To make clear about the sedimentary facies types and distribution of deep water sandstone reservoirs in Campos basin of Brazil,this paper researches the characteristics of deep-water sedimentary system in Campos basin...To make clear about the sedimentary facies types and distribution of deep water sandstone reservoirs in Campos basin of Brazil,this paper researches the characteristics of deep-water sedimentary system in Campos basin through the comprehensive analysis of drilling,logging and seismic data.There are 3 subfacies and 7 microfacies in the study area.There are 3 channels from south to north in Upper Cretaceous Maastrichtian,and the sedimentary incised valley and compound channels developed in micro-salt basin are the main deep water depositional types.The Paleocene to Eocene dominated by sedimentary incised valley and eroded compound channel deposits,also include 3 channel systems.From Oligocene to Miocene,the main deposition type is lobe,which is mainly distributed in central-north of the basin.Corresponding to deep water depositional stages,3 kinds of depositional models are found.From Turonian to Maastrichtian of Upper Cretaceous,with tectonic uplift,strong source material supply,and the negative topography produced by salt rock movement providing favorable accommodation for sand deposition,the depositional model was terrigenous direct feed mechanism with sedimentary incised valley and compound channels in micro salt basin.From Paleocene to Eocene,as the amplitude of tectonic uplift reached the maximum and the accompanied erosion peaked,accommodation space offered by micro salt basin was leveled up;the depositional model was terrigenous direct feed mechanism with sedimentary valley and incised compound channels.From Oligocene to Miocene,because of sable tectonics,sea level fluctuation is the main controlling factor for deep water deposition,so the depositional model was wide shelf indirect feed mechanism with bypass incised valley and lobe.The analysis of the characteristics and controlling factors of the 3 types deep-water sedimentary systems during 3 different stages in Campos Basin can provide valuable reference for the oil exploration in deep-water deposits in the Campos Basin and across the world.展开更多
Conventional borehole image log interpretation of linear fractures on volcanic rocks,represented as sinusoids on unwrapped cylinder projections,is relatively straight-forward,however,interpreting non-linear rock struc...Conventional borehole image log interpretation of linear fractures on volcanic rocks,represented as sinusoids on unwrapped cylinder projections,is relatively straight-forward,however,interpreting non-linear rock structures and complex facies geometries can be more challenging.To characterize diverse volcanic paleoenvironments related to the formation of the South American continent,this study presents a new methodology based on image logs,petrography,seismic data,and outcrop analogues.The presented methodology used pseudo-boreholes images generated from outcrop photographs with typical igneous rock features worldwide simulating 2D unwrapped cylinder projections of a 31 cm(12.25 in)diameter well.These synthetic images and standard outcrop photographs were used to define morphological patterns of igneous structures and facies for comparison with wireline borehole image logs from subsurface volcanic and subvolcanic units,providing a“visual scale”for geological evaluation of volcanic facies,significantly enhancing the identification efficiency and reliability of complex geological structures.Our analysis focused on various scales of columnar jointing and pillow lava lobes with additional examples including pahoehoe lava,ignimbrite,hyaloclastite,and various intrusive features in Campos,Santos,and Parnaíba basins in Brazil.This approach increases confidence in the interpretation of subvolcanic,subaerial,and subaqueous deposits.The image log interpretation combined with regional geological knowledge has enabled paleoenvironmental insights into the rift magmatism system related to the breakup of Gondwana with associated implications for hydrocarbon exploration.展开更多
Potential interactive effects and trade-offs between drivers can regulate species diversity,affecting distributions by several orders of magnitude and distribution.The decomposition ofβ-diversity into turnover and ne...Potential interactive effects and trade-offs between drivers can regulate species diversity,affecting distributions by several orders of magnitude and distribution.The decomposition ofβ-diversity into turnover and nestedness could disentangle community assembly rules and offer the opportunity to encompass the processes that structure the communities and maintain theβ-diversity on the campo rupestre.We evaluatedα-andβ-diversity and species conservation status of rocky outcrop communities in the Parque Nacional da Serra do Cipó,as well as the decomposed component of theβ-diversity index.Due to the isolation characteristics of rocky outcrops,we expect to find high taxonomic turnover among the communities.The study was performed on five quartzitic rocky outcrops divided into two sampling stations.We used field expeditions and plant inventory data of shrubs and herbaceous layers.We recorded 286 angiosperms taxa among rocky outcrops of campo rupestre of Serra do Cipó.The structure andα-diversity showed significant differences among rocky outcrops and an evident oligarchic structure in the plant communities analyzed.Taxonomicβ-diversity showed high turnover with a significant contribution of the turnover component to this index.This pattern reflects the interplay between regional and local scale processes.Therefore,we believe this approach becomes a unified framework,which allows the comparison of diversity patterns and ecological processes in rocky outcrops ecosystems.We highlight the high percentage of not evaluated species for threats and the need to fill this lack.展开更多
