When discovering the potential of canards flying in 4-dimensional slow-fast system with a bifurcation parameter, the key notion “symmetry” plays an important role. It is of one parameter on slow vector field. Then, ...When discovering the potential of canards flying in 4-dimensional slow-fast system with a bifurcation parameter, the key notion “symmetry” plays an important role. It is of one parameter on slow vector field. Then, it should be determined to introduce parameters to all slow/fast vectors. It is, however, there might be no way to explore for another potential in this system, because the geometrical structure is quite different from the system with one parameter. Even in this system, the “symmetry” is also useful to obtain the potentials classified by R. Thom. In this paper, via the coordinates changing, the possible way to explore for the potential will be shown. As it is analyzed on “hyper finite time line”, or done by using “non-standard analysis”, it is called “Hyper Catastrophe”. In the slow-fast system which includes a very small parameter , it is difficult to do precise analysis. Thus, it is useful to get the orbits as a singular limit. When trying to do simulations, it is also faced with difficulty due to singularity. Using very small time intervals corresponding small , we shall overcome the difficulty, because the difference equation on the small time interval adopts the standard differential equation. These small intervals are defined on hyper finite number N, which is nonstandard. As and the intervals are linked to use 1/N, the simulation should be done exactly.展开更多
The fixed canards configuration of a dual-spin projectile makes it difficult to apply the traditional guidance law. In this study, a modified impact point prediction guidance strategy based on an iterative process was...The fixed canards configuration of a dual-spin projectile makes it difficult to apply the traditional guidance law. In this study, a modified impact point prediction guidance strategy based on an iterative process was developed for a class of dual-spin projectiles with fixed canards, to reduce the impact point dispersion. The guidance strategy is dependent on the modified projectile linear theory to rapidly predict the flight states and the impact point. For projectiles with control applied to the trajectory, the modified projectile linear theory method is known to achieve poor impact point prediction. To improve the prediction accuracy, improvements were made to the modified projectile linear theory by considering the products of the yaw rate and other small quantities.The guidance strategy is based on the iterative process for the continuous adjustment of the expected output of the roll angle of the course correction fuze, to minimize the direction error between the predicted impact point and target location. Studies were conducted on a model dual-spin projectile configuration to demonstrate the guidance details. The numerical simulations indicate that the proposed guidance strategy can effectively reduce the projectile impact point dispersion.展开更多
Existing literature has shown that the control force at the nose could cause dynamic instability for controlled projectiles. To lower the adverse impact on the dual-spin projectile with fixed canards under the premise...Existing literature has shown that the control force at the nose could cause dynamic instability for controlled projectiles. To lower the adverse impact on the dual-spin projectile with fixed canards under the premise of meeting guidance system requirements, the influence of control moment provided by a motor on the flight stability is analyzed in this paper. Firstly, the effect of the rolling movement on stability is analyzed based on the stability criterion derived using the Hurwitz stability theory. Secondly, the evaluation parameters combining the features of different control periods that could assess the variation of stability features after the motor torque are obtained. These effective formulas are used to indicate that, to reduce the flight instability risks, the stabilized rolling speed of roll speed keeping period should be as small as possible; the variation trend of motor torque during the rolling speed controlling period and the roll angle of the forward body during roll angle switching period are recommended corresponding to the projectile and trajectory characteristics. Moreover,detailed numerical simulations of 155 mm dual-spin projectile are satisfactory agreement with the theoretical results.展开更多
This paper reports on the canard phenomenon occurring in a rheodynamic model of cardiac pressure pulsations. By singular perturbation techniques the corresponding parameter value at which canards exist is obtained. Th...This paper reports on the canard phenomenon occurring in a rheodynamic model of cardiac pressure pulsations. By singular perturbation techniques the corresponding parameter value at which canards exist is obtained. The physiological significance of canards in this model is given.展开更多
