[Objective] Effects of different contents of calcium oxide on physicochemi- cal properties of spray-dried bayberry powder were studied. [Method] Bayberry pow- der produced from bayberry juice adding 0, 2 and 4 g/L cal...[Objective] Effects of different contents of calcium oxide on physicochemi- cal properties of spray-dried bayberry powder were studied. [Method] Bayberry pow- der produced from bayberry juice adding 0, 2 and 4 g/L calcium oxide using the spray drying technique has been selected. The physicochemical properties of the spray-dried bayberry powder were investigated by determining moisture content, colour, apparent density, wettability, angle of repose and moisture absorption rate of bayberry powder. [Result] The results showed that the content of calcium oxide had a significant effect on the moisture content and colour of bayberry powder. Effects of different contents of calcium oxide on the apparent density of spray-dried bayber- ry powder were not obvious. Adding calcium oxide had a significant effect on the wettability, angle of repose and moisture absorption rate of spray-dried bayberry powder, nevertheless, there was not obvious difference on these properties between adding 2 and 4 g/L calcium oxide. [Conclusion] The results confirmed that the con- tent of calcium oxide had a significant effect on the properties of spray-dried bay- berry powder.展开更多
The effect of calcium oxide additive in iron oxide sorbent for hot gas desulfurization was investigated by XRD and TPR techniques.XRD characterization showed that CaO was highly dispersed after the calcination of sorb...The effect of calcium oxide additive in iron oxide sorbent for hot gas desulfurization was investigated by XRD and TPR techniques.XRD characterization showed that CaO was highly dispersed after the calcination of sorbents.Calcium sulfate formed in the desulfurization was decomposed and regenerated to CaO by reacting with CO before the next sulfidation process.Calcium participated in every sulfidation/regeneration cycle and contributed to the enhancement of sulfur capacity.The TPR results showed that the reduction temperature of the sorbent increased with the increase of the content of calcium.Calcium played a role of retarding reduction.Therefore,the addition of calcium oxide additive will benefit the utilization of iron oxide sorbent in strongly reducing atmospheres.展开更多
In this paper, the effect of Ba(NO 3) 2 on the efficiency of sulfur fixation of calcium oxide during coal combustion was studied. The results showed that addition of barium nitrate to the CaO can enhance the sulfur ...In this paper, the effect of Ba(NO 3) 2 on the efficiency of sulfur fixation of calcium oxide during coal combustion was studied. The results showed that addition of barium nitrate to the CaO can enhance the sulfur removal rate of CaO significantly. The X \|ray diffraction spectrum of residual ash of coal added some sulfur fixative expressed that Ba\+\{2+\} can form a compound of Ba\|Al\|Si\|O which encloses the CaSO\-4 to prevent it's decomposition, so Ba\+\{2+\} can improve the action of sulfur fixation of CaO. The combustion character of the original coal and original coal added sulfur fixative was researched with thermal\|gravity analyzer and the results expressed that adding some sulfur fixative to the coal will make the combustion character of coal change little.展开更多
The valorization of eggshell waste as bio-calcium oxide is crucial for pollution prevention and supporting sustainable development.There are several reports on the thermal conversion of eggshell waste to calcium oxide...The valorization of eggshell waste as bio-calcium oxide is crucial for pollution prevention and supporting sustainable development.There are several reports on the thermal conversion of eggshell waste to calcium oxide for the partial or complete substitution of natural lime applications.However,this paper reports the thermal decomposition of large amounts of hatchery eggshell waste on an industrial-scale car bottom furnace for the first time.The hatchery eggshell waste was sundried and placed into five stacked trays in the car bottom furnace.The calcination of the eggshell waste was conducted at 900℃ for 3 and 4 h under an atmosphere of air.Both the physical and chemical properties of the eggshell samples and the bio-quicklime products were carefully examined by TGA,SEM,XRD,FTIR,and XRF.The results demonstrate that the purity of calcium oxide in the quicklime products increased from 79%to 87%upon increasing the calcination time from 3 to 4 h.However,the color of the calcined eggshell samples at the surface of the pile was white while the color of the product beneath the surface was black or dark gray.The purity of the calcium oxide of both the black and white calcined samples was 76.4%and 91.5%,respectively.These results indicate the limited efficacy of the car bottom furnace for thermal decomposition of the large amount of eggshell waste to calcium oxide.Additionally,the production cost of bio-calcium oxide is approximately twice the cost of industrial grade lime.For further industrial applications,the furnace should contain the mixing equipment for improving the thermal decomposition of the large pile of eggshell waste.Furthermore,the oil burner system may be used in order to reduce fuel costs.展开更多
A series of CaO samples were prepared by calcination of commercially available and synthesis of calcium salt precursors such as calcium acetate, carbonate, hydroxide and oxalate etc. CaO samples were found to be effec...A series of CaO samples were prepared by calcination of commercially available and synthesis of calcium salt precursors such as calcium acetate, carbonate, hydroxide and oxalate etc. CaO samples were found to be effective for the epoxidation of styrene using hydrogen peroxide as an oxidant in the presence of acetonitrile. To determine the influence of the physicochemical properties and surface basicity on the catalytic activity, the prepared CaO samples were characterized using thermogravimetry (TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), N2-adsorption and temperature-programmed desorption of CO2 (CO2-TPD). The results indicate that the amounts of very strong basic sites and high basicity strength on CaO sample are key factors for its excellent catalytic performance. In contrast, the surface area, porosity and the surface structure of CaO sample have a relatively minor effect on the catalytic activity. CaO sample, obtained by the decomposition of Ca(OH)2, prepared by precipitating calcium nitrate with sodium hydroxide in ethylene glycol solution, exhibits the highest amount of very strong basic sites and stronger strength of basic sites, and therefore it catalyses the epoxidation of styrene with the highest rate among the tested CaO samples. Under the selected reaction conditions, the selectivity of 97.5% to styrene oxide at a conversion in excess of 99% could be obtained.展开更多
