion: These diagnosis rules for peripheral lung cancer with three data mining technology is same as clinical diagnostic rules, and these rules also can be used to build the knowledge base of expert system. This study demonstrated the potential values of data mining technology in clinical imaging diagnosis and differential diagnosis. 展开更多
关键词 peripheral lung cancer TOMOGRAPHY X-ray computed data mining computer aided detecting(CAD)
暂未订购
Using the Prostate Imaging Reporting and Data System version 2 (PI-RIDS v2) to detect prostate cancer can prevent unnecessary biopsies and invasive treatment 被引量:16
7
作者 Chang Liu Shi-Liang Liu +5 位作者 Zhi-Xian Wang Kai Yu Chun-Xiang Feng Zan Ke Liang Wang Xiao-Yong Zeng 《Asian Journal of Andrology》 SCIE CAS CSCD 2018年第5期459-464,共6页
Prostate cancer (PCa) is one of the most common cancers among men globally. The authors aimed to evaluate the ability of the Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) to classify men with P... Prostate cancer (PCa) is one of the most common cancers among men globally. The authors aimed to evaluate the ability of the Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) to classify men with PCa, clinically significant PCa (CSPCa), or no PCa, especially among those with serum total prostate-specific antigen (tPSA) levels in the "gray zone" (4-10 ng ml-1). A total of 308 patients (355 lesions) were enrolled in this study. Diagnostic efficiency was determined. Univariate and multivariate analyses, receiver operating characteristic curve analysis, and decision curve analysis were performed to determine and compare the predictors of PCa and CSPCa. The results suggested that PI-RADS v2, tPSA, and prostate-specific antigen density (PSAD) were independent predictors of PCa and CSPCa. A PI-RADS v2 score L≥4 provided high negative predictive values (91.39% for PCa and 95.69% for CSPCa). A model of PI-RADS combined with PSA and PSAD helped to define a high-risk group (PI-RADS score = 5 and PSAD L≥0 15 ng ml-1 cm-3, with tPSA in the gray zone, or PI-RADS score L≥4 with high tPSA level) with a detection rate of 96.1% for PCa and 93.0% for CSPCa while a low-risk group with a detection rate of 6.1% for PCa and 2.2% for CSPCa. It was concluded that the PI-RADS v2 could be used as a reliable and independent predictor of PCa and CSPCa. The combination of PI-RADS v2 score with PSA and PSAD could be helpful in the prediction and diagnosis of PCa and CSPCa and, thus, may help in preventing unnecessary invasive procedures. 展开更多