Let us consider higher dimensional canards in a sow-fast system R<sup>2+2</sup> with a bifurcation parameter. Then, the slow manifold sometimes shows various aspects due to the bifurcation. Introducing a k...Let us consider higher dimensional canards in a sow-fast system R<sup>2+2</sup> with a bifurcation parameter. Then, the slow manifold sometimes shows various aspects due to the bifurcation. Introducing a key notion “symmetry” to the slow-fast system, it becomes clear when the pseudo singular point obtains the structural stability or not. It should be treated with a general case. Then, it will also be given about the sufficient conditions for the existence of the center manifold under being “symmetry”. The higher dimensional canards in the sow-fast system are deeply related to Hilbert’s 16th problem. Furthermore, computer simulations are done for the systems having Brownian motions. As a result, the rigidity for the system is confirmed.展开更多
There exists a property “structural stability” for “4-dimensional canards” which is a singular-limit solution in a slow-fast system with a bifurcation parameter. It means that the system includes the possibility t...There exists a property “structural stability” for “4-dimensional canards” which is a singular-limit solution in a slow-fast system with a bifurcation parameter. It means that the system includes the possibility to have some critical values on the bifurcation parameter. Corresponding to these values, the pseudo-singular point, which is a singular point in the time-scaled-reduced system should be changed to another one. Then, the canards may fly to another pseudo-singular point, if possible. Can the canards fly? The structural stability gives the possibility for the canards flying. The precise reasons why happen are described in this paper.展开更多
The canard phenomenon occurring in planar fast-slow systems under non-generic conditions is investigated.When the critical manifold has a non-generic fold point,by using the method of asymptotic analysis combined with...The canard phenomenon occurring in planar fast-slow systems under non-generic conditions is investigated.When the critical manifold has a non-generic fold point,by using the method of asymptotic analysis combined with the recently developed blow-up technique,the existence of a canard is established and the asymptotic expansion of the parameter for which a canard exists is obtained.展开更多
The vortex interference mechanism on low Reynolds number between the canard and main wing of the canard-forward sweep wing (Canard-FSW) configurations is simulated numerically by employing the numerical wind tunnel ...The vortex interference mechanism on low Reynolds number between the canard and main wing of the canard-forward sweep wing (Canard-FSW) configurations is simulated numerically by employing the numerical wind tunnel method. The variations of aerodynamic characteristics of Canard-FSW configurations with different positions of the canard are investigated,finding that the aerodynamic interference and mutual coupling effect between the canard and main wing have made great contributions to the lift and stability characteristics of the whole aircraft. Canard can radically improve the surface flow pattern of the main wing. And its own vortex can have a favorable interference on the main wing and can effectively control the airflow boundary layer separation. At small angles of attack,the aerodynamic characteristics are sensitive to the positions of the canard and the main wing,but at high angles of attack,the aerodynamic performances of the configuration are not only related to the shape of the canard (forward or backward),but also with the size of control force as well as the features of the vortices generated above the main wing and the canard. The different configurations and vortices are illustrated using the velocity vector,streamlines and pressure contours.展开更多
This paper gives a succinct review of dual-spinprojectile stability and some technologies relating to them.It describes how the traditional stability factors from linear projectile theory are modified to better descri...This paper gives a succinct review of dual-spinprojectile stability and some technologies relating to them.It describes how the traditional stability factors from linear projectile theory are modified to better describe a controlled dual-spin projectile.Finally,it reviews works which have investigated how different aspects of a controlled dual-spin design can affect flight stability,primarily airframe structure and canard properties.A conclusion is given,highlighting important guidelines from the enclosed discussions.展开更多
The classification on the orbits of some Liénard perturbation system with several parameters, which is relation to the example in [1] or [2], is discussed. The conditions for the parameters in order that the syst...The classification on the orbits of some Liénard perturbation system with several parameters, which is relation to the example in [1] or [2], is discussed. The conditions for the parameters in order that the system has a unique limit cycle, homoclinic orbits, canards or the unique equilibrium point is globally asymptotic stable are given. The methods in our previous papers are used for the proofs.展开更多
