期刊文献+
共找到302篇文章
< 1 2 16 >
每页显示 20 50 100
Chemical and Microstructural Effects of Different Calcinating Temperatures on Selected Pozzolans
1
作者 Catherine Mayowa Ikumapayi 《Journal of Materials Science and Chemical Engineering》 2018年第12期16-31,共16页
Recent researches show that agricultural wastes can be reuse as pozolans;this contributes to our environmental sustenance. The need to successful carry out proper analysis contributes significantly to improving the ov... Recent researches show that agricultural wastes can be reuse as pozolans;this contributes to our environmental sustenance. The need to successful carry out proper analysis contributes significantly to improving the overall use of the discovered pozolans. Therefore, this research aims to investigate the micro-structural and chemical analysis of some selected pozzolans at different calcinating temperatures. Rich husk ash (RHA), groundnut shell ash (GSA), locust beans pod ash (LBPA) and bamboo leaf ash (BLA) were obtained;their chemical and microstructural analysis at different calcinating temperatures (500°C, 600°C and 700°C) were carried out using X-ray fluorescence and scanning electron microscope. The results show that the optimum calcinating temperatures considering the microstructure and chemical composition of RHA, BLA and LBPA were 700°C, 500°C and 600°C respectively. These pozzolans were also classified according to ASTM 618 requirement. 展开更多
关键词 Agro-Waste calcinating Temperature CHEMICAL COMPOSITION Microstructure POZZOLANS
暂未订购
Adsorption Characteristics of Congo Red Dye onto Calcinated Mytilus edulis Shell Powders
2
作者 WANG Xin GE Xiangyun +4 位作者 ZHU Siqi LIU Weixiang XING Ronge LI Pengcheng LI Kecheng 《Journal of Ocean University of China》 2025年第1期229-237,共9页
Dye wastewater poses a significant threat to aquatic organisms due to its high toxicity.Reducing or eliminating the dye waste from the water is necessary for a healthy and sustainable aquaculture.This study investigat... Dye wastewater poses a significant threat to aquatic organisms due to its high toxicity.Reducing or eliminating the dye waste from the water is necessary for a healthy and sustainable aquaculture.This study investigated the adsorption properties of Congo red dye on Mytilus edulis shell powders prepared by calcination at 500℃,700℃,and 900℃.The modified shell powder products were analyzed by SEM(scanning eletron microscopy)and FTIR(fourier transform infrared spectroscopy)for the morphology and structural characterization.The effects of different calcination temperatures,reaction times,reaction temperatures,and initial concentration of Congo red on the adsorption properties were investigated.The adsorption kinetics and isothermal adsorption models were also established.The results revealed that the shell powder calcinated at 900℃showed the best adsorption capacity on Congo red from aqueous solution.The adsorption reaction reached equilibrium after 150 min and followed by the pseudo-second-order kinetic model.At 25℃,96.2%of the Congo red in the solution could be removed,and the adsorption capacity could reach at least 1015 mg g^(–1).The adsorption isotherm is fit with the Freundlich model,indicating a multiphase adsorption process.These results are helpful for cleaning and treating printing and dyeing effluents as well as high-value utilization of shell waste resources. 展开更多
关键词 ADSORPTION Congo red high-temperature calcination Mytilus edulis SHELL
在线阅读 下载PDF
Activity of Electrolytic Manganese Residue under High Temperature Calcination-mechanical Coupling and the Solidification Mechanism of Heavy Metals
3
作者 QIAO Hongxia FU Yong +2 位作者 FENG Qiong LI Yanqi JIA Zhenyu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第4期953-966,共14页