关键词 diagnosis multiparametric magnetic resonance imaging prostate cancer Prostate Imaging Reporting and data Systemversion 2 prostate-specific antigen prostate-specific antigen density
原文传递
Development of a Deep Learning Model for the Prognosis of the Occurrence of Death from Stomach Cancer in Senegal
8
作者 Idrissa Sy Mouhamad Mounirou Allaya +5 位作者 Mamadou Bousso Ayoub Insa Corréa Aba Diop Youssouphe Guissé Sérigne Souaibou Diop Madieng Dieng 《Journal of Intelligent Learning Systems and Applications》 2024年第4期341-362,共22页
Context and Objectives: Stomach cancer ranks fifth in incidence and fourth in mortality worldwide. In Senegal, there were 597 new cases in 2020, with a mortality rate of almost 70%. The aim of this study was to develo... Context and Objectives: Stomach cancer ranks fifth in incidence and fourth in mortality worldwide. In Senegal, there were 597 new cases in 2020, with a mortality rate of almost 70%. The aim of this study was to develop a machine-learning model for the prognosis of death from stomach cancer 5 years after treatment. Methods: Our study sample consisted of 262 patients treated for gastric cancer at Aristide le Dantec Hospital and followed postoperatively between 2007 and 2020. We developed a multilayer perceptron with optimal hyperparameters and compared its performance with standard classification algorithms. We also augmented our data with a set of synthetic data generators to evaluate the behaviour of the model when faced with a larger amount of data. Results: Our model obtained an accuracy of 97.5%, outperforming the SVM (93%), RF (93.8%) and KNN (92.7%) models. An improvement of 1.5% in accuracy was achieved with synthetic data. Our study showed that the most pejorative factors in the evolution of the cancer were the appearance of hepatic metastases or adenopathy, smoking, and the infiltrative and stenosing aspects of the tumour on endoscopy. Conclusion: Our model predicted the occurrence of death from gastric cancer with very high accuracy, outperforming standard classification algorithms. The increase in training data produced an improvement in accuracy. Our study will help doctors to personalize the management of gastric cancer patients. 展开更多