The aerodynamic layout of the Canard Rotor/Wing(CRW) aircraft in helicopter flight mode differs significantly from that of conventional helicopters. In order to study the flight dynamics characteristics of CRW aircraf...The aerodynamic layout of the Canard Rotor/Wing(CRW) aircraft in helicopter flight mode differs significantly from that of conventional helicopters. In order to study the flight dynamics characteristics of CRW aircraft in helicopter mode, first, the aerodynamic model of the main rotor system is established based on the blade element theory and wind tunnel test results. The aerodynamic forces and moments of the canard wing, horizontal tail, vertical tail and fuselage are obtained via theoretical analysis and empirical formula. The flight dynamics model of the CRW aircraft in helicopter mode is developed and validated by flight test data. Next, a method of model trimming using an optimization algorithm is proposed. The flight dynamics characteristics of the CRW are investigated by the method of linearized small perturbations via Simulink. The trim results are consistent with the conventional helicopter characteristics, and the results show that with increasing forward flight speed, the canard wing and horizontal tail can provide considerable lift,which reflects the unique characteristics of the CRW aircraft. Finally, mode analysis is implemented for the linearized CRW in helicopter mode. The results demonstrate that the stability of majority modes increases with increasing flight speed. However, one mode that diverges monotonously,and the reason is that the CRW helicopter mode has a large vertical tail compared to the conventional helicopter. The results of the dynamic analysis provide optimization guidance and reference for the overall design of the CRW aircraft in helicopter mode, and the model developed can be used for control system design.展开更多
A closed-loop control allocation method is proposed for a class of aircraft with multiple actuators. Nonlinear dynamic inversion is used to design the baseline attitude controller and derive the desired moment increme...A closed-loop control allocation method is proposed for a class of aircraft with multiple actuators. Nonlinear dynamic inversion is used to design the baseline attitude controller and derive the desired moment increment. And a feedback loop for the moment increment produced by the deflections of actuators is added to the angular rate loop, then the error between the desired and actual moment increment is the input of the dynamic control allocation. Subsequently, the stability of the closed-loop dynamic control allocation system is analyzed in detail. Especially, the closedloop system stability is also analyzed in the presence of two types of actuator failures: loss of effectiveness and lock-in-place actuator failures, where a fault detection subsystem to identify the actuator failures is absent. Finally, the proposed method is applied to a canard rotor/wing (CRW) aircraft model in fixed-wing mode, which has multiple actuators for flight control. The nonlinear simulation demonstrates that this method can guarantee the stability and tracking performance whether the actuators are healthy or fail.展开更多
The purpose of increasing the aerodynamic efficiency and enhancing the supermaneuverability for the selected supersonic aircraft is presented. Aerodynamic characteristics, the surface pressure distribution and the max...The purpose of increasing the aerodynamic efficiency and enhancing the supermaneuverability for the selected supersonic aircraft is presented. Aerodynamic characteristics, the surface pressure distribution and the maximum lift are estimated for the baseline configuration for different Mach numbers and attack angles in subson- ic and supersonic potential flows, using a low-order three-dimensional panel method supported with the semi-empirical formulas of the data compendium (DATCOM). Total nose-up and nose-down pitching moments about the center of gravity of the complete aircraft in the subsonic region depending on flight conditions and aircraft performance limitations are estimated. A software package is developed to implement the two-dimensional thrust vectoring flight control technique (pitch vectoring up and down) controlled by the advanced aerodynamic and control surface (the foreplane or the canard). Results show that the canard with the thrust vectoring produces enough nose-down moment and can support the stabilizer at high maneuvers. The suggested surface can increase the aerodynamic efficiency (lift-to-drag ratio) of the baseline configuration by 5%-6% in subsonic and supersonic flight regimes.展开更多
Three-dimensional unsteady Navier-Stokes equations are numerically solved to simulate the aerodynamic interaction of rotor, canard and horizontal tail in hover based on moving chimera grid. The variations of unsteady ...Three-dimensional unsteady Navier-Stokes equations are numerically solved to simulate the aerodynamic interaction of rotor, canard and horizontal tail in hover based on moving chimera grid. The variations of unsteady aerodynamic forces and moments of the canard and horizontal tail with respect to the rotor azimuth are analyzed with the deflection angle set at 0° and 50°, respectively. The pressure map of aerodynamic surfaces and velocity vector distribution of flow field are investigated to get better understanding of the unsteady aerodynamic interaction. The result shows that the canard and horizontal tail present different characteristics under the downwash of the rotor. The canard produces much vertical force loss with low amplitude fluctuation. Contrarily, the horizontal tail, which is within the flow field induced by the down wash of the rotor, produces only less vertical force loss, but the amplitudes of the lift and pitching moment are larger, implying that a potential deflection angle scheme in hover is 50° for the canard and 0° for the horizontal tail.展开更多