Anthropogenic disturbances are causing significant impacts on plant distribution worldwide,and many of these effects are driven by changes in the recruitment patterns of plant species.Global warming and land-use chang...Anthropogenic disturbances are causing significant impacts on plant distribution worldwide,and many of these effects are driven by changes in the recruitment patterns of plant species.Global warming and land-use change are two major disturbances leading to changes in germination strategies by changing both soil temperature regimes and light quality reaching the seeds due to soil disturbance.Investigating the range,overlap,and redundancy of niche germination of co-occurring plant species allows us to understand whether endemic species are threatened either by native non-endemic or by alien species,especially in an ecosystem of restricted distribution such as the campo rupestre.Employing a systematic review,this study aimed to evaluate the effect of temperature increase and seed burial on the germination of endemic and non-endemic species in the campo rupestre in Brazil.We performed a metaanalysis using increased temperature and darkness as proxies for the impact of disturbance on germination patterns.In this context,we hypothesized that:increased temperature and darkness negatively influence the germination of native species and positively influence the germination of alien species in the campo rupestre.Specifically,we expect the negative effect to be more pronounced in endemic species than in native non-endemic species.Moreover,we intend to describe the role of seed size in the germination of native and alien species from campo rupestre in the context of increased temperature and darkness.Our analysis showed that increased temperature influenced the germination of alien species by ca.55%,while it did not influence the germination of endemic or native non-endemic species.Furthermore,the germination of alien species under higher temperatures was promoted by increasing seed size.Darkness negatively influenced seed germination of native species,independent of their distribution.Moreover,under darkness conditions,the germination of endemic seeds decreased with seed size.Through their direct effects on germination strategies,we conclude that warming temperatures and land-use change can lead to a long-term displacement of endemic species by native non-endemic and alien species in campo rupestre,thus compromising ecosystem services and conservation of these fragile physiognomies in the near future.展开更多
The Santos Basin in Brazil has witnessed significant oil and gas discoveries in deepwater pre-salt since the 21^(st)century.Currently,the waters in eastern Brazil stand out as a hot area of deepwater exploration and p...The Santos Basin in Brazil has witnessed significant oil and gas discoveries in deepwater pre-salt since the 21^(st)century.Currently,the waters in eastern Brazil stand out as a hot area of deepwater exploration and production worldwide.Based on a review of the petroleum exploration and production history in Brazil,the challenges,researches and practices,strategic transformation,significant breakthroughs,and key theories and technologies for exploration from onshore to offshore and from shallow waters to deep-ultra-deep waters and then to pre-salt strata are systematically elaborated.Within 15 years since its establishment in 1953,Petrobras explored onshore Paleozoic cratonic and marginal rift basins,and obtained some small to medium petroleum discoveries in fault-block traps.In the 1970s,Petrobras developed seismic exploration technologies and several hydrocarbon accumulation models,for example,turbidite sandstones,allowing important discoveries in shallow waters,e.g.the Namorado Field and Enchova fields.Guided by these models/technologies,significant discoveries,e.g.the Marlim and Roncador fields,were made in deepwater post-salt in the Campos Basin.In the early 21^(st)century,the advancements in theories and technologies for pre-salt petroleum system,carbonate reservoirs,hydrocarbon accumulation and nuclear magnetic resonance(NMR)logging stimulated a succession of valuable discoveries in the Lower Cretaceous lacustrine carbonates in the Santos Basin,including the world-class ultra-deepwater super giant fields such as Tupi(Lula),Mero and Buzios.Petroleum development in complex deep water environments is extremely challenging.By establishing the Technological Capacitation Program in Deep Waters(PROCAP),Petrobras developed and implemented key technologies including managed pressure drilling(MPD)with narrow pressure window,pressurized mud cap drilling(PMCD),multi-stage intelligent completion,development with Floating Production Storage and Offloading units(FPSO),and flow assurance,which remarkably improved the drilling,completion,field development and transportation efficiency and safety.Additionally,under the limited FPSO capacity,Petrobras promoted the world-largest CCUS-EOR project,which contributed effectively to the reduction of greenhouse gas emissions and the enhancement of oil recovery.Development and application of these technologies provide valuable reference for deep and ultra-deepwater petroleum exploration and production worldwide.The petroleum exploration in Brazil will consistently focus on ultra-deep water pre-salt carbonates and post-salt turbidites,and seek new opportunities in Paleozoic gas.Technical innovation and strategic cooperation will be held to promote the sustainable development of Brazil's oil and gas industry.展开更多
