Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification ...Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification issues of a 5-DoF parallel machining robot,this paper proposes an adaptive and weighted identification method to achieve high-precision kinematic calibration while maintaining reliable stability.First,a kinematic error propagation mechanism model considering the non-ideal constraints and the screw self-rotation is formulated by incorporating the intricate structure of multiple chains and a unique driven screw arrangement of the robot.To address the challenge of accurately identifying such a sophisticated error model,a novel adaptive and weighted identification method based on generalized cross validation(GCV)is proposed.Specifically,this approach innovatively introduces Gauss-Markov estimation into the GCV algorithm and utilizes prior physical information to construct both a weighted identification model and a weighted cross-validation function,thus eliminating the inaccuracy caused by significant differences in dimensional magnitudes of pose errors and achieving accurate identification with flexible numerical stability.Finally,the kinematic calibration experiment is conducted.The comparative experimental results demonstrate that the presented approach is effective and has enhanced accuracy performance over typical least squares methods,with maximum position and orientation errors reduced from 2.279 mm to 0.028 mm and from 0.206°to 0.017°,respectively.展开更多
The application of the Soil and Water Assessment Tool (SWAT) to the Olifants Basin in South Africa was the focus of our study with emphasis on calibration, validation and uncertainty analysis. The Basin was discretize...The application of the Soil and Water Assessment Tool (SWAT) to the Olifants Basin in South Africa was the focus of our study with emphasis on calibration, validation and uncertainty analysis. The Basin was discretized into 23 sub-basins and 226 Hydrologic Response Units (HRUs) using 3 arc second (90 m × 90 m) pixel resolution SRTM DEM with stream gauge B7H015 as the Basin outlet. Observed stream flow data at B7H015 were used for model calibration (1988-2001) and validation (2002-2013) using the split sample approach. Relative global sensitivity analysis using SUFI-2 algorithm was used to determine sensitive parameters to stream flow for calibration of the model. Performance efficiency of the Olifants SWAT model was assessed using Nash-Sutcliffe (NSE), coefficient of determination (R<sup>2</sup>), Percent Bias (PBIAS) and Root Mean Square Error-Observation Standard deviation Ratio (RSR). Sensitivity analysis revealed in decreasing order of significance, runoff curve number (CN2), alpha bank factor (ALPHA_BNK), soil evaporation compensation factor (ESCO), soil available water capacity (SOIL_AWC, mm H<sub>2</sub>O/mm soil), groundwater delay (GW_ DELAY, days) and groundwater “revap” coefficient (GW_REVAP) to be the most sensitive parameters to stream flow. Analysis of the model during the calibration period gave the following statistics;NSE = 0.88;R<sup>2</sup> = 0.89;PBIAS = -11.49%;RSR = 0.34. On the other hand, statistics during the validation period were NSE = 0.67;R<sup>2 </sup>= 0.79;PBIAS = -20.69%;RSR = 0.57. The observed statistics indicate the applicability of the SWAT model in simulating the hydrology of the Olifants Basin and therefore can be used as a Decision Support Tool (DST) by water managers and other relevant decisions making bodies to influence policy directions on the management of watershed processes especially water resources.展开更多
Strategic transportation network models are often used as support tools in the framework of decisions to be taken at the policy level, such as the Trans-European Network projects. These models are mostly setup using a...Strategic transportation network models are often used as support tools in the framework of decisions to be taken at the policy level, such as the Trans-European Network projects. These models are mostly setup using aggregated or limited data. If their calibration is regularly mentioned in the literature, their validation is barely discussed. In this paper, several modal choice model specifications that make only use of explanatory variables available at the network level are described and applied to a large scale case. A validation exercise is performed at three levels of aggregation. The paper is designed from a strategic transport planning perspective, and does not present new modal choice formulations or assignment procedures. Its main added value is the focus on calibration and validation considerations. Despite the limited explanatory information used, the global performance of the best models can be considered as satisfactory. However, the quality of the models varies from mode to mode, the use of railway transport being the most difficult to predict without more specific input.展开更多
Background: In the context of a nuclear reactor accident, thyroid is the main target organ of radioactive iodines. To avoid as much as possible thyroid disorders or even cancer development, it is recommended to admini...Background: In the context of a nuclear reactor accident, thyroid is the main target organ of radioactive iodines. To avoid as much as possible thyroid disorders or even cancer development, it is recommended to administer a single dose of potassium iodide to people at risk of exposure. Nevertheless, the Fukushima Dai-ichi disaster has pointed out many questions about the conditions of stable iodine prophylaxis implementation highlighting the need for reflection further revision of the actual “iodine doctrine”. Therefore, providing useful data is required notably through the implementation of animal experiments to strengthen current knowledge and to edit new recommendations. Methods: Urinary iodine constitutes a very good indicator to investigate the function of thyroid, its interpretation demands reliable analyses. Prior to perform animal experiments, two calibration methods were designed by our lab and compared together (standard addition and external calibration) to assess the urinary concentration of stable iodine in urine by ICP-MS. They were validated based on several key parameters especially linearity, accuracy and limits of detection (LOD) and quantification (LOQ). Results: The results were nicely satisfying. Indeed, both calibration methods have indicated very good coefficients of correlations, accuracies with low expanded relative uncertainties were obtained. The estimated LOD in the sample for standard addition method and external calibration were fully acceptable, 0.39 μg·L-1 and 0.35 μg·L-1, respectively. All performance criteria have been thus fulfilled successfully. The established methods were proven to be accurate, robust and sensitive. Once validated, both calibration methods were applied to rat urine samples and the results of z-score and Wilcoxon W test concluded that there were no statistically significant differences between both methods.展开更多
Maize is an emerging important crop in Bangladesh because of its high yield potential and economic profitability compared to rice and wheat crops. There is a need to understand the growth and yield behavior of this cr...Maize is an emerging important crop in Bangladesh because of its high yield potential and economic profitability compared to rice and wheat crops. There is a need to understand the growth and yield behavior of this crop in varying production environments of Bangladesh. Crop model such as Decision Support System For Agro-technology Transfer (DSSAT) version 4.6 (DSSAT hereafter) can be utilized cost effectively to study the performances of maize under different production environments. It needs to calibrate and validate DSSAT model for commonly cultivated maize cultivars in Bangladesh and subsequently take the model to various applications, including inputs and agronomic management options and climate change that impacts analyses. So, the present study was undertaken to firstly calibrate DSSAT model for popular four hybrid maize cultivars (BARI Hybrid Maize-7, BARI Hybrid Maize-9, Pioneer 30B07 and NK-40). Subsequently, it proceeded with the validation with independent field data sets for evaluating their growth performances. The genetic coefficients for these cultivars were evaluated by using Genotype coefficient calculator (GENCALC) and Generalized likelihood uncertainty estimation (GLUE) module of DSSAT on the basis of first season experiment. The performance of the model was satisfactory and within the significant limits. After calibration, the model was tested for its performance through validation procedure by using second season data. The model performed satisfactorily through phenology, biomass, leaf area index (LAI) and grain yield. Phenology, as estimated through days to flower initiation and maturity, was in good agreement, although simulated results were slightly over predicted compared to observed values but within the statistical significance limit...when compared with observed values at specific growth stages of the crop. The final yield values (10.12 to 10.59 t·ha-1) were in close agreement with the observed values (10.16 to 10.94 t·ha-1), as the percentage error was within tolerable limit (0.39% to 6.81%). The model has been successfully calibrated and validated for Gazipur environment and now can be used for climate change impact studies for similar environments in Bangladesh.展开更多