An aerodynamic design method and corresponding codes are developed for three-dimensional multi lifting surfaces at transonic flow. It is based on the "iterative residual correction" concept that is successfully used...An aerodynamic design method and corresponding codes are developed for three-dimensional multi lifting surfaces at transonic flow. It is based on the "iterative residual correction" concept that is successfully used for transonic wing design and subsonic multi-lifting surface design. The up-wind scheme is introduced into governing equations of multi-lifting surface design method and automatically acted when supersonic flow appears on the surface. A series of interface codes are programmed, including a target-pressure modification tool. Using the improved inverse aerodynamic design code, TAU code and interface codes, the transonic multi-lifting aerodynamic design software system is founded. Two cases of canard-wing configuration have been performed to validate the method and codes. The results show that the convergence of analysis/design iteration is very good at higher speed transonic flow.展开更多
Air-breathing hypersonic vehicles (HSVs) are typically characterized by interactions of elasticity, propulsion and rigid-body flight dynamics, which may result in intractable aeroservoelastic problem. When canard is...Air-breathing hypersonic vehicles (HSVs) are typically characterized by interactions of elasticity, propulsion and rigid-body flight dynamics, which may result in intractable aeroservoelastic problem. When canard is added, this problem would be even intensified by the introduction of low-frequency canard pivot mode. This paper concerns how the aeroservoelastic stability of a canard-configured HSV is affected by the pivot stiffnesses of all-moveable horizontal tail (HT) and canard. A wing/pivot system model is developed by considering the pivot torsional flexibility, fuselage vibration, and control input. The governing equations of the aeroservoelastic system are established by combining the equations of rigid-body motion, elastic fuselage model, wing/pivot system models and actuator dynamics. An unsteady aerodynamic model is developed by steady Shock-Expansion theory with an unsteady correction using local piston theory. A baseline controller is given to provide approximate inflight characteristics of rigid-body modes. The vehicle is trimmed for equilibrium state, around which the linearized equations are derived for stability analysis. A comparative study of damping ratios, closed-loop poles and responses are conducted with varying controller gains and pivot stiffnesses. Available bandwidth for control design is discussed and feasible region for pivot stiffnesses of HT and canard is given.展开更多
This article presents a complete nonlinear controller design for a class of spin-stabilized canard-controlled projectiles.Uniformly ultimate boundedness and tracking are achieved,exploiting a heavily coupled,bounded u...This article presents a complete nonlinear controller design for a class of spin-stabilized canard-controlled projectiles.Uniformly ultimate boundedness and tracking are achieved,exploiting a heavily coupled,bounded uncertain and highly nonlinear model of longitudinal and lateral dynamics.In order to estimate unmeasurable states,an observer is proposed for an augmented multiple-input-multiple-output(MIMO) nonlinear system with an adaptive sliding mode term against the disturbances.Under the frame of a backstepping design,an adaptive sliding mode output-feedback dynamic surface control(DSC) approach is derived recursively by virtue of the estimated states.The DSC technique is adopted to overcome the problem of ‘‘explosion of complexity" and relieve the stress of the guidance loop.It is proven that all signals of the MIMO closed-loop system,including the observer and controller,are uniformly ultimately bounded,and the tracking errors converge to an arbitrarily small neighborhood of the origin.Simulation results for the observer and controller are provided to illustrate the feasibility and effectiveness of the proposed approach.展开更多
To study the rolling control characteristics of a canard-controlled missile, a series of wind tunnel experiment is conducted. The experimental method, the structure features of wind tunnel model and the experimental r...To study the rolling control characteristics of a canard-controlled missile, a series of wind tunnel experiment is conducted. The experimental method, the structure features of wind tunnel model and the experimental results are introduced in this paper. The experimental data show that the canard is an inefficient rolling control device for canard-controlled missile with fixed tail fins; but for the free-spinning tail fin configuration, the canard can conduct rolling control of the missile, and even have higher controlling efficiency under larger canard deflection angle.展开更多