Statistical analysis of product yield for biodiesel preparation by transesterification process was performed using the Minitab software. A standard RSM Design tool known as CCD was applied to study the transesterifica...Statistical analysis of product yield for biodiesel preparation by transesterification process was performed using the Minitab software. A standard RSM Design tool known as CCD was applied to study the transesterification reaction variables. The obtained parameters were verified experimentally for the transesterification reaction of rubber seed oil using solid metal oxide catalyst. The factors affecting the methyl ester yield during transesterification reaction were identified as the catalyst content, molar ratio of oil to alcohol and reaction time. High methyl ester yield and fast reaction rate could be obtained even if reaction temperature was relatively low, which is quite favorable to the industrial production of biodiesel from the rubber seed oil. 98.54% of methyl ester was formed from the transesterification of RSO with methanol. R-squared is a statistical measure of how close the data are to the fitted regression line. It is also known as the coefficient of determination, or the coefficient of multiple determination for multiple regression. In this study, an R<sup>2</sup> value of 0.98 is obtained.展开更多
We evaluated the fermentation products, the gaseous and effluent losses of sugarcane silages without calcium oxide (CaO) or with CaO addition, at the levels of zero, 0.8%, 1.6% and 2.4%, in association with the microb...We evaluated the fermentation products, the gaseous and effluent losses of sugarcane silages without calcium oxide (CaO) or with CaO addition, at the levels of zero, 0.8%, 1.6% and 2.4%, in association with the microbial additive Lactobacillus buchneri inoculated at the levels of zero, 50.000, 100.000 e 150.000 ufc/g of sugarcane, wet bases. The variety RB855536, harvested after 12 months of first growth was used. The experiment design was the completely randomized design, in a 4 × 4 factorial arrangement. They were evaluated in the silages, the contents of volatile fatty acids, lactic acid, ethanol, and the pH, as well as the gaseous and effluent losses. In the analysis of the data, the SAS system was utilized. It was observed on interaction effect of the chemical and microbial additive over the contents of lactic acid, acetic acid, propionic acid, butyric acid, ethanol and over the gaseous and effluents losses. However, there was no interaction effect regarding to pH. When it was observed on interaction effect of additives, the effects of the levels of one additive were evaluated by regression analysis in each level of each other, and vice-versa. The level 1.6% of CaO associated to the level 50,000 ufc/g of natural matter of Lactobacillus buchneri provided adequate levels of lactic acid (superior to 4.5%), and of acetic acid (around 1%), moderate content of propionic acid (0.55%), low content of butyric acid (0.05%) and controlled the production of ethanol and the gaseous and effluent losses. The pH of the silages were influenced by CaO addition, but were not affected consistently by microbial inoculation.展开更多
The extensive use of nanoparticles(NPs)in diverse applications causes their localization to aquatic habitats,affecting the metabolic products of primary producers in aquatic ecosystems,such as algae.Synthesized calciu...The extensive use of nanoparticles(NPs)in diverse applications causes their localization to aquatic habitats,affecting the metabolic products of primary producers in aquatic ecosystems,such as algae.Synthesized calcium oxide nanoparticles(CaO NPs)are of the scarcely studied NPs.Thus,the current work proposed that the exposure to CaO NPs may instigate metabolic pathway to be higher than that of normally growing algae,and positively stimulate algal biomass.In this respect,this research was undertaken to study the exposure effect of CaO NPs(0,20,40,60,80,and 100μg mL^(−1))on the growth,photosynthesis,respiration,oxidative stress,antioxidants,and lipid production of the microalga Coccomyxa chodatii SAG 216-2.The results showed that the algal growth concomitant with chlorophyll content,photosynthesis,and calcium content increased in response to CaO NPs.The contents of biomolecules such as proteins,amino acids,and carbohydrates were also promoted by CaO NPs with variant degrees.Furthermore,lipid production was enhanced by the applied nanoparticles.CaO NPs induced the accumulation of hydrogen peroxide,while lipid peroxidation was reduced,revealing no oxidative behavior of the applied nanoparticles on alga.Also,CaO NPs have a triggering effect on the antioxidant enzymes such as superoxide dismutase,catalase,ascorbate peroxidase,and guaiacol peroxidase.The results recommended the importance of the level of 60μg mL^(−1) CaO NPs on lipid production(with increasing percentage of 65%compared to control)and the highest dry matter acquisition of C.chodatii.This study recommended the feasibility of an integrated treatment strategy of CaO NPs in augmenting biomass,metabolic up-regulations,and lipid accumulation in C.chodatii.展开更多
The problems of traditional concrete such as brittleness,poor toughness and short service life of concrete engineering under acid rain or marine environment need to be solved urgently.Hydrated calcium silicate(C-S-H)i...The problems of traditional concrete such as brittleness,poor toughness and short service life of concrete engineering under acid rain or marine environment need to be solved urgently.Hydrated calcium silicate(C-S-H)is a key component to improve the mechanical properties and durability of concrete.However,the traditional method of concrete material design based on empirical models or comparative tests has become a bottleneck restricting the sustainable development of concrete.The synthesis method,molecular structure and properties of C-S-H were systematically described in this paper;The interface structure and interaction of graphene oxide/calcium silicate hydrate(C-S-H/GO)were discussed.On this basis,the saturated and unsaturated transport characteristics of ions and water molecules in C-S-H/GO nanochannels under the environment of ocean and acid rain were introduced.The contents of this review provide the basis for improving the multi-scale transmission theory and microstructure design of concrete.It has important guiding significance for analyzing and improving the service life of concrete in complex environment.展开更多