Soybean and sunflower are summer annuals that can be grown as an alternative to corn and may be particularly useful in organic production systems for forage in addition to their traditional use as protein and/or oil y...Soybean and sunflower are summer annuals that can be grown as an alternative to corn and may be particularly useful in organic production systems for forage in addition to their traditional use as protein and/or oil yielding crops. Rapid and low cost methods of analyzing plant forage quality would be helpful for nutrition management of livestock. We developed and validated calibration models using Near-infrared Reflectance Spectroscopic (NIRS) analysis for 27 different forage quality parameters of organically grown sunflower and soybean leaves or reproductive parts. Crops were managed under conventional tillage or no-till with a cover crop of wheat before soybean and rye-crimson clover before sunflower. From a population of 120 samples from both crops, covering multiple sampling dates within the treatments, calibration models were developed utilizing spectral information covering both visible and NIR region of 61 - 85 randomly chosen samples using modified partial least-squares (MPLS) regression with internal cross validation. Within MPLS protocol, we compared nine different math treatments on the quality of the calibration models. The math treatment “2,4,4,1” yielded the best quality models for all but starch and simple sugars (r2 = 0.699 - 0.999;where the 1st digit is the number of the derivative with 0 for raw spectra, 1 for first derivative, and 2 for second derivative, the 2nd digit is the gap over which the derivative is calculated, the 3rd digit is the number of data points in a running average or smoothing, and the 4th digit is the second smoothing). Prediction of an independent validation set of 28-35 samples with these models yielded excellent agreement between the NIRS predicted values and the reference values except for starch (r2 = 0.8260 - 0.9990). The results showed that the same model was able to adequately quantify a particular forage quality of both crops managed under different tillage treatments and at different stages of growth. Thus, these models can be reliably applied in the routine analysis of soybean and sunflower forage quality for the purposes of livestock nutrient management decisions.展开更多
The hydrologic simulation of a catchment area, described as the transformation of rainfall into runoff, generally uses hydrologic model. This work opts for the global conceptual hydrologic model GR2M, a monthly time s...The hydrologic simulation of a catchment area, described as the transformation of rainfall into runoff, generally uses hydrologic model. This work opts for the global conceptual hydrologic model GR2M, a monthly time step model, to study the Kouilou-Niari basin, the second most important ones of the Republic of Congo. This includes two parameters to model the hydrologic behavior of a catchment area. The choice of the conceptual model GR2M is justified by the reduced number of parameters and the monthly time scale. The objective of this study is to determine the characteristic parameters of the GR2M model, by a calibrating and a validating procedure. The use of these parameters enables to follow the evolution of the water resources from the climatic variables. It has been first carried out a characterization of some physical, geological and climatic factors governing the flow, by dealing with the main climatic variables which constitute the inputs of the hydrologic model. Then, a hydrologic rainfall-runoff modeling allows to calibrate and validate the model at monthly time scale. Taking into account the number of parameters involved in hydrologic processes and the complexity of the cathment area, this model gives acceptable results throughout the Kouilou-Niari basin. The values of the Nash-Sutcliffe criterion and those of the correlation coefficient obtained are greater than 80% in validation, which explains the performance and robustness of the GR2M model on this basin.展开更多
The main principle and mathematical model of GOCE kinematic orbit adjustment for Earth gravity field model (EGM) validation and accelerometer calibration are presented. Based on 60 days GOCE kinematic orbits with 1-...The main principle and mathematical model of GOCE kinematic orbit adjustment for Earth gravity field model (EGM) validation and accelerometer calibration are presented. Based on 60 days GOCE kinematic orbits with 1-2 cm accuracy and accelerometer data from 2009-11-02 to 2009-12-31, the RMS-of-fit (ROF) of them using EGM2008, EIGEN-SC, ITG- GRACE2010S and GOCO01S up to 120, 150 and 180 degree and order (d/o) are evaluated and compared. The scale factors and biases of GOCE accelerometer data are calibrated and the energy balance method (EBM) is performed to test the accuracy of accelerometer calibration. The results show that GOCE orbits are also sensitive to EGM from 120 to 150 d/o. The ROFs of EGMs with 150 and 180 d/o are obviously better than those of EGMs with 120 d/o. The ROFs of GOCO01S and ITG-GRACE2010S are almost the same up to 120 and 150 d/o, which are about 3.3 cm and 1.8 cm, respectively. They are far better than those of EGM2008 and EIGEN-SC with the same d/o. The ROF of GOCO01S with 180 d/o is about 1.6 em, which is the best one among those EGMs. The accelerometer calibration accuracies (ACAs) of ITG-GRACE2010S and GOCO01S are obviously higher that those of EGM2008 and EIGEN-SC. The ACA of GOCO01S with 180 d/o is far higher than that of EGMs with 120 d/o, and a little higher than that of ITG-GRACE2010S with 150 d/o. I t is suggested that the newest released EGM such as GOCO01S or GOCO02S till at least 150 d/o should be chosen in GOCE precise orbit determination (POD) and accelerometer calibration.展开更多
The ongoing revolution in information technology is reshaping human life. In the realm of health behavior, wearable technology emerges as a leading digital solution,capturing physical behaviors (i.e., physical activit...The ongoing revolution in information technology is reshaping human life. In the realm of health behavior, wearable technology emerges as a leading digital solution,capturing physical behaviors (i.e., physical activity, sedentary habits, sleep patterns) within the 24-h cycle of daily life. Wearables are applied in research, clinical practice, and as lifestyle devices;most obvious, they promise to be a key element for increasing human physical activity, one of the biggest health challenges nowadays.展开更多