关键词 Artificial Intelligence Multilayer Perceptron PROGNOSIS Gastric cancer Synthetic data
暂未订购
基于多模态数据的宫颈癌专病库建设 被引量:1
9
作者 王琳琳 郝文杰 +2 位作者 郝鹏鹏 崔芳芳 何贤英 《中国数字医学》 2025年第1期77-81,共5页
目的:更好地利用真实世界的宫颈癌诊疗数据,提高宫颈癌的防控和诊疗水平。方法:采用大数据技术框架,基于对业务、数据等流程的分析,汇聚郑州大学第一附属医院宫颈癌患者数据,通过数据治理、专病库系统设计等,构建多模态宫颈癌专病库。结... 目的:更好地利用真实世界的宫颈癌诊疗数据,提高宫颈癌的防控和诊疗水平。方法:采用大数据技术框架,基于对业务、数据等流程的分析,汇聚郑州大学第一附属医院宫颈癌患者数据,通过数据治理、专病库系统设计等,构建多模态宫颈癌专病库。结果:基于12个临床信息系统,构建了涵盖64个数据模型、2393个字段的多模态宫颈癌专病库,纳入2.2万余例患者、30.9万余人次的就诊信息,并开发了涵盖数据画像、患者全景、研究项目、数据分析、随访中心、辅助诊疗、知识库、专病库管理等8大功能模块的专病库管理系统。结论:该专病库实现了同一患者跨系统信息的关联整合,并为宫颈癌临床研究提供了多模态、标准化、可便捷获取的高质量数据。 展开更多
关键词 专病库 宫颈癌 多模态数据 数据治理
暂未订购
上海市肿瘤登记工作发展历程和数据质量优化路径
10
作者 顾凯 吴春晓 《中国肿瘤》 北大核心 2025年第6期435-439,共5页
上海市作为中国最早开展全人群肿瘤登记的城市,自1963年建立肿瘤登记系统以来,通过持续的制度完善、技术创新和标准化管理,肿瘤登记数据自1982年起连续9次被《五大洲癌症发病率》(Cancer Incidence in Five Continents,CI5)收录,成为我... 上海市作为中国最早开展全人群肿瘤登记的城市,自1963年建立肿瘤登记系统以来,通过持续的制度完善、技术创新和标准化管理,肿瘤登记数据自1982年起连续9次被《五大洲癌症发病率》(Cancer Incidence in Five Continents,CI5)收录,成为我国内地首个登记数据质量获国际权威认可的肿瘤登记处。全文系统回顾了上海市肿瘤登记工作的发展历程,重点分析了其在数据收集、编码标准化、质量控制、信息化管理和数据分析利用等方面如何满足国际癌症研究署的严苛要求,并基于《健康上海行动——癌症防治行动实施方案(2023—2030年)》等政策文件,提出未来肿瘤登记工作应进一步强化数据共享、多维度综合监测及人工智能应用等发展方向。结合国际标准与本土实践,以期为我国肿瘤登记体系的优化提供参考。 展开更多
关键词 肿瘤登记 数据质量 上海
原文传递
Adaptive Modeling of Monthly Depression Levels in Terms of Daily Assessments of Opioid Medications Taken and Pain Levels for Cancer Patients
11
作者 George J. Knafl Ryan Quinn +1 位作者 Andrew Robinson Salimah H. Meghani 《Open Journal of Statistics》 2024年第5期492-517,共26页
A research study collected intensive longitudinal data from cancer patients on a daily basis as well as non-intensive longitudinal survey data on a monthly basis. Although the daily data need separate analysis, those ... A research study collected intensive longitudinal data from cancer patients on a daily basis as well as non-intensive longitudinal survey data on a monthly basis. Although the daily data need separate analysis, those data can also be utilized to generate predictors of monthly outcomes. Alternatives for generating daily data predictors of monthly outcomes are addressed in this work. Analyses are reported of depression measured by the Patient Health Questionnaire 8 as the monthly survey outcome. Daily