The steady flow field of a canard missile on different angles of attack and Mach numbers were studied. Based on analysis, a method was proposed to reduce the calculation for the rolling characteristics of the canard m...The steady flow field of a canard missile on different angles of attack and Mach numbers were studied. Based on analysis, a method was proposed to reduce the calculation for the rolling characteristics of the canard missile with free-spinning tails, and was tested to obtain the relations between rolling moment coefficient, Mach number, and angle of attack. All the computed rolling moment coefficients obtained from the proposed method greatly agreed with the experimental results of FD-06 wind tunnel in CAAA, which proved that the method can not only reduce the calculation cost but also keep precision in calculating the rolling characteristics of canard missiles.展开更多
In this article, the interference between canard and wing is discussed on the basis of wind-tunnel test, with a brief review of the development of aerodynamic configurations of AD-100 / 200 (two light canard aircraft ...In this article, the interference between canard and wing is discussed on the basis of wind-tunnel test, with a brief review of the development of aerodynamic configurations of AD-100 / 200 (two light canard aircraft designed by NAI) .The safety against stall of a canard is also discussed based upon flight test.The rule 'canard stall first'is introduced as an effective measure to improve safety against stall. It has been pointed out that the rule may threaten the flight safety at low-altitude. Finally,what a designer can do to remove the threat is presented.展开更多
文摘When discovering the potential of canards flying in 4-dimensional slow-fast system with a bifurcation parameter, the key notion “symmetry” plays an important role. It is of one parameter on slow vector field. Then, it should be determined to introduce parameters to all slow/fast vectors. It is, however, there might be no way to explore for another potential in this system, because the geometrical structure is quite different from the system with one parameter. Even in this system, the “symmetry” is also useful to obtain the potentials classified by R. Thom. In this paper, via the coordinates changing, the possible way to explore for the potential will be shown. As it is analyzed on “hyper finite time line”, or done by using “non-standard analysis”, it is called “Hyper Catastrophe”. In the slow-fast system which includes a very small parameter , it is difficult to do precise analysis. Thus, it is useful to get the orbits as a singular limit. When trying to do simulations, it is also faced with difficulty due to singularity. Using very small time intervals corresponding small , we shall overcome the difficulty, because the difference equation on the small time interval adopts the standard differential equation. These small intervals are defined on hyper finite number N, which is nonstandard. As and the intervals are linked to use 1/N, the simulation should be done exactly.
文摘The fixed canards configuration of a dual-spin projectile makes it difficult to apply the traditional guidance law. In this study, a modified impact point prediction guidance strategy based on an iterative process was developed for a class of dual-spin projectiles with fixed canards, to reduce the impact point dispersion. The guidance strategy is dependent on the modified projectile linear theory to rapidly predict the flight states and the impact point. For projectiles with control applied to the trajectory, the modified projectile linear theory method is known to achieve poor impact point prediction. To improve the prediction accuracy, improvements were made to the modified projectile linear theory by considering the products of the yaw rate and other small quantities.The guidance strategy is based on the iterative process for the continuous adjustment of the expected output of the roll angle of the course correction fuze, to minimize the direction error between the predicted impact point and target location. Studies were conducted on a model dual-spin projectile configuration to demonstrate the guidance details. The numerical simulations indicate that the proposed guidance strategy can effectively reduce the projectile impact point dispersion.
文摘Existing literature has shown that the control force at the nose could cause dynamic instability for controlled projectiles. To lower the adverse impact on the dual-spin projectile with fixed canards under the premise of meeting guidance system requirements, the influence of control moment provided by a motor on the flight stability is analyzed in this paper. Firstly, the effect of the rolling movement on stability is analyzed based on the stability criterion derived using the Hurwitz stability theory. Secondly, the evaluation parameters combining the features of different control periods that could assess the variation of stability features after the motor torque are obtained. These effective formulas are used to indicate that, to reduce the flight instability risks, the stabilized rolling speed of roll speed keeping period should be as small as possible; the variation trend of motor torque during the rolling speed controlling period and the roll angle of the forward body during roll angle switching period are recommended corresponding to the projectile and trajectory characteristics. Moreover,detailed numerical simulations of 155 mm dual-spin projectile are satisfactory agreement with the theoretical results.