Brazil annually faces significant challenges with mass movements, particularly in areas with poorly constructed housing, inadequate engineering, and lacking sanitation infrastructure. Campos do Jordão, in Sã...Brazil annually faces significant challenges with mass movements, particularly in areas with poorly constructed housing, inadequate engineering, and lacking sanitation infrastructure. Campos do Jordão, in São Paulo state, is a city currently grappling with these issues. This paper details a study conducted within a pilot area in Campos do Jordão, where geophysical surveys and geotechnical borehole data were integrated. The geophysical surveys provided 2D profiles, and samples were collected to analyse soil moisture and plasticity. These datasets were combined using a Cokriging-based model to produce an accurate representation of the subsurface conditions. The enhanced modelling of subsurface variability facilitates a deeper understanding of soil behavior, which can be used to improve landslide risk assessments. This approach is innovative, particularly within the international context where similar studies often do not address the complexities associated with urban planning deficits such as those observed in some areas of Brazil. These conditions, including the lack of proper sanitation and irregular housing, significantly influence the geological stability of the region, adding layers of complexity to subsurface assessments. Adapting geotechnical evaluation methods to local challenges offers the potential to increase the efficacy and relevance of geological risk management in regions with similar socio-economic and urban characteristics.展开更多
Forest-grassland mosaics comprise a major component of tropical landscapes,hosting invaluable biodiversity and providing essential ecosystem services to hundreds of millions of people worldwide.While open biomes often...Forest-grassland mosaics comprise a major component of tropical landscapes,hosting invaluable biodiversity and providing essential ecosystem services to hundreds of millions of people worldwide.While open biomes often benefit from disturbance,forests can particularly be susceptible to structural changes resulting from such disruptions.Here we evaluate the influence of fire on the structure and landscape properties within natural forest islands immersed in a matrix of megadiverse montane grasslands.We conducted this study in 15 forest islands located in southeastern Brazil,assessing its fire frequency,intensity,and post-fire time over an eleven-year period from January 2012 to December 2022.Our results show that fire frequency is linked to soil characteristics and the percentage of herbaceous cover within the forest islands.We also found that the post-fire time is related to the percentage cover of the forest islands’associated herbs and shrubs.However,neither fire frequency,intensity,nor post-fire time was connected to significant changes in plant species richness,abundance,or in the upper vegetation strata(tree species richness and abundance,and canopy cover)in the interior of the forest islands.Furthermore,these fire-related variables did not result in temporal changes in the forest island’s canopy variation or landscape metrics.Our results underscore a low fire frequency and intensity within our study area,potentially explaining the limited fire-associated impact,and primarily on the lower vegetation strata.Despite acknowledging the relative stability of these forest islands under current fire regimes,we suggest further studies that can experimentally manipulate not only fire but also other anthropic disturbances for understanding the temporal dynamics of the forest islands and,consequently,their preservation.This perspective is indispensable for comprehensively understanding the ecological consequences of anthropogenic disturbances in natural forest islands.展开更多
The description and understanding of plant communities is fundamental for the implementation of conservation or restoration programs, especially when these communities are highly threatened and need to be restored.Cam...The description and understanding of plant communities is fundamental for the implementation of conservation or restoration programs, especially when these communities are highly threatened and need to be restored.Campos rupestres, some Neotropical mountain grasslands located in central Brazil and part of the Cerrado biome(covering 2 million km2) host unique plant communities, currently threatened by quarrying and mining.The grassy matrix of campos rupestres, has long been considered a rich mosaic under the control of local topography and the nature of substrate, but this affirmation has not been well studied.We analyzed whether plant communities varied in relation to edaphic factors within the stony substrate and the sandy substrate of this grassy matrix.We selected 5 sites where occur both grasslands on stony substrate and on sandy substrate, and we carried out vegetation surveys and soil analyses.We counted 222 plant species within our communities, among which38.6% are exclusively found on campos rupestres.Our results show that both soil-types are strongly acidic, nutrient poor and exhibit a seasonal variation.Phosphorus increases and p H and organic carbon decrease during the dry season.Stony soils areslightly richer in nutrients than sandy soils and differences in soil granulometry and composition have led to the formation of distinct plant communities.Some species are confined to either one or the other grassland-type, which makes the plant composition of each community unique.Variations in edaphic factors generate heterogeneous grasslands favorable to a high plant diversity.Conservation programs and restoration actions have to maintain or recreate this heterogeneity.The presence of distinct plant communities implies that different strategies might be adopted to improve the restoration of these ecosystems.展开更多