High-precision magnetic field measurements are crucial for understanding Earth’s internal structure,space environment,and dynamic geomagnetic variations.Data from the Fluxgate Magnetometer (FGM) on the Macao Science ...High-precision magnetic field measurements are crucial for understanding Earth’s internal structure,space environment,and dynamic geomagnetic variations.Data from the Fluxgate Magnetometer (FGM) on the Macao Science Satellite-1A (MSS-1A),added to data from other space-based magnetometers,should increase significantly the ability of scientists to observe changes in Earth’s magnetic field over time and space.Additionally,the MSS-1A’s FGM is intended to help identify magnetic disturbances affecting the spacecraft itself.This report focuses on the in-flight calibration of the MSS-1 FGM.A scalar calibration,independent of geomagnetic field models,was performed to correct offsets,sensitivities,and misalignment angles of the FGM.Using seven months of data,we find that the in-flight calibration parameters show good stability.We determined Euler angles describing the rotational relationship between the FGM and the Advanced Stellar Compass (ASC) coordinate system using two approaches:calibration with the CHAOS-7 geomagnetic field model,and simultaneous estimation of Euler angles and Gaussian spherical harmonic coefficients through self-consistent modeling.The accuracy of Euler angles describing the rotation was better than 18 arcsec.The calibrated FGM data exhibit good agreement with the calibrated data of the Vector Field Magnetometer (VFM),which is the primary vector magnetometer of the satellite.These calibration efforts have significantly improved the accuracy of the FGM measurements,which are now providing reliable data for geomagnetic field studies that promise to advance our understanding of the Earth’s magnetic environment.展开更多
Objective:Pelvic floor dysfunction is common among pregnant and postpartum women and significantly impacts quality of life.This study aims to translate the German Pelvic Floor Questionnaire for Pregnant and Postpartum...Objective:Pelvic floor dysfunction is common among pregnant and postpartum women and significantly impacts quality of life.This study aims to translate the German Pelvic Floor Questionnaire for Pregnant and Postpartum Women into Chinese and to evaluate its reliability and validity in the Chinese population.Methods:The questionnaire was translated using the Brislin model.A cross-sectional study was conducted among pregnant and postpartum women to assess the content validity,construct validity,Cronbach’sαcoefficient,test-retest reliability,and split-half reliability of the Chinese version.Results:A total of 72 women were included,with 6.9% being pregnant and 93.1% postpartum;the age was(32.3±3.6)years.The Chinese version of the questionnaire contains 4 dimensions and 45 items.The content validity index of individual items ranged from 0.833 to 1.000,with a scale-level content validity index of 0.977 and intraclass correlation coefficients(ICCs)exceeding 0.90.The overall Cronbach’s α coefficient was 0.891,with subscale coefficients ranging from 0.732 to 0.884(all ICCs>0.70).The testretest reliability of the total scale was 0.833,and for the 4 dimensions,bladder,bowel,prolapse,and sexual function,the values were 0.776,0.579,0.732,and 0.645,respectively.The split-half reliability was 0.74.Conclusion:The Chinese version of the questionnaire demonstrated good reliability and validity,indicating its applicability in assessing pelvic floor dysfunction and associated risk factors during pregnancy and postpartum.展开更多
The purpose of this paper is to look into how reliable and valid the Persian version of the Cannabis Use Disorder Identification Test-Revised (CUDIT-R-Pr) is. It will also compare the screening features of the CUDIT-R...The purpose of this paper is to look into how reliable and valid the Persian version of the Cannabis Use Disorder Identification Test-Revised (CUDIT-R-Pr) is. It will also compare the screening features of the CUDIT-R with those of the DSM-5 criteria for cannabis use disorder (CUD) based on the SCID-5-CT in a group of university students in Tehran, Iran. The study used the stratified random sampling technique to collect data from 541 students (19 to 24 years old) who used cannabis in Tehran universities in 2024. Confirmatory factor analysis confirmed the uni-dimensionality of the CUDIT-R-Pr. We checked the reliability of the CUDIT-R-Pr using Cronbach Alpha, split-half, inter-rater, test-retest stability over time, and parallel testing equivalence. The results indicated that CUDIT-R-Pr is reliable, reproducible, and responsive, with substantial agreement and adequate interpretability. The CUDIT-R shows that it can tell the difference between different levels of cannabis use severity, which is known as discriminant validity. Receiver operating characteristic analyses confirmed this, using an area under the receiver operating characteristics curve (AUC = 0.95) at a cutoff of ten or less. This allowed CUDIT-R-Pr to accurately predict any DSM-5 based on the highest correctly classified value (0.89), demonstrating high levels of sensitivity (0.96), specificity (0.69), and Youden value (0.65). The exact maximum Youden index (0.72) showed that CUDIT-R-Pr could also predict moderate DSM-5 with a cutoff of twelve or less. To validate and generalize the CUDIT-R-Pr for use among Iranian cannabis users, we need more research.展开更多
Accurate calibration of surgical instruments and ultrasound probes is essential for achieving high precision in image guided minimally invasive procedures.However,existing methods typically treat the calibration of th...Accurate calibration of surgical instruments and ultrasound probes is essential for achieving high precision in image guided minimally invasive procedures.However,existing methods typically treat the calibration of the needle tip and the ultrasound probe as two independent processes,lacking an integrated calibration mechanism,which often leads to cumulative errors and reduced spatial consistency.To address this challenge,we propose a joint calibration model that unifies the calibration of the surgical needle tip and the ultrasound probe within a single coordinate system.The method formulates the calibration process through a series of mathematical models and coordinate transformation models and employs a gradient descent based optimization to refine the parameters of these models.By establishing and iteratively optimizing a template coordinate system through modeling of constrained spherical motion,the proposed joint calibration model achieves submillimeter accuracy in needle tip localization.Building upon this,an N line based calibration model is developed to determine the spatial relationship between the probe and the ultrasound image plane,resulting in an average pixel deviation of only 1.2373 mm.Experimental results confirm that this unified modeling approach effectively overcomes the limitations of separate calibration schemes,significantly enhancing both precision and robustness,and providing a reliable computational model for surgical navigation systems that require high spatial accuracy without relying on ionizing radiation.展开更多
The response and performance of radiation detectors for accurate measurements and effective use for radiological safety in medical, industrial, and nuclear sectors are based on the optimal use, maintenance, repair and...The response and performance of radiation detectors for accurate measurements and effective use for radiological safety in medical, industrial, and nuclear sectors are based on the optimal use, maintenance, repair and calibration of radiation monitoring instruments in a secondary standard dosimetry laboratory. In Nigeria, the suboptimal performances of these instruments are attributed to inadequate maintenance practices, insufficient calibration, and limited awareness of proper equipment handling for optimal use. This study assesses the current practices related to the optimal use, maintenance, repair, and calibration of radiation detection equipment across Nigeria’s six geopolitical zones. Using a cross-sectional survey approach, data were collected from Ninety (90) radiation monitoring equipment operators, Radiation Safety Officers, and frontline responders to evaluate their knowledge, awareness, and practices concerning equipment usage, operation, storage, handling, and calibration. The findings reveal significant gaps in knowledge of usage (trained is 43.2%, not trained is 56.8%) and inconsistencies in maintenance practices (as indicated by the regression analysis (β = 0.51, p < 0.01), particularly regarding specialized instruments such as the PackEye, Mobile Detection System (MDS), Radionuclide Identifinder (RID), and Personal Radiation Detectors (PRD). While there is high awareness of the need for regular calibration and handling training, the lack of standardized protocols and training alignment poses challenges to the effective use of these instruments. This study underscores the importance of comprehensive training programs, standardized maintenance protocols, and enhanced awareness initiatives to optimize the usage, performance and safety of radiation monitoring instruments in Nigeria.展开更多