In this work, CaO-NiO mixed oxide powders were evaluated as consecutive CO;chemisorbents and catalytic materials for hydrogen production thought the CH;reforming process. Between the NiO impregnated CaO and CaO-NiO me...In this work, CaO-NiO mixed oxide powders were evaluated as consecutive CO;chemisorbents and catalytic materials for hydrogen production thought the CH;reforming process. Between the NiO impregnated CaO and CaO-NiO mechanical composite, the first one presented better chemical behaviors during the CO;capture and CH;reforming processes, obtaining syngas(H;+ CO) as final product. Results showed that syngas was produced at two different temperature ranges, between 400 and 600 °C and at T > 800 °C, where the first temperature range corresponds to the CH;reforming process but the second temperature range was attributed to a different catalytic reaction process: CH;partial oxidation. These results were confirmed through different isothermal and cyclic experiments as well as by XRD analysis of the final catalytic products, where the nickel reduction was evidenced. Moreover, when a CO-O;flow was used during the carbonation process a triple process was achieved:(i) CO oxidation,(ii) CO;chemisorption and(iii) CH;reforming. Using this gas flow the hydrogen production was always higher than that obtained with CO;.展开更多
Up to 9% of the global CO_(2) emissions come from the iron and steel industry. Here, a combined chemical looping process to produce CO, a building block for the chemical industry, from the CO_(2) -rich blast furnace g...Up to 9% of the global CO_(2) emissions come from the iron and steel industry. Here, a combined chemical looping process to produce CO, a building block for the chemical industry, from the CO_(2) -rich blast furnace gas of a steel mill is proposed. This cyclic process can make use of abundant Fe_(3)O_(4) and CaO as solid oxygen and CO_(2) carriers at atmospheric pressure. A proof of concept was obtained in a laboratory-scale fixed bed reactor with synthetic blast furnace gas and Fe_(3)O_(4) /CaO = 0.6 kg/kg. CO production from the proposed process was investigated at both isothermal conditions(1023 K) and upon imposing a temperature program from 1023 to 1148 K. The experimental results were compared using performance indicators such as CO yield, CO space time yield, carbon recovery of the process, fuel utilisation, and solids’ utilisation.The temperature-programmed CO production resulted in a CO yield of 0.056 ± 0.002 mol per mol of synthetic blast furnace gas at an average CO space time yield of 7.6 mmol kgFe^(-1) s^(-1) over 10 cycles, carbon recovery of 48% ± 1%, fuel utilisation of 23% ± 2%, and an average calcium oxide and iron oxide utilisation of 22% ± 1% and 11% ± 1%. These experimental performance indicators for the temperature-programmed CO production were consistently better than those of the isothermal implementation mode by 20% to 35%. Over 10 consecutive process cycles, no significant losses in CO yield were observed in either implementation mode. Process simulation was carried out for 1 million metric tonnes per year of equivalent CO_(2) emissions from the blast furnace gas of a steel mill to analyse the exergy losses in both modes of operation. Comparison of the exergy efficiency of the temperature-programmed process to the isothermal process showed that the former is more efficient because of the higher CO concentration achievable,despite 20% higher exergy losses caused by heat transfer required to change temperature.展开更多
A new type of calcium-based regenerable carbon dioxide (CO_2) sorbent, CaO-NiO, was synthesized via the sol-gel method. The as synthesized CO_2 sorbent was in the form of nanoparticles. The CO_2 sorption temperature...A new type of calcium-based regenerable carbon dioxide (CO_2) sorbent, CaO-NiO, was synthesized via the sol-gel method. The as synthesized CO_2 sorbent was in the form of nanoparticles. The CO_2 sorption temperature and capacity of the sorbent were examined using thermogravi- metric analysis (TGA). The CaO-NiO sorbent is able to capture CO_2 at a lower sorption temperature (465 ℃) than pure calcium oxide (CaO) (600 ℃). The role of NiO in the CaO-NiO sorbent in lowering the CO_2 sorption temperature was also investigated. The sorbent was char- acterized by X-ray diffractometer (XRD), N_2 adsorption-desorption analysis, high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM). CaO and NiO were found to coexist in the sorbent. Neither solid solution nor mixed metal oxide was formed. NiO did not react with CO_2 in the sorption process; but it worked like a catalyst to promote the CaO carbonation reaction. It is suggested that this new CaO-NiO sorbent may have a promising application as an effective CO_2 sorbent with lower energy consumption.展开更多
Graphene oxide(GO) holds great promise for a broad array of applications in many fields,but also poses serious potential risks to human health and the environment.In this study,the adsorptive properties of GO toward...Graphene oxide(GO) holds great promise for a broad array of applications in many fields,but also poses serious potential risks to human health and the environment.In this study,the adsorptive properties of GO toward Ca^(2+) and Na+were investigated using batch adsorption experiments,zeta potential measurements,and spectroscopic analysis.When pH increased from 4 to 9,Ca^(2+)adsorption by GO and the zeta potential of GO increased significantly.Raman spectra suggest that Ca^(2+)was strongly adsorbed on the GO via –COO Ca~+ formation.On the other hand,Na+was adsorbed into the electrical diffuse layer as an inert counterion to increase the diffuse layer zeta potential.While the GO suspension became unstable with increasing pH from 4 to 10 in the presence of Ca^(2+),it was more stable at higher pH in the NaC l solution.The findings of this research provide insights in the adsorption of Ca^(2+)on GO and fundamental basis for prediction of its effect on the colloidal stability of GO in the environment.展开更多
It is well known that calcium oxide (CaO) has better catalytic efficiency than most heterogeneous catalysts in many transesterification reactions. However, the gradual deactivation problem prevents its large-scale app...It is well known that calcium oxide (CaO) has better catalytic efficiency than most heterogeneous catalysts in many transesterification reactions. However, the gradual deactivation problem prevents its large-scale application in industry. In this paper, the deactivation mechanism of CaO in a fixed-bed reactor is investigated based on the transesterification reaction of propylene carbonate and methanol. The leaching amount of CaO during the reaction was estimated by the concentration of Ca in the products. The pretreated and recovered catalysts were characterized by FT-IR, XRD, TG-MS and SEM-EDS. It is evident from experiments and characterization that the deactivation process of CaO is accompanied by the leaching of calcium species and the generation of CaCO3, which are also verified by DFT calculations. At high temperature and high weight hourly space velocity, the deactivation was attributed to the formation of dense CaCO3 shell, which prevents the contact between the feedstock and the active species inside.展开更多