Despite the exceptional species richness and endemism,the environmental drivers of plant diversity along old tropical mountains remain underexplored.The respective importance of vegetation types,elevation,slope,and so...Despite the exceptional species richness and endemism,the environmental drivers of plant diversity along old tropical mountains remain underexplored.The respective importance of vegetation types,elevation,slope,and soil to drive diversity across life-forms is poorly addressed.Here,we tested whether environmental variables drove local and regional plant diversity along an old tropical mountain according to the three main life-forms:graminoids,herbaceous and woody species.We sampled all Angiosperm species on 180 plots across five elevations,at the tropical old-mountain region of Serra do Cipó,South-eastern Brazil.We assessed soil,slope,and vegetation types,and calculated richness and beta-diversity,applying generalized least square models,linear mixed-models and partial Mantel tests to test for relationships.Richness of graminoids and herbaceous species increased with greater elevation and more nutrient-impoverished soils,while woody richness showed the inverse pattern.Beta-diversity was primarily driven by species turnover,correlated with elevation and soil and higher in less dominant vegetation types,with unique species.Despite the limited elevational range in these old mountains,it still played an important role in filtering woody species,while fostering graminoid and herbaceous species.Conservation and restoration actions need to foster the high regional diversity supported by the old mountain heterogeneous landscape and the diversity of life-forms,especially the dominant and highly diverse grassy component.展开更多
The campo rupestre sensu lato is a vegetation type that occurs in South American mountains,supports a distinctive flora characterized by high rates of endemism,high herbaceous species richness and often-neglected but ...The campo rupestre sensu lato is a vegetation type that occurs in South American mountains,supports a distinctive flora characterized by high rates of endemism,high herbaceous species richness and often-neglected but also species-rich of the arboreal stratum.We aimed to investigate how environmental factors and elevation are associated with the distribution and diversity of woody species in different rupestrian vegetation types across South America.Using a database of 2,049 woody species from 185 sites across four vegetation types within the campo rupestre,we assessed how the vegetation types were grouped according to their floristic composition and number of shared indicator species,as well as by using different beta diversity indices.The most important variables from a set of 27 variables(e.g.altitude,geo-edaphic and climatic)explaining species distribution were identified using redundancy analysis(RDA)and variation partitioning methods.The distribution of vegetation types was related to both environmental and spatial fractions,with a set of 17 variables retained(e.g.rockiness,grass cover and temperature seasonality as the most important variables).There was an association between the floristic composition of each vegetation type and the elevation range.Although the identified vegetation types are floristically related,they are distinguished by exclusive and habitat-specialist woody species.This uniqueness of vegetation types should be considered in terms of complementarity for the conservation of campos rupestres.展开更多
基金Supported by the China National Science and Technology Major Project(2017ZX05032-001)
文摘To make clear about the sedimentary facies types and distribution of deep water sandstone reservoirs in Campos basin of Brazil,this paper researches the characteristics of deep-water sedimentary system in Campos basin through the comprehensive analysis of drilling,logging and seismic data.There are 3 subfacies and 7 microfacies in the study area.There are 3 channels from south to north in Upper Cretaceous Maastrichtian,and the sedimentary incised valley and compound channels developed in micro-salt basin are the main deep water depositional types.The Paleocene to Eocene dominated by sedimentary incised valley and eroded compound channel deposits,also include 3 channel systems.From Oligocene to Miocene,the main deposition type is lobe,which is mainly distributed in central-north of the basin.Corresponding to deep water depositional stages,3 kinds of depositional models are found.From Turonian to Maastrichtian of Upper Cretaceous,with tectonic uplift,strong source material supply,and the negative topography produced by salt rock movement providing favorable accommodation for sand deposition,the depositional model was terrigenous direct feed mechanism with sedimentary incised valley and compound channels in micro salt basin.From Paleocene to Eocene,as the amplitude of tectonic uplift reached the maximum and the accompanied erosion peaked,accommodation space offered by micro salt basin was leveled up;the depositional model was terrigenous direct feed mechanism with sedimentary valley and incised compound channels.From Oligocene to Miocene,because of sable tectonics,sea level fluctuation is the main controlling factor for deep water deposition,so the depositional model was wide shelf indirect feed mechanism with bypass incised valley and lobe.The analysis of the characteristics and controlling factors of the 3 types deep-water sedimentary systems during 3 different stages in Campos Basin can provide valuable reference for the oil exploration in deep-water deposits in the Campos Basin and across the world.