文摘This paper reports on the canard phenomenon occurring in a rheodynamic model of cardiac pressure pulsations. By singular perturbation techniques the corresponding parameter value at which canards exist is obtained. The physiological significance of canards in this model is given.
文摘Let us consider higher dimensional canards in a sow-fast system R<sup>2+2</sup> with a bifurcation parameter. Then, the slow manifold sometimes shows various aspects due to the bifurcation. Introducing a key notion “symmetry” to the slow-fast system, it becomes clear when the pseudo singular point obtains the structural stability or not. It should be treated with a general case. Then, it will also be given about the sufficient conditions for the existence of the center manifold under being “symmetry”. The higher dimensional canards in the sow-fast system are deeply related to Hilbert’s 16th problem. Furthermore, computer simulations are done for the systems having Brownian motions. As a result, the rigidity for the system is confirmed.
文摘There exists a property “structural stability” for “4-dimensional canards” which is a singular-limit solution in a slow-fast system with a bifurcation parameter. It means that the system includes the possibility to have some critical values on the bifurcation parameter. Corresponding to these values, the pseudo-singular point, which is a singular point in the time-scaled-reduced system should be changed to another one. Then, the canards may fly to another pseudo-singular point, if possible. Can the canards fly? The structural stability gives the possibility for the canards flying. The precise reasons why happen are described in this paper.
基金supported by the National Natural Science Foundation of China (No. 10701023)the E-Institutes of Shanghai Municipal Education Commission (No. N.E03004).
文摘The canard phenomenon occurring in planar fast-slow systems under non-generic conditions is investigated.When the critical manifold has a non-generic fold point,by using the method of asymptotic analysis combined with the recently developed blow-up technique,the existence of a canard is established and the asymptotic expansion of the parameter for which a canard exists is obtained.
基金National Defense Basic Research Program (B222006060)
文摘The vortex interference mechanism on low Reynolds number between the canard and main wing of the canard-forward sweep wing (Canard-FSW) configurations is simulated numerically by employing the numerical wind tunnel method. The variations of aerodynamic characteristics of Canard-FSW configurations with different positions of the canard are investigated,finding that the aerodynamic interference and mutual coupling effect between the canard and main wing have made great contributions to the lift and stability characteristics of the whole aircraft. Canard can radically improve the surface flow pattern of the main wing. And its own vortex can have a favorable interference on the main wing and can effectively control the airflow boundary layer separation. At small angles of attack,the aerodynamic characteristics are sensitive to the positions of the canard and the main wing,but at high angles of attack,the aerodynamic performances of the configuration are not only related to the shape of the canard (forward or backward),but also with the size of control force as well as the features of the vortices generated above the main wing and the canard. The different configurations and vortices are illustrated using the velocity vector,streamlines and pressure contours.
基金sponsored by EPSRC ICASE Grant reference 1700064BAE Systems。
文摘This paper gives a succinct review of dual-spinprojectile stability and some technologies relating to them.It describes how the traditional stability factors from linear projectile theory are modified to better describe a controlled dual-spin projectile.Finally,it reviews works which have investigated how different aspects of a controlled dual-spin design can affect flight stability,primarily airframe structure and canard properties.A conclusion is given,highlighting important guidelines from the enclosed discussions.
文摘The classification on the orbits of some Liénard perturbation system with several parameters, which is relation to the example in [1] or [2], is discussed. The conditions for the parameters in order that the system has a unique limit cycle, homoclinic orbits, canards or the unique equilibrium point is globally asymptotic stable are given. The methods in our previous papers are used for the proofs.