The value-added utilization of converter steel slag is crucial, with China’s annual production having reached 100 million tons. The utilization of converter slag in the construction materials sector is limited as it ...The value-added utilization of converter steel slag is crucial, with China’s annual production having reached 100 million tons. The utilization of converter slag in the construction materials sector is limited as it undergoes volume expansion during the aging process, mainly caused by the hydration reaction of free calcium oxide present in the slag. The influence of alumina addition on the mineral transformation of typical industrial converter slag was investigated. Different quantities of alumina were introduced into the slag, and the original and modified slags were remelted under argon atmosphere, followed by quenching. The experimental results were compared with thermodynamic simulation calculations for further analysis. As the alumina content increases, it reacts with the free calcium oxide in slag, leading to the formation of low-melting-point calcium aluminoferrite. Additionally, alumina addition effectively reduces slag viscosity. Finally, an assessment of the energy consumption for alumina-modified and silica-modified converter slags was presented.展开更多
This paper describes a new method for producing TiCl4 by chloridizing materials of high content CaO and MgO, in which a combined fluidized bed is used as a reactor to avoid agglomeration between particles caused by mo...This paper describes a new method for producing TiCl4 by chloridizing materials of high content CaO and MgO, in which a combined fluidized bed is used as a reactor to avoid agglomeration between particles caused by molten CaCl2 and MgCl2. The combined fluidized bed consists of at least a riser tube and a semi-circulating fluidized bed. Two kinds of high titanium slag, in which the total mass content of CaO and MgO is 2.03% and 9.09% respectively, are employed to examine the anti-agglomeration effect and the conversion of the materials when the temperature ranges are between 923.15K and 1073.15K, gas apparent velocity 0.7--1.1m.s-1, and inlet amount of solid materials is 4.6-7.0kg·h^-1. It is found that the anti-agglomeration effect in the combined fluidized bed is satisfactory and the new method can achieve a TiCl4 production capacity of 14.0-75.4t·m^-2·d^-1 in relation to 25.0-- 40.0t·m^-2·d^-1 from the conventional bubble bed. Furthermore, low-temperature chloridization, for example, at 923K or 973K, can also be used to produce TiCl4 and avoid agglomeration.展开更多
In this study, the main purpose is to develop low-cost catalysts with high activity and stability for high quality syngas production via steam reforming of biomass tar in biomass gasification process. The calcined was...In this study, the main purpose is to develop low-cost catalysts with high activity and stability for high quality syngas production via steam reforming of biomass tar in biomass gasification process. The calcined waste scallop shell(CS) supported copper(Cu) catalysts are prepared for steam reforming of biomass tar. The prepared Cu supported on CS catalysts exhibit higher catalytic activity than those on commercial CaO and Al;O;. Characterization results indicate that Cu/CS has a strong interaction between Cu and CaO in CS support, resulting in the formation of calcium copper oxide phase which could stabilize Cu species and provide new active sites for the tar reforming. In addition, the strong basicity of CS support and other inorganic elements contained in CS support could enhance the activity of Cu/CS. The addition of a small amount of Co is found to be able to stabilize the catalytic activity of Cu/CS catalysts,making them reusable after regeneration without any loss of their activities.展开更多
Tars and alkali ashes from biomass gasification processes currently constitute one of the major problems in biomass valorisation, generating clogging of filters and issues related with the purity of syngas production....Tars and alkali ashes from biomass gasification processes currently constitute one of the major problems in biomass valorisation, generating clogging of filters and issues related with the purity of syngas production. To date, these waste residues find no useful applications and they are generally disposed upon generation in the gasification process. A detailed analysis of these residues pointed out the presence of high quantities of Ca (〉30 wt%). TG experiments indicated that a treatment under air at moderate temperatures (400-800 ~C) decomposed the majority of carbon species, while XRD indicated the presence of a crystalline CaO phase. CaO enriched valorized materials turned out to be good heterogeneous catalysts for biodiesel production from vegetable oils, providing moderate to good activities (50%-70% after 12 h) to fatty acid methyl esters in the transesterification of sunflower oil with methanol.展开更多
The cathodic behavior of molten CaCl2, CaCl2-CaO and equimolar CaCl2-NaCl-CaO was studied by cyclic voltammograms and constant potential polarization at temperatures of 1123 to 1173 K on molybdenum and titanium electr...The cathodic behavior of molten CaCl2, CaCl2-CaO and equimolar CaCl2-NaCl-CaO was studied by cyclic voltammograms and constant potential polarization at temperatures of 1123 to 1173 K on molybdenum and titanium electrodes. The diffusion coefficient of Ca2+ (CaO) in molten CaCl2-CaO was calculated from the linear relationship between the square root of scan rate and the peak current density. The deposition potentials and the potential temperature coefficient of CaO in molten CaCl2-0.5mol%CaO and CaCl2-NaCl-0.5mol%CaO were also obtained from their cyclic voltammograms. The result shows that CaO is more easily reduced than CaCl2. The addition of NaCl in molten CaCl2-CaO induces the underpotential electrodeposition of CaO.展开更多
基金Supported by the Project of Natural Science Fund of Zhejiang Province(Y3110376)~~
文摘[Objective] Effects of different contents of calcium oxide on physicochemi- cal properties of spray-dried bayberry powder were studied. [Method] Bayberry pow- der produced from bayberry juice adding 0, 2 and 4 g/L calcium oxide using the spray drying technique has been selected. The physicochemical properties of the spray-dried bayberry powder were investigated by determining moisture content, colour, apparent density, wettability, angle of repose and moisture absorption rate of bayberry powder. [Result] The results showed that the content of calcium oxide had a significant effect on the moisture content and colour of bayberry powder. Effects of different contents of calcium oxide on the apparent density of spray-dried bayber- ry powder were not obvious. Adding calcium oxide had a significant effect on the wettability, angle of repose and moisture absorption rate of spray-dried bayberry powder, nevertheless, there was not obvious difference on these properties between adding 2 and 4 g/L calcium oxide. [Conclusion] The results confirmed that the con- tent of calcium oxide had a significant effect on the properties of spray-dried bay- berry powder.