measures include numbers of opioid medications taken, numbers of pain flares, least pain levels, and worst pain levels. Predictors are averages of recent non-missing values for each daily measure recorded on or prior to survey dates for depression values. Weights for recent non-missing values are based on days between measurement of a recent value and a survey date. Five alternative averages are considered: averages with unit weights, averages with reciprocal weights, weighted averages with reciprocal weights, averages with exponential weights, and weighted averages with exponential weights. Adaptive regression methods based on likelihood cross-validation (LCV) scores are used to generate fractional polynomial models for possible nonlinear dependence of depression on each average. For all four daily measures, the best LCV score over averages of all types is generated using the average of recent non-missing values with reciprocal weights. Generated models are nonlinear and monotonic. Results indicate that an appropriate choice would be to assume three recent non-missing values and use the average with reciprocal weights of the first three recent non-missing values. 展开更多
关键词 Adaptive Regression cancer Depression Intensive Longitudinal data Factional Polynomials Opioid Medications Pain Levels
在线阅读 下载PDF
人工智能在肿瘤诊疗研究中的应用
12
作者 刘红蕾 杨迎亮 +2 位作者 李荣浩 朱丛敏 张旭 《首都医科大学学报》 北大核心 2025年第3期395-400,共6页
癌症作为全球主要公共卫生问题,其发病率和病死率持续攀升,对人类健康和社会经济构成了沉重负担。尽管近年来肿瘤研究取得显著进展,但肿瘤的异质性、耐药性以及早期筛查和诊疗技术的局限性仍然是亟待解决的核心挑战。在此背景下,人工智... 癌症作为全球主要公共卫生问题,其发病率和病死率持续攀升,对人类健康和社会经济构成了沉重负担。尽管近年来肿瘤研究取得显著进展,但肿瘤的异质性、耐药性以及早期筛查和诊疗技术的局限性仍然是亟待解决的核心挑战。在此背景下,人工智能技术凭借其在大数据分析、模式识别和预测建模方面的独特优势,为肿瘤研究开辟了新的路径。通过整合组学、影像及临床等多模态数据,人工智能不仅加速了肿瘤基础机制的研究,还在早期筛查、生物标志物发现及个性化治疗等领域展现了广阔的应用前景,促进了精准医学与肿瘤学的深度融合。本文全面综述了近年来人工智能技术在肿瘤诊疗研究中的应用进展,重点探讨其在多种数据类型及诊疗场景中的实际价值与未来发展方向。 展开更多
关键词 人工智能 精准医疗 医疗大数据 肿瘤研究 肿瘤诊疗
在线阅读 下载PDF
基于数据挖掘的乳腺癌机会性筛查管理系统构建与应用
13
作者 郭苗苗 许丹丹 +1 位作者 严婷婷 袁玲 《护理学杂志》 北大核心 2025年第5期104-107,共4页
目的基于数据挖掘构建乳腺癌机会性筛查管理系统并验证其在筛查患者管理中的应用效果。方法基于数据挖掘构建筛查管理系统,选取2021年1月至2024年5月进行乳腺癌机会性筛查的患者,按照系统应用前后分为对照组和观察组,每组各2373例。观... 目的基于数据挖掘构建乳腺癌机会性筛查管理系统并验证其在筛查患者管理中的应用效果。方法基于数据挖掘构建筛查管理系统,选取2021年1月至2024年5月进行乳腺癌机会性筛查的患者,按照系统应用前后分为对照组和观察组,每组各2373例。观察组采用系统进行筛查管理,对照组采用常规的筛查管理方法。比较两组明确诊断和入院治疗时间,以及对乳腺癌机会性筛查满意度。结果观察组明确诊断、入院治疗时间显著短于对照组,其对乳腺癌机会性筛查满意度评分显著高于对照组(均P<0.05)。结论应用基于数据挖掘的乳腺癌机会性筛查管理系统进行筛查管理,可缩短患者筛查至首次入院治疗的时间,促进患者早诊早治,提高患者满意度。 展开更多