Radiation detectors, such as survey meters, are essential for ensuring radiation safety in various sectors, including healthcare, industrial processing, emergency response, etc. However, regular calibration and proper...Radiation detectors, such as survey meters, are essential for ensuring radiation safety in various sectors, including healthcare, industrial processing, emergency response, etc. However, regular calibration and proper maintenance of survey meters are important in order to ascertain their accuracy and reliability. This study provides a comprehensive retrospective assessment of the calibration behaviour, durability, and fault trends of 160 survey meters, spanning ten different models. They were calibrated at the Secondary Standard Dosimetry Laboratory (SSDL) in Nigeria over a decade (2012-2023) using an X-Ray Beam Irradiator Model X80-225K and Cs-137 irradiator (OB6) with a PTW reference spherical chamber traceable to the IAEA SSDL in Seibersdorf, Austria. The calibration stability of each model was evaluated, revealing that models like Instrument A and Instrument B demonstrated high reliability with calibration factors close to the ideal value of 1, while models like Instrument C exhibited higher variability, suggesting less consistent performance for dose rate monitoring. Fault analysis showed that the most common issues were related to the battery compartment, indicating a need for improved handling practices. Correlation analysis reveals no statistically significant correlation between calibration factor and age of survey meter across the analysed models. The study concludes that regular calibration, proper handling, and user training are crucial for maintaining the accuracy and longevity of radiation detectors.展开更多
Ecosystem services(ES)mapping and models have advanced in recent years.Improvements were made,and the assessments have transitioned from qualitative to quantitative.Although this is an important advancement,the ES map...Ecosystem services(ES)mapping and models have advanced in recent years.Improvements were made,and the assessments have transitioned from qualitative to quantitative.Although this is an important advancement,the ES mapping and modelling validation step has been overlooked,and this raises an important question in the credibility of the outcomes.This has been an important and unsolved issue in the ES research community that needs to be tackled.This highlight paper discusses the importance of validating single ES mapping and models.Conducting this using field or proximal/remote sensing raw data and not data from other models or stakeholder evaluation is important.A validation step should be mandatory in ES frameworks since it can assess the models’veracity,contribute to identifying the model’s weaknesses/strengths and ultimately represent a scientific advance in the field.This is easier to apply to the biophysical mapping and models of regulating and provisioning ES than to cultural ES,as the latter rely more on perception and cultural contexts.Also,ES supply models are easier to validate than demand and flow models.Robust and well-grounded models are essential for ensuring the reliability of individual ES maps and models and should be integrated into decision-making processes.Although several challenges arise related to the costs of data collection,in several cases prohibitive,and the time and the expertise needed to conduct this sampling and analysis,this is likely an imperative step that needs to be considered in the future.This will be beneficial in establishing ES research and improving decision-making and wellbeing.展开更多
Objectives This study aimed to validate the Russian version of the Copenhagen Burnout Inventory(R-CBI)among nurses in Kazakhstan and Kyrgyzstan and explored factors contributing to burnout.Methods The original Copenha...Objectives This study aimed to validate the Russian version of the Copenhagen Burnout Inventory(R-CBI)among nurses in Kazakhstan and Kyrgyzstan and explored factors contributing to burnout.Methods The original Copenhagen Burnout Inventory(CBI)was translated into the R-CBI using a rigorous forward-backward method and reviewed by experts.Between July and November 2022,1,530 nurses were recruited through convenience sampling method from various nursing settings in Kazakhstan and Kyrgyzstan to test the scale’s reliability and validity,including confirmatory factor analysis(CFA),internal consistency reliability,and concurrent validity.A linear regression analysis was conducted to identify influencing factors of burnout.Results The content of the R-CBI is consistent with the original CBI,consisting of 19 items with three dimensions.The Cronbach’sαcoefficient is 0.926 in Kazakhstan and 0.922 in Kyrgyzstan,ranging from 0.830 to 0.898 for three dimensions.The CFA results among nurses in Kazakhstan and Kyrgyzstan supported the three-factor structure of R-CBI with good fit indices.Concurrent validity was established through significant correlations(P<0.001)with job satisfaction questionnaire(r=−0.457),Depression Anxiety Stress Scales(r=0.506 in depression,r=0.485 in anxiety,r=0.564 in stress),and WHO-5 Well-Being Index(r=−0.528).The overall burnout level was 36.1±17.6 and 37.5±17.4 in Kazakhstani and Kyrgyzstani nurses,respectively.Significant influencing factors of burnout included gender,age,educational level,and COVID-19 infection history.Conclusions The R-CBI was proved to be a reliable and valid tool for assessing nurses’burnout in Kazakhstan and Kyrgyzstan.展开更多
In clinical environments,the prolonged utilization of polarization equipment can result in theaccumulation of errors over extended periods.The absence of expeditious calibration techniques in clinical practice present...In clinical environments,the prolonged utilization of polarization equipment can result in theaccumulation of errors over extended periods.The absence of expeditious calibration techniques in clinical practice presents a significant obstacle in preserving the precision and dependability of these instruments.To address this challenge,we propose an innovative research study that presents a comprebersive calibration system specifically designed for the calibration of the backscattering Muellet matrix measurement system,enabling swift online calibration acroes various scenarios.This system employs an external calibration framework for rmal-time adjust-ment of the polarizer's initial angle,oversecing the rotation of PSG and PSA motors through position measurement and control procedures,with light intensity monitored by a camera.By incorporating moment um concepts and the Adam optimization algorithm,we enhance conver-gence speed,mitigate noise,and improve calibration accuracy.Experimental results showcase the exceptional precision,speed,and robustness of oрroposed method,achieving high acсuracy and minimal error,thereby offering a promising solution for maintaining the reliabilit y of polarization equipment in clinical settings.展开更多
Objective:To translate,adapt,and validate the Indonesian version of the Prenatal Health Behavior Scale.Methods:This cross-sectional,cross-cultural adaptation study was conducted between September 2024 and October 2024...Objective:To translate,adapt,and validate the Indonesian version of the Prenatal Health Behavior Scale.Methods:This cross-sectional,cross-cultural adaptation study was conducted between September 2024 and October 2024 in Ngrambe and Sine,subdistricts in Ngawi,East Java,Indonesia.We selected participants using purposive convenience sampling and matched them with inclusion and exclusion criteria.We collected sociodemographic,Prenatal Health Behavior Scale,and anthropometrics(height,weight,body mass index,and middle-upper arm circumference)data.We analyzed the content validity using the content validity index and Gwet's chance-corrected Agreement Coefficient 2,face validity by pilot-testing on several pregnant women,and construct validity using exploratory factor analysis.We measured reliability using McDonald's omega coefficient.Results:We recruited 183 pregnant women in this study(median age 28 years).The item-content validity index(I-CVI)of all items was 1.00,with Gwet's chance-corrected Agreement Coefficient 2 was 0.945.The face validity resulted in a clear statement of all items.The exploratory factor analysis showed the two-factor model best suited to the questionnaire.Omega coefficients for the overall scale,health-impairing,and health-promoting domains were 0.696,0.507,and 0.678,respectively.Conclusions:The Indonesian version of the Prenatal Health Behavior Scale is a valid and reliable instrument to assess prenatal health behavior in Indonesian-speaking pregnant women.Future studies may implement this scale in community and clinical settings.展开更多