基金the National Key Fundamental Research Project of the Ministry of Science and Technology(973 2005CB221203)
文摘The effect of calcium oxide additive in iron oxide sorbent for hot gas desulfurization was investigated by XRD and TPR techniques.XRD characterization showed that CaO was highly dispersed after the calcination of sorbents.Calcium sulfate formed in the desulfurization was decomposed and regenerated to CaO by reacting with CO before the next sulfidation process.Calcium participated in every sulfidation/regeneration cycle and contributed to the enhancement of sulfur capacity.The TPR results showed that the reduction temperature of the sorbent increased with the increase of the content of calcium.Calcium played a role of retarding reduction.Therefore,the addition of calcium oxide additive will benefit the utilization of iron oxide sorbent in strongly reducing atmospheres.
文摘In this paper, the effect of Ba(NO 3) 2 on the efficiency of sulfur fixation of calcium oxide during coal combustion was studied. The results showed that addition of barium nitrate to the CaO can enhance the sulfur removal rate of CaO significantly. The X \|ray diffraction spectrum of residual ash of coal added some sulfur fixative expressed that Ba\+\{2+\} can form a compound of Ba\|Al\|Si\|O which encloses the CaSO\-4 to prevent it's decomposition, so Ba\+\{2+\} can improve the action of sulfur fixation of CaO. The combustion character of the original coal and original coal added sulfur fixative was researched with thermal\|gravity analyzer and the results expressed that adding some sulfur fixative to the coal will make the combustion character of coal change little.
文摘The valorization of eggshell waste as bio-calcium oxide is crucial for pollution prevention and supporting sustainable development.There are several reports on the thermal conversion of eggshell waste to calcium oxide for the partial or complete substitution of natural lime applications.However,this paper reports the thermal decomposition of large amounts of hatchery eggshell waste on an industrial-scale car bottom furnace for the first time.The hatchery eggshell waste was sundried and placed into five stacked trays in the car bottom furnace.The calcination of the eggshell waste was conducted at 900℃ for 3 and 4 h under an atmosphere of air.Both the physical and chemical properties of the eggshell samples and the bio-quicklime products were carefully examined by TGA,SEM,XRD,FTIR,and XRF.The results demonstrate that the purity of calcium oxide in the quicklime products increased from 79%to 87%upon increasing the calcination time from 3 to 4 h.However,the color of the calcined eggshell samples at the surface of the pile was white while the color of the product beneath the surface was black or dark gray.The purity of the calcium oxide of both the black and white calcined samples was 76.4%and 91.5%,respectively.These results indicate the limited efficacy of the car bottom furnace for thermal decomposition of the large amount of eggshell waste to calcium oxide.Additionally,the production cost of bio-calcium oxide is approximately twice the cost of industrial grade lime.For further industrial applications,the furnace should contain the mixing equipment for improving the thermal decomposition of the large pile of eggshell waste.Furthermore,the oil burner system may be used in order to reduce fuel costs.
基金supported by the National Natural Science Foundation of China (No.21173110)
文摘A series of CaO samples were prepared by calcination of commercially available and synthesis of calcium salt precursors such as calcium acetate, carbonate, hydroxide and oxalate etc. CaO samples were found to be effective for the epoxidation of styrene using hydrogen peroxide as an oxidant in the presence of acetonitrile. To determine the influence of the physicochemical properties and surface basicity on the catalytic activity, the prepared CaO samples were characterized using thermogravimetry (TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), N2-adsorption and temperature-programmed desorption of CO2 (CO2-TPD). The results indicate that the amounts of very strong basic sites and high basicity strength on CaO sample are key factors for its excellent catalytic performance. In contrast, the surface area, porosity and the surface structure of CaO sample have a relatively minor effect on the catalytic activity. CaO sample, obtained by the decomposition of Ca(OH)2, prepared by precipitating calcium nitrate with sodium hydroxide in ethylene glycol solution, exhibits the highest amount of very strong basic sites and stronger strength of basic sites, and therefore it catalyses the epoxidation of styrene with the highest rate among the tested CaO samples. Under the selected reaction conditions, the selectivity of 97.5% to styrene oxide at a conversion in excess of 99% could be obtained.