文摘本文评价了巴西Campos盆地中硅质碎屑储集层的岩石物理特征与地震属性之间的关系。这种硅质碎屑储集层的非均质性主要表现为其中有委 的非储集层沉积和随机分布的胶结层。虽然现有地震分辨率不能识别这种非均质性,但是笔者认为有一些地震属性有助于更为准确地获取产层地层单元中非储集层的累积厚度。更好地了解非储集层的空间分布及其厚度对于绘制实际的产层有效厚度和非均质性图及计算可采石油储量是很有价值的。利用一些基本测井和岩石物性分析结果的速度模型,我们计算了来自合成地震记录的10种地震属性。这些模型中非储集层的垂直分布、厚度和层数均是随机生成的。通过分析根据实际地震资料计算的地震属性和井下非集储层相厚度证实了合成地震记录数据所观察到的相关关系。然后有实际的地震属性约束用克里格外部偏差(Kriging with external drift或KED)法得出的非储集相的空间分布和累积厚度分布的评价结果。随机模拟可用于量化上述评价结果的不确定性。利用所绘制的风险图可了解非储集相的分布。
文摘Conventional borehole image log interpretation of linear fractures on volcanic rocks,represented as sinusoids on unwrapped cylinder projections,is relatively straight-forward,however,interpreting non-linear rock structures and complex facies geometries can be more challenging.To characterize diverse volcanic paleoenvironments related to the formation of the South American continent,this study presents a new methodology based on image logs,petrography,seismic data,and outcrop analogues.The presented methodology used pseudo-boreholes images generated from outcrop photographs with typical igneous rock features worldwide simulating 2D unwrapped cylinder projections of a 31 cm(12.25 in)diameter well.These synthetic images and standard outcrop photographs were used to define morphological patterns of igneous structures and facies for comparison with wireline borehole image logs from subsurface volcanic and subvolcanic units,providing a“visual scale”for geological evaluation of volcanic facies,significantly enhancing the identification efficiency and reliability of complex geological structures.Our analysis focused on various scales of columnar jointing and pillow lava lobes with additional examples including pahoehoe lava,ignimbrite,hyaloclastite,and various intrusive features in Campos,Santos,and Parnaíba basins in Brazil.This approach increases confidence in the interpretation of subvolcanic,subaerial,and subaqueous deposits.The image log interpretation combined with regional geological knowledge has enabled paleoenvironmental insights into the rift magmatism system related to the breakup of Gondwana with associated implications for hydrocarbon exploration.
基金the Graduate Program in Ecology, Conservation and Wildlife Management (ECMVS)Institute of Biological Sciences (ICB)+1 种基金Department of Botany, Biodiversitas Foundation, Universidade Federal de Minas GeraisCoordenacao de Aperfeicoamento de Pessoal de Nível Superior (CAPES) for supporting this study
文摘Potential interactive effects and trade-offs between drivers can regulate species diversity,affecting distributions by several orders of magnitude and distribution.The decomposition ofβ-diversity into turnover and nestedness could disentangle community assembly rules and offer the opportunity to encompass the processes that structure the communities and maintain theβ-diversity on the campo rupestre.We evaluatedα-andβ-diversity and species conservation status of rocky outcrop communities in the Parque Nacional da Serra do Cipó,as well as the decomposed component of theβ-diversity index.Due to the isolation characteristics of rocky outcrops,we expect to find high taxonomic turnover among the communities.The study was performed on five quartzitic rocky outcrops divided into two sampling stations.We used field expeditions and plant inventory data of shrubs and herbaceous layers.We recorded 286 angiosperms taxa among rocky outcrops of campo rupestre of Serra do Cipó.The structure andα-diversity showed significant differences among rocky outcrops and an evident oligarchic structure in the plant communities analyzed.Taxonomicβ-diversity showed high turnover with a significant contribution of the turnover component to this index.This pattern reflects the interplay between regional and local scale processes.Therefore,we believe this approach becomes a unified framework,which allows the comparison of diversity patterns and ecological processes in rocky outcrops ecosystems.We highlight the high percentage of not evaluated species for threats and the need to fill this lack.