To enhance direction of arrival(DOA)estimation accuracy,this paper proposes a low-cost method for calibrating farfield steering vectors of large aperture millimeter wave radar(mmWR).To this end,we first derive the ste...To enhance direction of arrival(DOA)estimation accuracy,this paper proposes a low-cost method for calibrating farfield steering vectors of large aperture millimeter wave radar(mmWR).To this end,we first derive the steering vectors with amplitude and phase errors,assuming that mmWR works in the time-sharing mode.Then,approximate relationship between the near-field calibration steering vector and the far-field calibration steering vector is analyzed,which is used to accomplish the mapping between the two of them.Finally,simulation results verify that the proposed method can effectively improve the angle measurement accuracy of mmWR with existing amplitude and phase errors.展开更多
基金Supported by National Key R&D Program of China(Grant No.2022YFB3404101)National Natural Science Foundation of China(Grant Nos.52375018,92148301)。
文摘Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification issues of a 5-DoF parallel machining robot,this paper proposes an adaptive and weighted identification method to achieve high-precision kinematic calibration while maintaining reliable stability.First,a kinematic error propagation mechanism model considering the non-ideal constraints and the screw self-rotation is formulated by incorporating the intricate structure of multiple chains and a unique driven screw arrangement of the robot.To address the challenge of accurately identifying such a sophisticated error model,a novel adaptive and weighted identification method based on generalized cross validation(GCV)is proposed.Specifically,this approach innovatively introduces Gauss-Markov estimation into the GCV algorithm and utilizes prior physical information to construct both a weighted identification model and a weighted cross-validation function,thus eliminating the inaccuracy caused by significant differences in dimensional magnitudes of pose errors and achieving accurate identification with flexible numerical stability.Finally,the kinematic calibration experiment is conducted.The comparative experimental results demonstrate that the presented approach is effective and has enhanced accuracy performance over typical least squares methods,with maximum position and orientation errors reduced from 2.279 mm to 0.028 mm and from 0.206°to 0.017°,respectively.
文摘The application of the Soil and Water Assessment Tool (SWAT) to the Olifants Basin in South Africa was the focus of our study with emphasis on calibration, validation and uncertainty analysis. The Basin was discretized into 23 sub-basins and 226 Hydrologic Response Units (HRUs) using 3 arc second (90 m × 90 m) pixel resolution SRTM DEM with stream gauge B7H015 as the Basin outlet. Observed stream flow data at B7H015 were used for model calibration (1988-2001) and validation (2002-2013) using the split sample approach. Relative global sensitivity analysis using SUFI-2 algorithm was used to determine sensitive parameters to stream flow for calibration of the model. Performance efficiency of the Olifants SWAT model was assessed using Nash-Sutcliffe (NSE), coefficient of determination (R<sup>2</sup>), Percent Bias (PBIAS) and Root Mean Square Error-Observation Standard deviation Ratio (RSR). Sensitivity analysis revealed in decreasing order of significance, runoff curve number (CN2), alpha bank factor (ALPHA_BNK), soil evaporation compensation factor (ESCO), soil available water capacity (SOIL_AWC, mm H<sub>2</sub>O/mm soil), groundwater delay (GW_ DELAY, days) and groundwater “revap” coefficient (GW_REVAP) to be the most sensitive parameters to stream flow. Analysis of the model during the calibration period gave the following statistics;NSE = 0.88;R<sup>2</sup> = 0.89;PBIAS = -11.49%;RSR = 0.34. On the other hand, statistics during the validation period were NSE = 0.67;R<sup>2 </sup>= 0.79;PBIAS = -20.69%;RSR = 0.57. The observed statistics indicate the applicability of the SWAT model in simulating the hydrology of the Olifants Basin and therefore can be used as a Decision Support Tool (DST) by water managers and other relevant decisions making bodies to influence policy directions on the management of watershed processes especially water resources.
文摘Strategic transportation network models are often used as support tools in the framework of decisions to be taken at the policy level, such as the Trans-European Network projects. These models are mostly setup using aggregated or limited data. If their calibration is regularly mentioned in the literature, their validation is barely discussed. In this paper, several modal choice model specifications that make only use of explanatory variables available at the network level are described and applied to a large scale case. A validation exercise is performed at three levels of aggregation. The paper is designed from a strategic transport planning perspective, and does not present new modal choice formulations or assignment procedures. Its main added value is the focus on calibration and validation considerations. Despite the limited explanatory information used, the global performance of the best models can be considered as satisfactory. However, the quality of the models varies from mode to mode, the use of railway transport being the most difficult to predict without more specific input.
基金partly supported by the French National“Investment for the future”funding programme.
文摘Background: In the context of a nuclear reactor accident, thyroid is the main target organ of radioactive iodines. To avoid as much as possible thyroid disorders or even cancer development, it is recommended to administer a single dose of potassium iodide to people at risk of exposure. Nevertheless, the Fukushima Dai-ichi disaster has pointed out many questions about the conditions of stable iodine prophylaxis implementation highlighting the need for reflection further revision of the actual “iodine doctrine”. Therefore, providing useful data is required notably through the implementation of animal experiments to strengthen current knowledge and to edit new recommendations. Methods: Urinary iodine constitutes a very good indicator to investigate the function of thyroid, its interpretation demands reliable analyses. Prior to perform animal experiments, two calibration methods were designed by our lab and compared together (standard addition and external calibration) to assess the urinary concentration of stable iodine in urine by ICP-MS. They were validated based on several key parameters especially linearity, accuracy and limits of detection (LOD) and quantification (LOQ). Results: The results were nicely satisfying. Indeed, both calibration methods have indicated very good coefficients of correlations, accuracies with low expanded relative uncertainties were obtained. The estimated LOD in the sample for standard addition method and external calibration were fully acceptable, 0.39 μg·L-1 and 0.35 μg·L-1, respectively. All performance criteria have been thus fulfilled successfully. The established methods were proven to be accurate, robust and sensitive. Once validated, both calibration methods were applied to rat urine samples and the results of z-score and Wilcoxon W test concluded that there were no statistically significant differences between both methods.