文摘Statistical analysis of product yield for biodiesel preparation by transesterification process was performed using the Minitab software. A standard RSM Design tool known as CCD was applied to study the transesterification reaction variables. The obtained parameters were verified experimentally for the transesterification reaction of rubber seed oil using solid metal oxide catalyst. The factors affecting the methyl ester yield during transesterification reaction were identified as the catalyst content, molar ratio of oil to alcohol and reaction time. High methyl ester yield and fast reaction rate could be obtained even if reaction temperature was relatively low, which is quite favorable to the industrial production of biodiesel from the rubber seed oil. 98.54% of methyl ester was formed from the transesterification of RSO with methanol. R-squared is a statistical measure of how close the data are to the fitted regression line. It is also known as the coefficient of determination, or the coefficient of multiple determination for multiple regression. In this study, an R<sup>2</sup> value of 0.98 is obtained.
文摘We evaluated the fermentation products, the gaseous and effluent losses of sugarcane silages without calcium oxide (CaO) or with CaO addition, at the levels of zero, 0.8%, 1.6% and 2.4%, in association with the microbial additive Lactobacillus buchneri inoculated at the levels of zero, 50.000, 100.000 e 150.000 ufc/g of sugarcane, wet bases. The variety RB855536, harvested after 12 months of first growth was used. The experiment design was the completely randomized design, in a 4 × 4 factorial arrangement. They were evaluated in the silages, the contents of volatile fatty acids, lactic acid, ethanol, and the pH, as well as the gaseous and effluent losses. In the analysis of the data, the SAS system was utilized. It was observed on interaction effect of the chemical and microbial additive over the contents of lactic acid, acetic acid, propionic acid, butyric acid, ethanol and over the gaseous and effluents losses. However, there was no interaction effect regarding to pH. When it was observed on interaction effect of additives, the effects of the levels of one additive were evaluated by regression analysis in each level of each other, and vice-versa. The level 1.6% of CaO associated to the level 50,000 ufc/g of natural matter of Lactobacillus buchneri provided adequate levels of lactic acid (superior to 4.5%), and of acetic acid (around 1%), moderate content of propionic acid (0.55%), low content of butyric acid (0.05%) and controlled the production of ethanol and the gaseous and effluent losses. The pH of the silages were influenced by CaO addition, but were not affected consistently by microbial inoculation.
文摘The extensive use of nanoparticles(NPs)in diverse applications causes their localization to aquatic habitats,affecting the metabolic products of primary producers in aquatic ecosystems,such as algae.Synthesized calcium oxide nanoparticles(CaO NPs)are of the scarcely studied NPs.Thus,the current work proposed that the exposure to CaO NPs may instigate metabolic pathway to be higher than that of normally growing algae,and positively stimulate algal biomass.In this respect,this research was undertaken to study the exposure effect of CaO NPs(0,20,40,60,80,and 100μg mL^(−1))on the growth,photosynthesis,respiration,oxidative stress,antioxidants,and lipid production of the microalga Coccomyxa chodatii SAG 216-2.The results showed that the algal growth concomitant with chlorophyll content,photosynthesis,and calcium content increased in response to CaO NPs.The contents of biomolecules such as proteins,amino acids,and carbohydrates were also promoted by CaO NPs with variant degrees.Furthermore,lipid production was enhanced by the applied nanoparticles.CaO NPs induced the accumulation of hydrogen peroxide,while lipid peroxidation was reduced,revealing no oxidative behavior of the applied nanoparticles on alga.Also,CaO NPs have a triggering effect on the antioxidant enzymes such as superoxide dismutase,catalase,ascorbate peroxidase,and guaiacol peroxidase.The results recommended the importance of the level of 60μg mL^(−1) CaO NPs on lipid production(with increasing percentage of 65%compared to control)and the highest dry matter acquisition of C.chodatii.This study recommended the feasibility of an integrated treatment strategy of CaO NPs in augmenting biomass,metabolic up-regulations,and lipid accumulation in C.chodatii.
基金This work was supported by a Doctoral program of Zhejiang University of science and technology(F701104L08)。
文摘The problems of traditional concrete such as brittleness,poor toughness and short service life of concrete engineering under acid rain or marine environment need to be solved urgently.Hydrated calcium silicate(C-S-H)is a key component to improve the mechanical properties and durability of concrete.However,the traditional method of concrete material design based on empirical models or comparative tests has become a bottleneck restricting the sustainable development of concrete.The synthesis method,molecular structure and properties of C-S-H were systematically described in this paper;The interface structure and interaction of graphene oxide/calcium silicate hydrate(C-S-H/GO)were discussed.On this basis,the saturated and unsaturated transport characteristics of ions and water molecules in C-S-H/GO nanochannels under the environment of ocean and acid rain were introduced.The contents of this review provide the basis for improving the multi-scale transmission theory and microstructure design of concrete.It has important guiding significance for analyzing and improving the service life of concrete in complex environment.
基金financially supported by the projects PAPIITUNAM(IN-101916)CONACyTDGAPA-UNAM for financial support
文摘In this work, CaO-NiO mixed oxide powders were evaluated as consecutive CO;chemisorbents and catalytic materials for hydrogen production thought the CH;reforming process. Between the NiO impregnated CaO and CaO-NiO mechanical composite, the first one presented better chemical behaviors during the CO;capture and CH;reforming processes, obtaining syngas(H;+ CO) as final product. Results showed that syngas was produced at two different temperature ranges, between 400 and 600 °C and at T > 800 °C, where the first temperature range corresponds to the CH;reforming process but the second temperature range was attributed to a different catalytic reaction process: CH;partial oxidation. These results were confirmed through different isothermal and cyclic experiments as well as by XRD analysis of the final catalytic products, where the nickel reduction was evidenced. Moreover, when a CO-O;flow was used during the carbonation process a triple process was achieved:(i) CO oxidation,(ii) CO;chemisorption and(iii) CH;reforming. Using this gas flow the hydrogen production was always higher than that obtained with CO;.