The effects of calcination temperature and mechanical ball milling on the physicochemical properties of electrolytic manganese residue(EMR),mineral phase transition,pozzolanic activity,and pore structure were studied.... The effects of calcination temperature and mechanical ball milling on the physicochemical properties of electrolytic manganese residue(EMR),mineral phase transition,pozzolanic activity,and pore structure were studied.The experimental results show that the strength activity index(SAI)of 20%EMR mixed mortar at 28 days is 90.54%,95.40%,and 90.73%,respectively,after pretreatment with EMR at 800℃calcined for 3,5,and 8 min.This is mainly attributed to the high temperature decomposition of gypsum dihydrate to form activated calcium oxide.In addition,high temperature and mechanical force destroys the Si-O chemical bond and promotes the formation of calcium silicate gel structure.Due to the existence of a large number of gypsum phases in EMR mixed mortar,a large number of ettringite,C-S-H,aluminosilicate,C-A-S-H,and AFm are formed,which strongly verifies the volcanic activity of EMR.The leaching test shows that high temperature calcination has a significant effect on the stabilization of NH_(3)-N.However,the curing effect of Mn^(2+)is significant only in the calcination at 1000℃,but both Mn^(2+)and NH_(3)-N in the calcined EMR are higher than the emission standard.The encapsulation effect of EMR composite mortar provided by hydration products,and the buffering capacity of the Si-Al system for solidification of heavy metals and strong alkalis are conducive to the stability of Mn^(2+)and NH_(3)-N.After the EMR mixed mortar is aged for 3 days,Mn and NH_(3)-N are completely lower than the emission standard.In general,the EMR mixed mortar can meet the requirements for green building use. 展开更多
关键词 electrolytic manganese residue CALCINATION GRINDING pozzolanic activity LEACHING curing mechanism
原文传递
Calcination Analysis of CaCO_(3) from Waste Oyster Shells for Partial Cement Replacement
4
作者 Bunyamin Bunyamin Taufiq Saidi +1 位作者 Sugiarto Sugiarto Muttaqin Hasan 《Structural Durability & Health Monitoring》 2025年第5期1089-1109,共21页
Aceh in Indonesia is rich inmarine resources and abundant fishery products such as oyster.Traditionally,fishermen only harvest oysters and discard the shells,which can cause pollution and environmental contamination.W... Aceh in Indonesia is rich inmarine resources and abundant fishery products such as oyster.Traditionally,fishermen only harvest oysters and discard the shells,which can cause pollution and environmental contamination.Waste Oyster Shells(WOS)contain a high percentage of calcium carbonate(CaCO_(3))that experiences thermal decomposition at high temperature,following the reaction CaCO_(3)→CaO+CO_(2)(ΔT=825℃).At temperature>900℃,dead-burned lime is formed,which severely influences CaO reactivity.However,the optimum temperature for producing high CaO content is still uncertain.Therefore,this study aimed to determine the optimum calcination temperature to produce high CaO content,assess initial setting time of WOS paste,and identify the best compressive strength of paste.For the experiment,WOS was used as a partial cement replacement(with a size of 0.075 mm)in paste at a proportion of 5%and calcined at temperature of 700℃,800℃,900℃,and 1000℃.The specimens used were an ebonite ring(dimensions:70 mm bottom diameter,60 mm top diameter,and 40 mm height)and a cube(dimensions:5 cm×5 cm×5 cm).The experiment was conducted following the ASTM(American Society for Testing andMaterials)standards and optimumcompressive strength values were analyzed using ANOVA(Analysis of Variance)and Response Surface Methodology(RSM)through the Design Expert software.The results showed that WOS calcined at 1000℃ increased CaO content by approximately 57.40%.Furthermore,the initial setting time test of 5%WOS paste at 1000℃ showed a more uniform binding performance compared to conventional cement paste,with an initial setting time of 75 min and a penetration depth of 15 mm.In line with the analysis,optimum compressive strength of 71.028 MPa with a desirability value of 0.986 was achieved at 5%cement replacement and calcination temperature of 786.44℃. 展开更多
关键词 CALCINATION CEMENT PASTE setting time waste oyster shell
在线阅读 下载PDF
Structural characteristics,surface properties and methylene blue adsorption application of halloysite nanotubes regulated with controllable treatment processes
5