文摘The aerodynamic layout of the Canard Rotor/Wing(CRW) aircraft in helicopter flight mode differs significantly from that of conventional helicopters. In order to study the flight dynamics characteristics of CRW aircraft in helicopter mode, first, the aerodynamic model of the main rotor system is established based on the blade element theory and wind tunnel test results. The aerodynamic forces and moments of the canard wing, horizontal tail, vertical tail and fuselage are obtained via theoretical analysis and empirical formula. The flight dynamics model of the CRW aircraft in helicopter mode is developed and validated by flight test data. Next, a method of model trimming using an optimization algorithm is proposed. The flight dynamics characteristics of the CRW are investigated by the method of linearized small perturbations via Simulink. The trim results are consistent with the conventional helicopter characteristics, and the results show that with increasing forward flight speed, the canard wing and horizontal tail can provide considerable lift,which reflects the unique characteristics of the CRW aircraft. Finally, mode analysis is implemented for the linearized CRW in helicopter mode. The results demonstrate that the stability of majority modes increases with increasing flight speed. However, one mode that diverges monotonously,and the reason is that the CRW helicopter mode has a large vertical tail compared to the conventional helicopter. The results of the dynamic analysis provide optimization guidance and reference for the overall design of the CRW aircraft in helicopter mode, and the model developed can be used for control system design.
基金Program for New Century Excellent Talents in University (NCET-10-0032)
文摘A closed-loop control allocation method is proposed for a class of aircraft with multiple actuators. Nonlinear dynamic inversion is used to design the baseline attitude controller and derive the desired moment increment. And a feedback loop for the moment increment produced by the deflections of actuators is added to the angular rate loop, then the error between the desired and actual moment increment is the input of the dynamic control allocation. Subsequently, the stability of the closed-loop dynamic control allocation system is analyzed in detail. Especially, the closedloop system stability is also analyzed in the presence of two types of actuator failures: loss of effectiveness and lock-in-place actuator failures, where a fault detection subsystem to identify the actuator failures is absent. Finally, the proposed method is applied to a canard rotor/wing (CRW) aircraft model in fixed-wing mode, which has multiple actuators for flight control. The nonlinear simulation demonstrates that this method can guarantee the stability and tracking performance whether the actuators are healthy or fail.
文摘The purpose of increasing the aerodynamic efficiency and enhancing the supermaneuverability for the selected supersonic aircraft is presented. Aerodynamic characteristics, the surface pressure distribution and the maximum lift are estimated for the baseline configuration for different Mach numbers and attack angles in subson- ic and supersonic potential flows, using a low-order three-dimensional panel method supported with the semi-empirical formulas of the data compendium (DATCOM). Total nose-up and nose-down pitching moments about the center of gravity of the complete aircraft in the subsonic region depending on flight conditions and aircraft performance limitations are estimated. A software package is developed to implement the two-dimensional thrust vectoring flight control technique (pitch vectoring up and down) controlled by the advanced aerodynamic and control surface (the foreplane or the canard). Results show that the canard with the thrust vectoring produces enough nose-down moment and can support the stabilizer at high maneuvers. The suggested surface can increase the aerodynamic efficiency (lift-to-drag ratio) of the baseline configuration by 5%-6% in subsonic and supersonic flight regimes.
文摘Three-dimensional unsteady Navier-Stokes equations are numerically solved to simulate the aerodynamic interaction of rotor, canard and horizontal tail in hover based on moving chimera grid. The variations of unsteady aerodynamic forces and moments of the canard and horizontal tail with respect to the rotor azimuth are analyzed with the deflection angle set at 0° and 50°, respectively. The pressure map of aerodynamic surfaces and velocity vector distribution of flow field are investigated to get better understanding of the unsteady aerodynamic interaction. The result shows that the canard and horizontal tail present different characteristics under the downwash of the rotor. The canard produces much vertical force loss with low amplitude fluctuation. Contrarily, the horizontal tail, which is within the flow field induced by the down wash of the rotor, produces only less vertical force loss, but the amplitudes of the lift and pitching moment are larger, implying that a potential deflection angle scheme in hover is 50° for the canard and 0° for the horizontal tail.
文摘An aerodynamic design method and corresponding codes are developed for three-dimensional multi lifting surfaces at transonic flow. It is based on the "iterative residual correction" concept that is successfully used for transonic wing design and subsonic multi-lifting surface design. The up-wind scheme is introduced into governing equations of multi-lifting surface design method and automatically acted when supersonic flow appears on the surface. A series of interface codes are programmed, including a target-pressure modification tool. Using the improved inverse aerodynamic design code, TAU code and interface codes, the transonic multi-lifting aerodynamic design software system is founded. Two cases of canard-wing configuration have been performed to validate the method and codes. The results show that the convergence of analysis/design iteration is very good at higher speed transonic flow.