基金financial support from the project Cabon4PUR which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 768919support of Dr. Alessandro Longo for Rietveld refinement of XRDsupport of the Wim Rogiers and Micha?l Lottin at the LCT for the fixed bed reactor setup used for experimental validation of the process concept。
文摘Up to 9% of the global CO_(2) emissions come from the iron and steel industry. Here, a combined chemical looping process to produce CO, a building block for the chemical industry, from the CO_(2) -rich blast furnace gas of a steel mill is proposed. This cyclic process can make use of abundant Fe_(3)O_(4) and CaO as solid oxygen and CO_(2) carriers at atmospheric pressure. A proof of concept was obtained in a laboratory-scale fixed bed reactor with synthetic blast furnace gas and Fe_(3)O_(4) /CaO = 0.6 kg/kg. CO production from the proposed process was investigated at both isothermal conditions(1023 K) and upon imposing a temperature program from 1023 to 1148 K. The experimental results were compared using performance indicators such as CO yield, CO space time yield, carbon recovery of the process, fuel utilisation, and solids’ utilisation.The temperature-programmed CO production resulted in a CO yield of 0.056 ± 0.002 mol per mol of synthetic blast furnace gas at an average CO space time yield of 7.6 mmol kgFe^(-1) s^(-1) over 10 cycles, carbon recovery of 48% ± 1%, fuel utilisation of 23% ± 2%, and an average calcium oxide and iron oxide utilisation of 22% ± 1% and 11% ± 1%. These experimental performance indicators for the temperature-programmed CO production were consistently better than those of the isothermal implementation mode by 20% to 35%. Over 10 consecutive process cycles, no significant losses in CO yield were observed in either implementation mode. Process simulation was carried out for 1 million metric tonnes per year of equivalent CO_(2) emissions from the blast furnace gas of a steel mill to analyse the exergy losses in both modes of operation. Comparison of the exergy efficiency of the temperature-programmed process to the isothermal process showed that the former is more efficient because of the higher CO concentration achievable,despite 20% higher exergy losses caused by heat transfer required to change temperature.
基金supported by Long Term Research Grant(LRGS)(203/PKT/6723001) from Ministry of Higher Education(MOHE)Research University Team Grant(1001/PJKIMIA/854001) from University Sains MalaysiaPostgraduate Research Grant Scheme(PRGS) from University Sains Malaysia and USM Fellowship
文摘A new type of calcium-based regenerable carbon dioxide (CO_2) sorbent, CaO-NiO, was synthesized via the sol-gel method. The as synthesized CO_2 sorbent was in the form of nanoparticles. The CO_2 sorption temperature and capacity of the sorbent were examined using thermogravi- metric analysis (TGA). The CaO-NiO sorbent is able to capture CO_2 at a lower sorption temperature (465 ℃) than pure calcium oxide (CaO) (600 ℃). The role of NiO in the CaO-NiO sorbent in lowering the CO_2 sorption temperature was also investigated. The sorbent was char- acterized by X-ray diffractometer (XRD), N_2 adsorption-desorption analysis, high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM). CaO and NiO were found to coexist in the sorbent. Neither solid solution nor mixed metal oxide was formed. NiO did not react with CO_2 in the sorption process; but it worked like a catalyst to promote the CaO carbonation reaction. It is suggested that this new CaO-NiO sorbent may have a promising application as an effective CO_2 sorbent with lower energy consumption.
文摘Graphene oxide(GO) holds great promise for a broad array of applications in many fields,but also poses serious potential risks to human health and the environment.In this study,the adsorptive properties of GO toward Ca^(2+) and Na+were investigated using batch adsorption experiments,zeta potential measurements,and spectroscopic analysis.When pH increased from 4 to 9,Ca^(2+)adsorption by GO and the zeta potential of GO increased significantly.Raman spectra suggest that Ca^(2+)was strongly adsorbed on the GO via –COO Ca~+ formation.On the other hand,Na+was adsorbed into the electrical diffuse layer as an inert counterion to increase the diffuse layer zeta potential.While the GO suspension became unstable with increasing pH from 4 to 10 in the presence of Ca^(2+),it was more stable at higher pH in the NaC l solution.The findings of this research provide insights in the adsorption of Ca^(2+)on GO and fundamental basis for prediction of its effect on the colloidal stability of GO in the environment.
基金supported by the Liaoning Provincial Natural Science Foundation Joint Fund for Innovation Capability Improvement(2021-NLTS-12-02)Key Research and Local Service Projects of the Liaoning Provincial Department of Education(LDB2019005).
文摘It is well known that calcium oxide (CaO) has better catalytic efficiency than most heterogeneous catalysts in many transesterification reactions. However, the gradual deactivation problem prevents its large-scale application in industry. In this paper, the deactivation mechanism of CaO in a fixed-bed reactor is investigated based on the transesterification reaction of propylene carbonate and methanol. The leaching amount of CaO during the reaction was estimated by the concentration of Ca in the products. The pretreated and recovered catalysts were characterized by FT-IR, XRD, TG-MS and SEM-EDS. It is evident from experiments and characterization that the deactivation process of CaO is accompanied by the leaching of calcium species and the generation of CaCO3, which are also verified by DFT calculations. At high temperature and high weight hourly space velocity, the deactivation was attributed to the formation of dense CaCO3 shell, which prevents the contact between the feedstock and the active species inside.