关键词 乳腺癌 机会性筛查 数据挖掘 个案管理 随访管理 患者满意度 数智化护理
暂未订购
基于真实世界数据的安罗替尼三线治疗晚期非小细胞肺癌的临床评价 被引量:1
14
作者 吴健 李培培 +3 位作者 祝永福 张东伟 汪永忠 陈浩 《中国药房》 北大核心 2025年第12期1488-1494,共7页
目的基于真实世界数据评估安罗替尼用于晚期非小细胞肺癌(NSCLC)患者三线治疗的临床价值。方法回顾性收集2021年2月-2024年12月在安徽中医药大学第一附属医院接受治疗的晚期NSCLC患者的临床资料。根据治疗方案的不同分为安罗替尼组(27例... 目的基于真实世界数据评估安罗替尼用于晚期非小细胞肺癌(NSCLC)患者三线治疗的临床价值。方法回顾性收集2021年2月-2024年12月在安徽中医药大学第一附属医院接受治疗的晚期NSCLC患者的临床资料。根据治疗方案的不同分为安罗替尼组(27例,接受安罗替尼治疗)和免疫治疗组(22例,接受免疫制剂单用或联合化疗药物治疗),比较两组患者的无进展生存期(PFS)、总生存期(OS),并记录其治疗期间不良反应发生情况;采用分区生存模型,从医疗卫生体系视角出发,采用成本-效用分析法对两种方案进行经济学评价。结果安罗替尼组患者的中位PFS为5.93个月,中位OS为11.27个月;免疫治疗组患者的中位PFS为5.33个月,中位OS为9.77个月;组间比较差异均无统计学意义(P>0.05)。两组患者的总不良反应发生率和3~4级严重不良反应发生率比较,差异均无统计学意义(P>0.05)。与免疫治疗组相比,安罗替尼组的增量成本-效果比为1806724.60元/质量调整生命年(QALY),高于3倍2024年我国人均国内生产总值(287247元/QALY)。结论对于晚期NSCLC患者的三线治疗,安罗替尼的疗效不劣于免疫制剂单用或联合化疗药物,安全性亦与之相当,但不具有经济性。 展开更多
关键词 安罗替尼 晚期非小细胞肺癌 三线治疗 免疫治疗 真实世界数据 有效性 安全性 经济性
暂未订购
Integration of genome scale data for identifying newplayers in colorectal cancer
15
作者 Viktorija Sokolova Elisabetta Crippa Manuela Gariboldi 《World Journal of Gastroenterology》 SCIE CAS 2016年第2期534-545,共12页
Colorectal cancers(CRCs) display a wide variety of genomic aberrations that may be either causally linked to their development and progression, or might serve as biomarkers for their presence. Recent advances in rapid... Colorectal cancers(CRCs) display a wide variety of genomic aberrations that may be either causally linked to their development and progression, or might serve as biomarkers for their presence. Recent advances in rapid high-throughput genetic and genomic analysis have helped to identify a plethora of alterations that can potentially serve as new cancer biomarkers, and thus help to improve CRC diagnosis, prognosis, and treatment. Each distinct data type(copy number variations, gene and micro RNAs expression, Cp G island methylation) provides an investigator with a different, partially independent, and complementary view of the entire genome. However, elucidation of gene function will require more information than can be provided by analyzing a single type of data. The integration of knowledge obtained from different sources is becoming increasingly essential for obtaining an interdisciplinary view of large amounts of information, and