基金financial support from CNPq/Peld CRSC,Fapemig,CAPES,Anglo American,and Vale.
文摘Anthropogenic disturbances are causing significant impacts on plant distribution worldwide,and many of these effects are driven by changes in the recruitment patterns of plant species.Global warming and land-use change are two major disturbances leading to changes in germination strategies by changing both soil temperature regimes and light quality reaching the seeds due to soil disturbance.Investigating the range,overlap,and redundancy of niche germination of co-occurring plant species allows us to understand whether endemic species are threatened either by native non-endemic or by alien species,especially in an ecosystem of restricted distribution such as the campo rupestre.Employing a systematic review,this study aimed to evaluate the effect of temperature increase and seed burial on the germination of endemic and non-endemic species in the campo rupestre in Brazil.We performed a metaanalysis using increased temperature and darkness as proxies for the impact of disturbance on germination patterns.In this context,we hypothesized that:increased temperature and darkness negatively influence the germination of native species and positively influence the germination of alien species in the campo rupestre.Specifically,we expect the negative effect to be more pronounced in endemic species than in native non-endemic species.Moreover,we intend to describe the role of seed size in the germination of native and alien species from campo rupestre in the context of increased temperature and darkness.Our analysis showed that increased temperature influenced the germination of alien species by ca.55%,while it did not influence the germination of endemic or native non-endemic species.Furthermore,the germination of alien species under higher temperatures was promoted by increasing seed size.Darkness negatively influenced seed germination of native species,independent of their distribution.Moreover,under darkness conditions,the germination of endemic seeds decreased with seed size.Through their direct effects on germination strategies,we conclude that warming temperatures and land-use change can lead to a long-term displacement of endemic species by native non-endemic and alien species in campo rupestre,thus compromising ecosystem services and conservation of these fragile physiognomies in the near future.
文摘The Santos Basin in Brazil has witnessed significant oil and gas discoveries in deepwater pre-salt since the 21^(st)century.Currently,the waters in eastern Brazil stand out as a hot area of deepwater exploration and production worldwide.Based on a review of the petroleum exploration and production history in Brazil,the challenges,researches and practices,strategic transformation,significant breakthroughs,and key theories and technologies for exploration from onshore to offshore and from shallow waters to deep-ultra-deep waters and then to pre-salt strata are systematically elaborated.Within 15 years since its establishment in 1953,Petrobras explored onshore Paleozoic cratonic and marginal rift basins,and obtained some small to medium petroleum discoveries in fault-block traps.In the 1970s,Petrobras developed seismic exploration technologies and several hydrocarbon accumulation models,for example,turbidite sandstones,allowing important discoveries in shallow waters,e.g.the Namorado Field and Enchova fields.Guided by these models/technologies,significant discoveries,e.g.the Marlim and Roncador fields,were made in deepwater post-salt in the Campos Basin.In the early 21^(st)century,the advancements in theories and technologies for pre-salt petroleum system,carbonate reservoirs,hydrocarbon accumulation and nuclear magnetic resonance(NMR)logging stimulated a succession of valuable discoveries in the Lower Cretaceous lacustrine carbonates in the Santos Basin,including the world-class ultra-deepwater super giant fields such as Tupi(Lula),Mero and Buzios.Petroleum development in complex deep water environments is extremely challenging.By establishing the Technological Capacitation Program in Deep Waters(PROCAP),Petrobras developed and implemented key technologies including managed pressure drilling(MPD)with narrow pressure window,pressurized mud cap drilling(PMCD),multi-stage intelligent completion,development with Floating Production Storage and Offloading units(FPSO),and flow assurance,which remarkably improved the drilling,completion,field development and transportation efficiency and safety.Additionally,under the limited FPSO capacity,Petrobras promoted the world-largest CCUS-EOR project,which contributed effectively to the reduction of greenhouse gas emissions and the enhancement of oil recovery.Development and application of these technologies provide valuable reference for deep and ultra-deepwater petroleum exploration and production worldwide.The petroleum exploration in Brazil will consistently focus on ultra-deep water pre-salt carbonates and post-salt turbidites,and seek new opportunities in Paleozoic gas.Technical innovation and strategic cooperation will be held to promote the sustainable development of Brazil's oil and gas industry.