文摘Maize is an emerging important crop in Bangladesh because of its high yield potential and economic profitability compared to rice and wheat crops. There is a need to understand the growth and yield behavior of this crop in varying production environments of Bangladesh. Crop model such as Decision Support System For Agro-technology Transfer (DSSAT) version 4.6 (DSSAT hereafter) can be utilized cost effectively to study the performances of maize under different production environments. It needs to calibrate and validate DSSAT model for commonly cultivated maize cultivars in Bangladesh and subsequently take the model to various applications, including inputs and agronomic management options and climate change that impacts analyses. So, the present study was undertaken to firstly calibrate DSSAT model for popular four hybrid maize cultivars (BARI Hybrid Maize-7, BARI Hybrid Maize-9, Pioneer 30B07 and NK-40). Subsequently, it proceeded with the validation with independent field data sets for evaluating their growth performances. The genetic coefficients for these cultivars were evaluated by using Genotype coefficient calculator (GENCALC) and Generalized likelihood uncertainty estimation (GLUE) module of DSSAT on the basis of first season experiment. The performance of the model was satisfactory and within the significant limits. After calibration, the model was tested for its performance through validation procedure by using second season data. The model performed satisfactorily through phenology, biomass, leaf area index (LAI) and grain yield. Phenology, as estimated through days to flower initiation and maturity, was in good agreement, although simulated results were slightly over predicted compared to observed values but within the statistical significance limit...when compared with observed values at specific growth stages of the crop. The final yield values (10.12 to 10.59 t·ha-1) were in close agreement with the observed values (10.16 to 10.94 t·ha-1), as the percentage error was within tolerable limit (0.39% to 6.81%). The model has been successfully calibrated and validated for Gazipur environment and now can be used for climate change impact studies for similar environments in Bangladesh.
文摘Soybean and sunflower are summer annuals that can be grown as an alternative to corn and may be particularly useful in organic production systems for forage in addition to their traditional use as protein and/or oil yielding crops. Rapid and low cost methods of analyzing plant forage quality would be helpful for nutrition management of livestock. We developed and validated calibration models using Near-infrared Reflectance Spectroscopic (NIRS) analysis for 27 different forage quality parameters of organically grown sunflower and soybean leaves or reproductive parts. Crops were managed under conventional tillage or no-till with a cover crop of wheat before soybean and rye-crimson clover before sunflower. From a population of 120 samples from both crops, covering multiple sampling dates within the treatments, calibration models were developed utilizing spectral information covering both visible and NIR region of 61 - 85 randomly chosen samples using modified partial least-squares (MPLS) regression with internal cross validation. Within MPLS protocol, we compared nine different math treatments on the quality of the calibration models. The math treatment “2,4,4,1” yielded the best quality models for all but starch and simple sugars (r2 = 0.699 - 0.999;where the 1st digit is the number of the derivative with 0 for raw spectra, 1 for first derivative, and 2 for second derivative, the 2nd digit is the gap over which the derivative is calculated, the 3rd digit is the number of data points in a running average or smoothing, and the 4th digit is the second smoothing). Prediction of an independent validation set of 28-35 samples with these models yielded excellent agreement between the NIRS predicted values and the reference values except for starch (r2 = 0.8260 - 0.9990). The results showed that the same model was able to adequately quantify a particular forage quality of both crops managed under different tillage treatments and at different stages of growth. Thus, these models can be reliably applied in the routine analysis of soybean and sunflower forage quality for the purposes of livestock nutrient management decisions.
文摘The hydrologic simulation of a catchment area, described as the transformation of rainfall into runoff, generally uses hydrologic model. This work opts for the global conceptual hydrologic model GR2M, a monthly time step model, to study the Kouilou-Niari basin, the second most important ones of the Republic of Congo. This includes two parameters to model the hydrologic behavior of a catchment area. The choice of the conceptual model GR2M is justified by the reduced number of parameters and the monthly time scale. The objective of this study is to determine the characteristic parameters of the GR2M model, by a calibrating and a validating procedure. The use of these parameters enables to follow the evolution of the water resources from the climatic variables. It has been first carried out a characterization of some physical, geological and climatic factors governing the flow, by dealing with the main climatic variables which constitute the inputs of the hydrologic model. Then, a hydrologic rainfall-runoff modeling allows to calibrate and validate the model at monthly time scale. Taking into account the number of parameters involved in hydrologic processes and the complexity of the cathment area, this model gives acceptable results throughout the Kouilou-Niari basin. The values of the Nash-Sutcliffe criterion and those of the correlation coefficient obtained are greater than 80% in validation, which explains the performance and robustness of the GR2M model on this basin.
基金Project(41174008)supported by the National Natural Science Foundation of ChinaProject(SKLGED2013-4-2-EZ)supported by the Open Foundation of State Key Laboratory of Geodesy and Earth’s Dynamics,ChinaProject(2007B51)supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China
文摘The main principle and mathematical model of GOCE kinematic orbit adjustment for Earth gravity field model (EGM) validation and accelerometer calibration are presented. Based on 60 days GOCE kinematic orbits with 1-2 cm accuracy and accelerometer data from 2009-11-02 to 2009-12-31, the RMS-of-fit (ROF) of them using EGM2008, EIGEN-SC, ITG- GRACE2010S and GOCO01S up to 120, 150 and 180 degree and order (d/o) are evaluated and compared. The scale factors and biases of GOCE accelerometer data are calibrated and the energy balance method (EBM) is performed to test the accuracy of accelerometer calibration. The results show that GOCE orbits are also sensitive to EGM from 120 to 150 d/o. The ROFs of EGMs with 150 and 180 d/o are obviously better than those of EGMs with 120 d/o. The ROFs of GOCO01S and ITG-GRACE2010S are almost the same up to 120 and 150 d/o, which are about 3.3 cm and 1.8 cm, respectively. They are far better than those of EGM2008 and EIGEN-SC with the same d/o. The ROF of GOCO01S with 180 d/o is about 1.6 em, which is the best one among those EGMs. The accelerometer calibration accuracies (ACAs) of ITG-GRACE2010S and GOCO01S are obviously higher that those of EGM2008 and EIGEN-SC. The ACA of GOCO01S with 180 d/o is far higher than that of EGMs with 120 d/o, and a little higher than that of ITG-GRACE2010S with 150 d/o. I t is suggested that the newest released EGM such as GOCO01S or GOCO02S till at least 150 d/o should be chosen in GOCE precise orbit determination (POD) and accelerometer calibration.
基金funded in part by the German Research Foundation(Grant reference:496846758).
文摘The ongoing revolution in information technology is reshaping human life. In the realm of health behavior, wearable technology emerges as a leading digital solution,capturing physical behaviors (i.e., physical activity, sedentary habits, sleep patterns) within the 24-h cycle of daily life. Wearables are applied in research, clinical practice, and as lifestyle devices;most obvious, they promise to be a key element for increasing human physical activity, one of the biggest health challenges nowadays.