also for cross-validating experimental results. The integration of numerous types of genetic and genomic data derived from public sources, and via the use of ad-hoc bioinformatics tools and statistical methods facilitates the discovery and validation of novel, informative biomarkers. This combinatory approach will also enable researchers to more accurately and comprehensively understand the associations between different biologic pathways, mechanisms, and phenomena, and gain new insights into the etiology of CRC. 展开更多
关键词 COLORECTAL cancer COPY number VARIATIONS Gene EXPRESSION miRNA EXPRESSION Methylome dataintegration
暂未订购
粤东地区乳腺癌专病生物样本库的建设
16
作者 林旋豪 赵勇强 +2 位作者 张泽淳 张艺敏 孟令英 《中国卫生标准管理》 2025年第3期6-9,共4页
生物样本及其相关临床病理数据信息是医学科学研究的两大资源。在乳腺癌发病率不断上升的背景下,2021年,汕头市中心医院向中国人类遗传资源管理办公室提交了人类遗传资源保藏行政许可申请,并获得保藏批件,随后在国家法律法规的指导下开... 生物样本及其相关临床病理数据信息是医学科学研究的两大资源。在乳腺癌发病率不断上升的背景下,2021年,汕头市中心医院向中国人类遗传资源管理办公室提交了人类遗传资源保藏行政许可申请,并获得保藏批件,随后在国家法律法规的指导下开展了人类遗传资源保藏工作。在医院人类遗传资源管理委员会等管理部门的领导下,汕头市中心医院生物样本库遵循国家标准和行业最佳实践,探索了质量管理和数据库建设模式,建设了规范化、高质量、信息化和开放共享的地区性乳腺癌专病生物样本库,用于保藏乳腺癌生物样本及其相关临床病理数据信息,记录检验、检查、治疗和随访等样本相关信息,为项目研究提供高质量的样本,支持临床研究和转化医学研究的开展。 展开更多
关键词 生物样本库 乳腺癌 知情同意书 临床病理特征数据 质量管理 质量控制
暂未订购
基于数据挖掘探讨143例晚期大肠癌的中医证型分布及中医药治疗的核心处方与临床疗效 被引量:1
17
作者 梁霜 张蕾 宋卿 《广州中医药大学学报》 2025年第5期1041-1052,共12页
【目的】基于数据挖掘探讨晚期大肠癌(CRC)的中医证候、证型分布规律以及中医药治疗晚期CRC的用药规律并挖掘核心处方,同时回顾性分析该核心处方的临床疗效。【方法】收集2022年1月至2024年3月南京中医药大学附属苏州市中医医院肿瘤内... 【目的】基于数据挖掘探讨晚期大肠癌(CRC)的中医证候、证型分布规律以及中医药治疗晚期CRC的用药规律并挖掘核心处方,同时回顾性分析该核心处方的临床疗效。【方法】收集2022年1月至2024年3月南京中医药大学附属苏州市中医医院肿瘤内科门诊及病房收治的晚期CRC首诊医案,录入中医传承辅助平台V2.5,分析其中医证候与证型、用药频次与中药属性,通过关联规则和聚类分析形成核心处方(健脾化湿方)。对比经过该核心处方4周、8周和12周治疗后的疾病显愈率和总有效率,并评估治疗前后中医证候积分、Karnofsky功能状态量表(KPS)评分及大肠癌患者生命质量测定量表(FACT-C)评分的变化情况。【结果】(1)数据挖掘方面:本研究共纳入143首方剂,涉及214味中药,性味以甘温类为主,主归脾、肝经。关联规则分析结果显示,以姜半夏→陈皮的支持度最高(94次),置信度为95.92%,并挖掘出14个核心药物组合,获得7个新处方。频次分析结果显示,排前5位的中医证候为食欲不振、夜寐欠佳、乏力倦怠、大便稀溏、腹胀,排前3位的中医证型为脾虚湿盛证、脾气虚证、脾肾阳虚证,以脾虚的辨证频次最高。经Apriori关联分析及熵聚类方法得到核心处方(健脾化湿方):陈皮、姜半夏、生黄芪、白术、薏苡仁、鸡内金、延胡索、鸡血藤、大血藤、茯神及合欢皮。(2)临床研究方面:治疗8、12周后中医证候疗效的显愈率分别为25.87%(37/143)、50.35%(72/143),总有效率分别为60.14%(86/143)、79.02%(113/143),均明显高于治疗4周后的13.99%(20/143)、41.96%(60/143),差异均有统计学意义(P<0.05或P<0.01);同时,患者治疗12周后的各项中医证候积分、KPS评分以及FACT-C各领域评分均较治疗前明显改善,差异均有统计学意义(P<0.05或P<0.01)。【结论】晚期CRC患者以脾虚为本,癌毒与痰、湿、瘀等病邪兼夹为标,健脾化湿方在ⅢB-Ⅳ期CRC治疗中能提升临床疗效,降低中医证候积分,改善患者体力状况和生活质量。 展开更多