文摘Brazil annually faces significant challenges with mass movements, particularly in areas with poorly constructed housing, inadequate engineering, and lacking sanitation infrastructure. Campos do Jordão, in São Paulo state, is a city currently grappling with these issues. This paper details a study conducted within a pilot area in Campos do Jordão, where geophysical surveys and geotechnical borehole data were integrated. The geophysical surveys provided 2D profiles, and samples were collected to analyse soil moisture and plasticity. These datasets were combined using a Cokriging-based model to produce an accurate representation of the subsurface conditions. The enhanced modelling of subsurface variability facilitates a deeper understanding of soil behavior, which can be used to improve landslide risk assessments. This approach is innovative, particularly within the international context where similar studies often do not address the complexities associated with urban planning deficits such as those observed in some areas of Brazil. These conditions, including the lack of proper sanitation and irregular housing, significantly influence the geological stability of the region, adding layers of complexity to subsurface assessments. Adapting geotechnical evaluation methods to local challenges offers the potential to increase the efficacy and relevance of geological risk management in regions with similar socio-economic and urban characteristics.
基金supported by the National Council for Scientific and Technological Development(CNPq)(PELD-441515/2016-9)Minas Gerais State Research Foundation(FAPEMIG)for the funding of the long-term ecological research"PELD Campos Rupestres da Serra do Cipó",and by the Bio-Bridge Initiative(BBI)/CDB-Cascading Long Term Effects of Fire on Savanna Biodiversity in the Southern Hemisphere,Brazil and Namibia for providing additional resources to carry out the study.JK thanks the INCT EECBio(Ecologia,Evolução e Conservação da Biodiversidade)and CNPq for a postdoctoral grant(380009/2023-4)+3 种基金YO thanks Fapemig for her postdoctoral grant(APQ 0031-19)FC thanks CAPES,and FAPEMIG for postdoctoral grants.FSN and GWF thank CNPq for the fellowship grant.DRM thanks CNPq(311002/2023-4)for fundingBSSF and BDA thank Fapemig.RA and LA thanks FONCyT(PICT 2019-1897).EF thanks BBI(UN Environment Programme).APL and BRS thank Fapemig(APQ 0031-19)TLSB thanks CAPES and CNPq.FFG thanks PPBio and FINEP for a postdoctoral grant(01.20.0201.00).
文摘Forest-grassland mosaics comprise a major component of tropical landscapes,hosting invaluable biodiversity and providing essential ecosystem services to hundreds of millions of people worldwide.While open biomes often benefit from disturbance,forests can particularly be susceptible to structural changes resulting from such disruptions.Here we evaluate the influence of fire on the structure and landscape properties within natural forest islands immersed in a matrix of megadiverse montane grasslands.We conducted this study in 15 forest islands located in southeastern Brazil,assessing its fire frequency,intensity,and post-fire time over an eleven-year period from January 2012 to December 2022.Our results show that fire frequency is linked to soil characteristics and the percentage of herbaceous cover within the forest islands.We also found that the post-fire time is related to the percentage cover of the forest islands’associated herbs and shrubs.However,neither fire frequency,intensity,nor post-fire time was connected to significant changes in plant species richness,abundance,or in the upper vegetation strata(tree species richness and abundance,and canopy cover)in the interior of the forest islands.Furthermore,these fire-related variables did not result in temporal changes in the forest island’s canopy variation or landscape metrics.Our results underscore a low fire frequency and intensity within our study area,potentially explaining the limited fire-associated impact,and primarily on the lower vegetation strata.Despite acknowledging the relative stability of these forest islands under current fire regimes,we suggest further studies that can experimentally manipulate not only fire but also other anthropic disturbances for understanding the temporal dynamics of the forest islands and,consequently,their preservation.This perspective is indispensable for comprehensively understanding the ecological consequences of anthropogenic disturbances in natural forest islands.