文摘High-precision magnetic field measurements are crucial for understanding Earth’s internal structure,space environment,and dynamic geomagnetic variations.Data from the Fluxgate Magnetometer (FGM) on the Macao Science Satellite-1A (MSS-1A),added to data from other space-based magnetometers,should increase significantly the ability of scientists to observe changes in Earth’s magnetic field over time and space.Additionally,the MSS-1A’s FGM is intended to help identify magnetic disturbances affecting the spacecraft itself.This report focuses on the in-flight calibration of the MSS-1 FGM.A scalar calibration,independent of geomagnetic field models,was performed to correct offsets,sensitivities,and misalignment angles of the FGM.Using seven months of data,we find that the in-flight calibration parameters show good stability.We determined Euler angles describing the rotational relationship between the FGM and the Advanced Stellar Compass (ASC) coordinate system using two approaches:calibration with the CHAOS-7 geomagnetic field model,and simultaneous estimation of Euler angles and Gaussian spherical harmonic coefficients through self-consistent modeling.The accuracy of Euler angles describing the rotation was better than 18 arcsec.The calibrated FGM data exhibit good agreement with the calibrated data of the Vector Field Magnetometer (VFM),which is the primary vector magnetometer of the satellite.These calibration efforts have significantly improved the accuracy of the FGM measurements,which are now providing reliable data for geomagnetic field studies that promise to advance our understanding of the Earth’s magnetic environment.
基金supported by the Natural Science Foundation of Hunan Province(2024JJ6626)the Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control(HPKL202320),China.
文摘Objective:Pelvic floor dysfunction is common among pregnant and postpartum women and significantly impacts quality of life.This study aims to translate the German Pelvic Floor Questionnaire for Pregnant and Postpartum Women into Chinese and to evaluate its reliability and validity in the Chinese population.Methods:The questionnaire was translated using the Brislin model.A cross-sectional study was conducted among pregnant and postpartum women to assess the content validity,construct validity,Cronbach’sαcoefficient,test-retest reliability,and split-half reliability of the Chinese version.Results:A total of 72 women were included,with 6.9% being pregnant and 93.1% postpartum;the age was(32.3±3.6)years.The Chinese version of the questionnaire contains 4 dimensions and 45 items.The content validity index of individual items ranged from 0.833 to 1.000,with a scale-level content validity index of 0.977 and intraclass correlation coefficients(ICCs)exceeding 0.90.The overall Cronbach’s α coefficient was 0.891,with subscale coefficients ranging from 0.732 to 0.884(all ICCs>0.70).The testretest reliability of the total scale was 0.833,and for the 4 dimensions,bladder,bowel,prolapse,and sexual function,the values were 0.776,0.579,0.732,and 0.645,respectively.The split-half reliability was 0.74.Conclusion:The Chinese version of the questionnaire demonstrated good reliability and validity,indicating its applicability in assessing pelvic floor dysfunction and associated risk factors during pregnancy and postpartum.
文摘The purpose of this paper is to look into how reliable and valid the Persian version of the Cannabis Use Disorder Identification Test-Revised (CUDIT-R-Pr) is. It will also compare the screening features of the CUDIT-R with those of the DSM-5 criteria for cannabis use disorder (CUD) based on the SCID-5-CT in a group of university students in Tehran, Iran. The study used the stratified random sampling technique to collect data from 541 students (19 to 24 years old) who used cannabis in Tehran universities in 2024. Confirmatory factor analysis confirmed the uni-dimensionality of the CUDIT-R-Pr. We checked the reliability of the CUDIT-R-Pr using Cronbach Alpha, split-half, inter-rater, test-retest stability over time, and parallel testing equivalence. The results indicated that CUDIT-R-Pr is reliable, reproducible, and responsive, with substantial agreement and adequate interpretability. The CUDIT-R shows that it can tell the difference between different levels of cannabis use severity, which is known as discriminant validity. Receiver operating characteristic analyses confirmed this, using an area under the receiver operating characteristics curve (AUC = 0.95) at a cutoff of ten or less. This allowed CUDIT-R-Pr to accurately predict any DSM-5 based on the highest correctly classified value (0.89), demonstrating high levels of sensitivity (0.96), specificity (0.69), and Youden value (0.65). The exact maximum Youden index (0.72) showed that CUDIT-R-Pr could also predict moderate DSM-5 with a cutoff of twelve or less. To validate and generalize the CUDIT-R-Pr for use among Iranian cannabis users, we need more research.
基金Support by Sichuan Science and Technology Program[2023YFSY0026,2023YFH0004].
文摘Accurate calibration of surgical instruments and ultrasound probes is essential for achieving high precision in image guided minimally invasive procedures.However,existing methods typically treat the calibration of the needle tip and the ultrasound probe as two independent processes,lacking an integrated calibration mechanism,which often leads to cumulative errors and reduced spatial consistency.To address this challenge,we propose a joint calibration model that unifies the calibration of the surgical needle tip and the ultrasound probe within a single coordinate system.The method formulates the calibration process through a series of mathematical models and coordinate transformation models and employs a gradient descent based optimization to refine the parameters of these models.By establishing and iteratively optimizing a template coordinate system through modeling of constrained spherical motion,the proposed joint calibration model achieves submillimeter accuracy in needle tip localization.Building upon this,an N line based calibration model is developed to determine the spatial relationship between the probe and the ultrasound image plane,resulting in an average pixel deviation of only 1.2373 mm.Experimental results confirm that this unified modeling approach effectively overcomes the limitations of separate calibration schemes,significantly enhancing both precision and robustness,and providing a reliable computational model for surgical navigation systems that require high spatial accuracy without relying on ionizing radiation.
文摘The response and performance of radiation detectors for accurate measurements and effective use for radiological safety in medical, industrial, and nuclear sectors are based on the optimal use, maintenance, repair and calibration of radiation monitoring instruments in a secondary standard dosimetry laboratory. In Nigeria, the suboptimal performances of these instruments are attributed to inadequate maintenance practices, insufficient calibration, and limited awareness of proper equipment handling for optimal use. This study assesses the current practices related to the optimal use, maintenance, repair, and calibration of radiation detection equipment across Nigeria’s six geopolitical zones. Using a cross-sectional survey approach, data were collected from Ninety (90) radiation monitoring equipment operators, Radiation Safety Officers, and frontline responders to evaluate their knowledge, awareness, and practices concerning equipment usage, operation, storage, handling, and calibration. The findings reveal significant gaps in knowledge of usage (trained is 43.2%, not trained is 56.8%) and inconsistencies in maintenance practices (as indicated by the regression analysis (β = 0.51, p < 0.01), particularly regarding specialized instruments such as the PackEye, Mobile Detection System (MDS), Radionuclide Identifinder (RID), and Personal Radiation Detectors (PRD). While there is high awareness of the need for regular calibration and handling training, the lack of standardized protocols and training alignment poses challenges to the effective use of these instruments. This study underscores the importance of comprehensive training programs, standardized maintenance protocols, and enhanced awareness initiatives to optimize the usage, performance and safety of radiation monitoring instruments in Nigeria.