基金support from National Natural Science Foundation of China (No. 52004189)Project of Hubei Provincial Department of Science and Technology (Nos. 2022BAA021 and 2022CFB051)+2 种基金China Postdoctoral Science Foundation (Nos. 2023T160210 and 2022M721109)Young Elite Scientists Sponsorship Program by CAST (No. 2022QNRC001)Wuhan University of Science and Technology Graduate Innovation and Entrepreneurship Fund (No. JCX2022009).
文摘The value-added utilization of converter steel slag is crucial, with China’s annual production having reached 100 million tons. The utilization of converter slag in the construction materials sector is limited as it undergoes volume expansion during the aging process, mainly caused by the hydration reaction of free calcium oxide present in the slag. The influence of alumina addition on the mineral transformation of typical industrial converter slag was investigated. Different quantities of alumina were introduced into the slag, and the original and modified slags were remelted under argon atmosphere, followed by quenching. The experimental results were compared with thermodynamic simulation calculations for further analysis. As the alumina content increases, it reacts with the free calcium oxide in slag, leading to the formation of low-melting-point calcium aluminoferrite. Additionally, alumina addition effectively reduces slag viscosity. Finally, an assessment of the energy consumption for alumina-modified and silica-modified converter slags was presented.
基金Supported by the National Natural Science Foundation of China (No.20306030) and China Postdoctoral Science Foundation (No.2003033240).
文摘This paper describes a new method for producing TiCl4 by chloridizing materials of high content CaO and MgO, in which a combined fluidized bed is used as a reactor to avoid agglomeration between particles caused by molten CaCl2 and MgCl2. The combined fluidized bed consists of at least a riser tube and a semi-circulating fluidized bed. Two kinds of high titanium slag, in which the total mass content of CaO and MgO is 2.03% and 9.09% respectively, are employed to examine the anti-agglomeration effect and the conversion of the materials when the temperature ranges are between 923.15K and 1073.15K, gas apparent velocity 0.7--1.1m.s-1, and inlet amount of solid materials is 4.6-7.0kg·h^-1. It is found that the anti-agglomeration effect in the combined fluidized bed is satisfactory and the new method can achieve a TiCl4 production capacity of 14.0-75.4t·m^-2·d^-1 in relation to 25.0-- 40.0t·m^-2·d^-1 from the conventional bubble bed. Furthermore, low-temperature chloridization, for example, at 923K or 973K, can also be used to produce TiCl4 and avoid agglomeration.
基金supported by Aomori City Government,Japan and the International Joint Research Project of Shanxi Province(No.2015081051 and 2015081052),Chinathe scholarship from the Ministry of Education,Culture,Sports,Science and Technology(MEXT)of Japanresearch fund for Ph.D.course student from Hirosaki University
文摘In this study, the main purpose is to develop low-cost catalysts with high activity and stability for high quality syngas production via steam reforming of biomass tar in biomass gasification process. The calcined waste scallop shell(CS) supported copper(Cu) catalysts are prepared for steam reforming of biomass tar. The prepared Cu supported on CS catalysts exhibit higher catalytic activity than those on commercial CaO and Al;O;. Characterization results indicate that Cu/CS has a strong interaction between Cu and CaO in CS support, resulting in the formation of calcium copper oxide phase which could stabilize Cu species and provide new active sites for the tar reforming. In addition, the strong basicity of CS support and other inorganic elements contained in CS support could enhance the activity of Cu/CS. The addition of a small amount of Co is found to be able to stabilize the catalytic activity of Cu/CS catalysts,making them reusable after regeneration without any loss of their activities.
基金the Gobierno de Espaa for the Provision of a Ramon y Cajal Contract (ref. RYC-2009-04199).supported by the Projects CTQ2010-18126 and CTQ2011 28954-C02-02 (MICINN) as well as P10-FQM-6711 (Consejeria de Ciencia e Innovacion,Junta de Andalucia)
文摘Tars and alkali ashes from biomass gasification processes currently constitute one of the major problems in biomass valorisation, generating clogging of filters and issues related with the purity of syngas production. To date, these waste residues find no useful applications and they are generally disposed upon generation in the gasification process. A detailed analysis of these residues pointed out the presence of high quantities of Ca (〉30 wt%). TG experiments indicated that a treatment under air at moderate temperatures (400-800 ~C) decomposed the majority of carbon species, while XRD indicated the presence of a crystalline CaO phase. CaO enriched valorized materials turned out to be good heterogeneous catalysts for biodiesel production from vegetable oils, providing moderate to good activities (50%-70% after 12 h) to fatty acid methyl esters in the transesterification of sunflower oil with methanol.
基金supported by the National Natural Science Foundation of China (No.50674027)
文摘The cathodic behavior of molten CaCl2, CaCl2-CaO and equimolar CaCl2-NaCl-CaO was studied by cyclic voltammograms and constant potential polarization at temperatures of 1123 to 1173 K on molybdenum and titanium electrodes. The diffusion coefficient of Ca2+ (CaO) in molten CaCl2-CaO was calculated from the linear relationship between the square root of scan rate and the peak current density. The deposition potentials and the potential temperature coefficient of CaO in molten CaCl2-0.5mol%CaO and CaCl2-NaCl-0.5mol%CaO were also obtained from their cyclic voltammograms. The result shows that CaO is more easily reduced than CaCl2. The addition of NaCl in molten CaCl2-CaO induces the underpotential electrodeposition of CaO.