文摘The description and understanding of plant communities is fundamental for the implementation of conservation or restoration programs, especially when these communities are highly threatened and need to be restored.Campos rupestres, some Neotropical mountain grasslands located in central Brazil and part of the Cerrado biome(covering 2 million km2) host unique plant communities, currently threatened by quarrying and mining.The grassy matrix of campos rupestres, has long been considered a rich mosaic under the control of local topography and the nature of substrate, but this affirmation has not been well studied.We analyzed whether plant communities varied in relation to edaphic factors within the stony substrate and the sandy substrate of this grassy matrix.We selected 5 sites where occur both grasslands on stony substrate and on sandy substrate, and we carried out vegetation surveys and soil analyses.We counted 222 plant species within our communities, among which38.6% are exclusively found on campos rupestres.Our results show that both soil-types are strongly acidic, nutrient poor and exhibit a seasonal variation.Phosphorus increases and p H and organic carbon decrease during the dry season.Stony soils areslightly richer in nutrients than sandy soils and differences in soil granulometry and composition have led to the formation of distinct plant communities.Some species are confined to either one or the other grassland-type, which makes the plant composition of each community unique.Variations in edaphic factors generate heterogeneous grasslands favorable to a high plant diversity.Conservation programs and restoration actions have to maintain or recreate this heterogeneity.The presence of distinct plant communities implies that different strategies might be adopted to improve the restoration of these ecosystems.
基金Sao Paulo Research Foundation(FAPESP)for financial support through the grants:#2009/54208-6Fapesp-Microsoft Research Institute#2013/50155-0+6 种基金Fapesp-Vale#2010/51307-0,#2021/10639-5 to LPCMthrough fellowships FAPESP#2015/10754-8 to MGGC and#2019/09248-1 to ASSCoordena??o de Aperfei?oamento de Pessoal de Nível Superior–(CAPES)for scholarships granted to MGGC(Process#88887.583309/2020-00)PPL(#88887.583146/2020-00)JSS(CAPES Finance Code 001)National Council for Scientific and Technological Development(CNPq)for the grants:CNPq-PVE#400717/2013-1 and PDJ#150404/2016-6 to SLSfor the productivity fellowship and grant#311820/2018-2,#306563/2022-3 to LPCM。
文摘Despite the exceptional species richness and endemism,the environmental drivers of plant diversity along old tropical mountains remain underexplored.The respective importance of vegetation types,elevation,slope,and soil to drive diversity across life-forms is poorly addressed.Here,we tested whether environmental variables drove local and regional plant diversity along an old tropical mountain according to the three main life-forms:graminoids,herbaceous and woody species.We sampled all Angiosperm species on 180 plots across five elevations,at the tropical old-mountain region of Serra do Cipó,South-eastern Brazil.We assessed soil,slope,and vegetation types,and calculated richness and beta-diversity,applying generalized least square models,linear mixed-models and partial Mantel tests to test for relationships.Richness of graminoids and herbaceous species increased with greater elevation and more nutrient-impoverished soils,while woody richness showed the inverse pattern.Beta-diversity was primarily driven by species turnover,correlated with elevation and soil and higher in less dominant vegetation types,with unique species.Despite the limited elevational range in these old mountains,it still played an important role in filtering woody species,while fostering graminoid and herbaceous species.Conservation and restoration actions need to foster the high regional diversity supported by the old mountain heterogeneous landscape and the diversity of life-forms,especially the dominant and highly diverse grassy component.
文摘The campo rupestre sensu lato is a vegetation type that occurs in South American mountains,supports a distinctive flora characterized by high rates of endemism,high herbaceous species richness and often-neglected but also species-rich of the arboreal stratum.We aimed to investigate how environmental factors and elevation are associated with the distribution and diversity of woody species in different rupestrian vegetation types across South America.Using a database of 2,049 woody species from 185 sites across four vegetation types within the campo rupestre,we assessed how the vegetation types were grouped according to their floristic composition and number of shared indicator species,as well as by using different beta diversity indices.The most important variables from a set of 27 variables(e.g.altitude,geo-edaphic and climatic)explaining species distribution were identified using redundancy analysis(RDA)and variation partitioning methods.The distribution of vegetation types was related to both environmental and spatial fractions,with a set of 17 variables retained(e.g.rockiness,grass cover and temperature seasonality as the most important variables).There was an association between the floristic composition of each vegetation type and the elevation range.Although the identified vegetation types are floristically related,they are distinguished by exclusive and habitat-specialist woody species.This uniqueness of vegetation types should be considered in terms of complementarity for the conservation of campos rupestres.