文摘Radiation detectors, such as survey meters, are essential for ensuring radiation safety in various sectors, including healthcare, industrial processing, emergency response, etc. However, regular calibration and proper maintenance of survey meters are important in order to ascertain their accuracy and reliability. This study provides a comprehensive retrospective assessment of the calibration behaviour, durability, and fault trends of 160 survey meters, spanning ten different models. They were calibrated at the Secondary Standard Dosimetry Laboratory (SSDL) in Nigeria over a decade (2012-2023) using an X-Ray Beam Irradiator Model X80-225K and Cs-137 irradiator (OB6) with a PTW reference spherical chamber traceable to the IAEA SSDL in Seibersdorf, Austria. The calibration stability of each model was evaluated, revealing that models like Instrument A and Instrument B demonstrated high reliability with calibration factors close to the ideal value of 1, while models like Instrument C exhibited higher variability, suggesting less consistent performance for dose rate monitoring. Fault analysis showed that the most common issues were related to the battery compartment, indicating a need for improved handling practices. Correlation analysis reveals no statistically significant correlation between calibration factor and age of survey meter across the analysed models. The study concludes that regular calibration, proper handling, and user training are crucial for maintaining the accuracy and longevity of radiation detectors.
基金supported by the project Monetary valuation of soil ecosystem services and creation of initiatives to invest in soil health:setting a framework for the inclusion of soil health in business and in the policy making process(InBestSoil)(Horizon Europe)Grant agreement ID:101091099。
文摘Ecosystem services(ES)mapping and models have advanced in recent years.Improvements were made,and the assessments have transitioned from qualitative to quantitative.Although this is an important advancement,the ES mapping and modelling validation step has been overlooked,and this raises an important question in the credibility of the outcomes.This has been an important and unsolved issue in the ES research community that needs to be tackled.This highlight paper discusses the importance of validating single ES mapping and models.Conducting this using field or proximal/remote sensing raw data and not data from other models or stakeholder evaluation is important.A validation step should be mandatory in ES frameworks since it can assess the models’veracity,contribute to identifying the model’s weaknesses/strengths and ultimately represent a scientific advance in the field.This is easier to apply to the biophysical mapping and models of regulating and provisioning ES than to cultural ES,as the latter rely more on perception and cultural contexts.Also,ES supply models are easier to validate than demand and flow models.Robust and well-grounded models are essential for ensuring the reliability of individual ES maps and models and should be integrated into decision-making processes.Although several challenges arise related to the costs of data collection,in several cases prohibitive,and the time and the expertise needed to conduct this sampling and analysis,this is likely an imperative step that needs to be considered in the future.This will be beneficial in establishing ES research and improving decision-making and wellbeing.
文摘Objectives This study aimed to validate the Russian version of the Copenhagen Burnout Inventory(R-CBI)among nurses in Kazakhstan and Kyrgyzstan and explored factors contributing to burnout.Methods The original Copenhagen Burnout Inventory(CBI)was translated into the R-CBI using a rigorous forward-backward method and reviewed by experts.Between July and November 2022,1,530 nurses were recruited through convenience sampling method from various nursing settings in Kazakhstan and Kyrgyzstan to test the scale’s reliability and validity,including confirmatory factor analysis(CFA),internal consistency reliability,and concurrent validity.A linear regression analysis was conducted to identify influencing factors of burnout.Results The content of the R-CBI is consistent with the original CBI,consisting of 19 items with three dimensions.The Cronbach’sαcoefficient is 0.926 in Kazakhstan and 0.922 in Kyrgyzstan,ranging from 0.830 to 0.898 for three dimensions.The CFA results among nurses in Kazakhstan and Kyrgyzstan supported the three-factor structure of R-CBI with good fit indices.Concurrent validity was established through significant correlations(P<0.001)with job satisfaction questionnaire(r=−0.457),Depression Anxiety Stress Scales(r=0.506 in depression,r=0.485 in anxiety,r=0.564 in stress),and WHO-5 Well-Being Index(r=−0.528).The overall burnout level was 36.1±17.6 and 37.5±17.4 in Kazakhstani and Kyrgyzstani nurses,respectively.Significant influencing factors of burnout included gender,age,educational level,and COVID-19 infection history.Conclusions The R-CBI was proved to be a reliable and valid tool for assessing nurses’burnout in Kazakhstan and Kyrgyzstan.
基金the Knowledge Innovation Program of Basic Re-search Projects of Shenzhen for their support under Grant No.JCYJ20200109142805928the funding provided by the Basic and Applied Basic Research Foundation of Guangdong Provinæunder Grant No.2021A1515220113partially supported by the Guangzhou Municipal Science and Technology Project under Grant 202102010421.
文摘In clinical environments,the prolonged utilization of polarization equipment can result in theaccumulation of errors over extended periods.The absence of expeditious calibration techniques in clinical practice presents a significant obstacle in preserving the precision and dependability of these instruments.To address this challenge,we propose an innovative research study that presents a comprebersive calibration system specifically designed for the calibration of the backscattering Muellet matrix measurement system,enabling swift online calibration acroes various scenarios.This system employs an external calibration framework for rmal-time adjust-ment of the polarizer's initial angle,oversecing the rotation of PSG and PSA motors through position measurement and control procedures,with light intensity monitored by a camera.By incorporating moment um concepts and the Adam optimization algorithm,we enhance conver-gence speed,mitigate noise,and improve calibration accuracy.Experimental results showcase the exceptional precision,speed,and robustness of oрroposed method,achieving high acсuracy and minimal error,thereby offering a promising solution for maintaining the reliabilit y of polarization equipment in clinical settings.
文摘Objective:To translate,adapt,and validate the Indonesian version of the Prenatal Health Behavior Scale.Methods:This cross-sectional,cross-cultural adaptation study was conducted between September 2024 and October 2024 in Ngrambe and Sine,subdistricts in Ngawi,East Java,Indonesia.We selected participants using purposive convenience sampling and matched them with inclusion and exclusion criteria.We collected sociodemographic,Prenatal Health Behavior Scale,and anthropometrics(height,weight,body mass index,and middle-upper arm circumference)data.We analyzed the content validity using the content validity index and Gwet's chance-corrected Agreement Coefficient 2,face validity by pilot-testing on several pregnant women,and construct validity using exploratory factor analysis.We measured reliability using McDonald's omega coefficient.Results:We recruited 183 pregnant women in this study(median age 28 years).The item-content validity index(I-CVI)of all items was 1.00,with Gwet's chance-corrected Agreement Coefficient 2 was 0.945.The face validity resulted in a clear statement of all items.The exploratory factor analysis showed the two-factor model best suited to the questionnaire.Omega coefficients for the overall scale,health-impairing,and health-promoting domains were 0.696,0.507,and 0.678,respectively.Conclusions:The Indonesian version of the Prenatal Health Behavior Scale is a valid and reliable instrument to assess prenatal health behavior in Indonesian-speaking pregnant women.Future studies may implement this scale in community and clinical settings.
文摘To enhance direction of arrival(DOA)estimation accuracy,this paper proposes a low-cost method for calibrating farfield steering vectors of large aperture millimeter wave radar(mmWR).To this end,we first derive the steering vectors with amplitude and phase errors,assuming that mmWR works in the time-sharing mode.Then,approximate relationship between the near-field calibration steering vector and the far-field calibration steering vector is analyzed,which is used to accomplish the mapping between the two of them.Finally,simulation results verify that the proposed method can effectively improve the angle measurement accuracy of mmWR with existing amplitude and phase errors.