关键词 晚期大肠癌 数据挖掘 中医证型 用药规律 健脾化湿方 临床疗效 体力状况 生活质量
原文传递
基于大数据的癌症负担评价助力癌症防治:应用与挑战
18
作者 陈宏达 陈万青 《协和医学杂志》 北大核心 2025年第2期506-512,共7页
癌症已成为威胁人类生命健康的重大疾病之一。2022年全球新增癌症病例1997万,死亡病例974万,给社会造成了沉重负担。系统全面掌握癌症负担是制定有效防治策略的基石。以GLOBOCAN数据库和全球疾病负担数据库为代表的开源数据库为掌握最... 癌症已成为威胁人类生命健康的重大疾病之一。2022年全球新增癌症病例1997万,死亡病例974万,给社会造成了沉重负担。系统全面掌握癌症负担是制定有效防治策略的基石。以GLOBOCAN数据库和全球疾病负担数据库为代表的开源数据库为掌握最新癌症负担数据、确定重点防治领域、指导筛查与早诊早治、评估防治措施效果提供了重要支撑。同时,癌症大数据领域也面临数据标准化程度不足和隐私保护机制不完善等问题。未来应在确保患者隐私安全的基础上,进一步提高数据质量、推进数据共享、提升癌症防治资源公平性并加强国际合作,合理促进癌症防控策略的精准化与科学化发展,从而为降低癌症负担、增进全球健康福祉作出积极贡献。 展开更多
关键词 癌症负担 大数据 癌症防治 GLOBOCAN数据库 全球疾病负担数据库
暂未订购
基于数据挖掘探析田雪飞教授治疗原发性肝癌的用药规律
19
作者 姚力玮 夏沛 +1 位作者 朱浩然 田雪飞 《中医临床研究》 2025年第20期11-19,共9页
目的:探讨田雪飞教授治疗原发性肝癌的用药经验。方法:收集2020年4月-2024年4月田雪飞教授治疗原发性肝癌的门诊中药处方,建立Excel数据资料表并录入相关数据,使用古今医案云平台2.3.9进行统计分析,包括药物关联分析、聚类分析及复杂网... 目的:探讨田雪飞教授治疗原发性肝癌的用药经验。方法:收集2020年4月-2024年4月田雪飞教授治疗原发性肝癌的门诊中药处方,建立Excel数据资料表并录入相关数据,使用古今医案云平台2.3.9进行统计分析,包括药物关联分析、聚类分析及复杂网络分析。结果:共纳入281首处方,涉及中药198味,药物总使用频次为5 782,临床表现以纳呆、口干、腹胀、口苦、胁痛、失眠、畏寒、夜尿多为主,所用药物药性以寒、温、平为主,药味以苦、甘、辛为主,归经以脾经、肝经、肺经、胃经为主,使用频次居前5位的中药依次为甘草、柴胡、鳖甲、白芍、桃仁;按中药功效分类,居前3位的中药为补虚药、活血化瘀药、清热药;高频药物组合排序居前5位的为桃仁–鳖甲、鳖甲–柴胡、柴胡–桃仁、柴胡–白芍、土鳖虫–鳖甲;通过聚类分析获得5组药物组合;通过复杂网络分析可知核心药物为甘草、柴胡、鳖甲、桃仁、白芍、土鳖虫、干姜、厚朴、壁虎、白术、附子等11味药,构成了田教授治疗肝癌的核心方剂框架。结论:田雪飞教授治疗原发性肝癌紧抓“中虚生积”的核心病机,采用扶正祛邪与攻补并重的治疗原则,尤其重视活血化瘀及虫类药的使用,扶正以补气生血为主,攻邪以清热解毒、化痰散结、活血散瘀为重点,体现了多靶点、多途径、全方位的治疗策略。 展开更多
关键词 原发性肝癌 数据挖掘 用药规律
暂未订购
基于FAERS数据库的JAK抑制剂相关皮肤癌信号挖掘与分析
20
作者 谭皓文 陈颖 欧璇 《广西医学》 2025年第2期263-268,共6页
目的 基于美国食品药品监督管理局不良事件报告系统(FAERS)数据库挖掘与分析Janus激酶(JAK)抑制剂相关皮肤癌信号。方法 检索FAERS数据库2011年第4季度至2023年第4季度的JAK抑制剂(芦可替尼、托法替布、巴瑞替尼、乌帕替尼、阿布昔替尼... 目的 基于美国食品药品监督管理局不良事件报告系统(FAERS)数据库挖掘与分析Janus激酶(JAK)抑制剂相关皮肤癌信号。方法 检索FAERS数据库2011年第4季度至2023年第4季度的JAK抑制剂(芦可替尼、托法替布、巴瑞替尼、乌帕替尼、阿布昔替尼)相关皮肤癌报告。采用《国际医学用语词典》26.1版的首选术语对不良事件进行标准化,并采用《标准国际医学用语词典分析查询》26.1版查询皮肤癌相关首选术语。采用报告比值比(ROR)法对JAK抑制剂相关皮肤癌风险信号进行检测。采用Weibull分布分析JAK抑制剂相关皮肤癌发病时间。结果 共检索到JAK抑制剂相关皮肤癌患者1 053例。芦可替尼涉及复发性皮肤鳞状细胞癌、皮肤转移癌等12种首选术语;托法替布涉及皮肤神经内分泌癌、外阴癌等5种首选术语;巴瑞替尼涉及皮肤恶性黑素瘤;乌帕替尼涉及皮肤鳞状细胞癌、原位恶性黑素瘤等9种首选术语;阿布昔替尼涉及皮肤T细胞淋巴瘤、皮肤鳞状细胞癌。与女性患者相比,男性患者使用JAK抑制剂发生皮肤癌的潜在风险更高(ROR=1.83,95%CI:1.56,2.15);与年龄20~59岁患者相比,年龄≥60岁患者使用JAK抑制剂发生皮肤癌的潜在风险更高(ROR=2.50,95%CI:2.06,3.04)。芦可替尼、托法替布和巴瑞替尼诱导皮肤癌的中位发病时间分别为699 d、625 d和338 d,Weibull分布提示这3种JAK抑制剂诱导皮肤癌的发病时间均属于磨损故障型。结论 5种JAK抑制剂与皮肤癌的发生风险有关,临床上长期使用JAK抑制剂时,需警惕皮肤癌的发生。 展开更多
关键词 Janus激酶抑制剂 药物不良事件 皮肤肿瘤 数据挖掘 药物警戒性
暂未订购
上一页 1 2 49 下一页 到第
使用帮助 返回顶部