基金co-supported by the National Natural Science Foundation of China(Nos.90916006,91116019 and 91216102)
文摘Air-breathing hypersonic vehicles (HSVs) are typically characterized by interactions of elasticity, propulsion and rigid-body flight dynamics, which may result in intractable aeroservoelastic problem. When canard is added, this problem would be even intensified by the introduction of low-frequency canard pivot mode. This paper concerns how the aeroservoelastic stability of a canard-configured HSV is affected by the pivot stiffnesses of all-moveable horizontal tail (HT) and canard. A wing/pivot system model is developed by considering the pivot torsional flexibility, fuselage vibration, and control input. The governing equations of the aeroservoelastic system are established by combining the equations of rigid-body motion, elastic fuselage model, wing/pivot system models and actuator dynamics. An unsteady aerodynamic model is developed by steady Shock-Expansion theory with an unsteady correction using local piston theory. A baseline controller is given to provide approximate inflight characteristics of rigid-body modes. The vehicle is trimmed for equilibrium state, around which the linearized equations are derived for stability analysis. A comparative study of damping ratios, closed-loop poles and responses are conducted with varying controller gains and pivot stiffnesses. Available bandwidth for control design is discussed and feasible region for pivot stiffnesses of HT and canard is given.
基金supported by the National Natural Science Foundation of China(No.11532002)
文摘This article presents a complete nonlinear controller design for a class of spin-stabilized canard-controlled projectiles.Uniformly ultimate boundedness and tracking are achieved,exploiting a heavily coupled,bounded uncertain and highly nonlinear model of longitudinal and lateral dynamics.In order to estimate unmeasurable states,an observer is proposed for an augmented multiple-input-multiple-output(MIMO) nonlinear system with an adaptive sliding mode term against the disturbances.Under the frame of a backstepping design,an adaptive sliding mode output-feedback dynamic surface control(DSC) approach is derived recursively by virtue of the estimated states.The DSC technique is adopted to overcome the problem of ‘‘explosion of complexity" and relieve the stress of the guidance loop.It is proven that all signals of the MIMO closed-loop system,including the observer and controller,are uniformly ultimately bounded,and the tracking errors converge to an arbitrarily small neighborhood of the origin.Simulation results for the observer and controller are provided to illustrate the feasibility and effectiveness of the proposed approach.
文摘To study the rolling control characteristics of a canard-controlled missile, a series of wind tunnel experiment is conducted. The experimental method, the structure features of wind tunnel model and the experimental results are introduced in this paper. The experimental data show that the canard is an inefficient rolling control device for canard-controlled missile with fixed tail fins; but for the free-spinning tail fin configuration, the canard can conduct rolling control of the missile, and even have higher controlling efficiency under larger canard deflection angle.
基金Sponsored by the Fundamental Research Funds for the Central Universities(Grant No.HEUCFG201815)
文摘The steady flow field of a canard missile on different angles of attack and Mach numbers were studied. Based on analysis, a method was proposed to reduce the calculation for the rolling characteristics of the canard missile with free-spinning tails, and was tested to obtain the relations between rolling moment coefficient, Mach number, and angle of attack. All the computed rolling moment coefficients obtained from the proposed method greatly agreed with the experimental results of FD-06 wind tunnel in CAAA, which proved that the method can not only reduce the calculation cost but also keep precision in calculating the rolling characteristics of canard missiles.
文摘In this article, the interference between canard and wing is discussed on the basis of wind-tunnel test, with a brief review of the development of aerodynamic configurations of AD-100 / 200 (two light canard aircraft designed by NAI) .The safety against stall of a canard is also discussed based upon flight test.The rule 'canard stall first'is introduced as an effective measure to improve safety against stall. It has been pointed out that the rule may threaten the flight safety at low-altitude. Finally,what a designer can do to remove the threat is presented.