作者 Xiaoyu Jiang Sikai Zhao +5 位作者 Jiafang Zhang Haiyi Lü Jie Wang Wenbao Liu Baoyu Cui Yanbai Shen 《International Journal of Minerals,Metallurgy and Materials》 2025年第6期1331-1344,共14页
To advance the precise regulation and high-value utilization of halloysite nanotubes(HNTs),this work systematically investigated five treatment strategies,including calcination,acid treatment,alkali treatment,acid tre... To advance the precise regulation and high-value utilization of halloysite nanotubes(HNTs),this work systematically investigated five treatment strategies,including calcination,acid treatment,alkali treatment,acid treatment of calcined HNTs,and alkali treatment of calcined HNTs,to modulate their structural and application properties.The structural characteristics,surface properties,and methylene blue(MB)adsorption capacity of HNTs under multiple treatments were systematically analyzed.Calcination at varying temperatures modified the crystal structure,morphology,and surface properties of HNTs,with higher calcination temperatures reducing their reactivity towards MB.Moderate acid treatment expanded the lumen and decreased the surface potential of HNTs,significantly enhancing MB adsorption capacity.In contrast,alkali treatment dispersed the multilayered walls of HNTs and raised surface potential,reducing MB affinity.Acid treatment of calcined HNTs effectively increased their specific surface areas by leaching most of Al while maintaining the tubular structure,thereby maximizing MB adsorption.Alkali treatment of calcined HNTs destroyed the tubular structure and resulted in poor MB adsorption.HNTs pre-calcined at 600℃ for 3 h and acid-treated at 60℃ for 8 h exhibited an optimal specific surface area of443 m^(2)·g^(-1)and an MB adsorption capacity of 190 mg·g^(-1).Kinetic and Arrhenius equation fittings indicated that chemical reactions control interactions of acids and alkalis with HNTs.This study provides a comprehensive comparison and analysis of five treatment methods,offering insights into regulating the structures and surface properties of HNTs by controlling the treatment condition,thereby laying a foundation for their efficient utilization in practical applications. 展开更多
关键词 halloysite nanotubes structure regulation methylene blue adsorption CALCINATION acid treatment alkali treatment
在线阅读 下载PDF
Stable and efficient lithium storage via Ni ratio and calcination temperatures modulation in Ni–Mn layered cathodes
6
作者 Xin-Xin Jia Ying Li +8 位作者 Yuan-Yuan Li Peng-Xiang Yan Yan-Gang Zhang Shengjie Yang Pei-Yue Jin Umedjon Khalilov Jun-Fei Liang Jian Zhu Lin Guo 《Rare Metals》 2025年第9期6015-6025,共11页
Cobalt-free nickel-manganese binary materials are one of the most promising cathode candidates for lithium-ion batteries due to the low reserves, high price,political and ecological unfriendliness of cobalt. The prepa... Cobalt-free nickel-manganese binary materials are one of the most promising cathode candidates for lithium-ion batteries due to the low reserves, high price,political and ecological unfriendliness of cobalt. The preparation of high-performance Ni-Mn bimetallic materials through controlled synthesis conditions holds significant importance for industrial applications. In this work,through systematic modulation of calcination temperatures and nickel ratios, we have effectively addressed critical challenges in binary layered cathodes, including cationic disordering, detrimental H2-H3 phase transitions, and severe interfacial side reactions. The electrochemical performance and thermal stability tests demonstrate that the medium-nickel cathode calcined at 850℃(NM64) exhibit superior comprehensive performance, including moderate discharge capacity(181.34 mAh g^(-1)at 1C), enhanced thermal stability and cycling stability(90% capacity retention after 100 cycles), excellent rate performance(125 mAh g^(-1)at high rate of 10C). Moreover, a 10 kg sample was prepared further verified its commercial application prospects. The soft-pack battery with commercial graphite anode and NM64-850 cathode achieve a discharge capacity of 171.0 mAh g^(-1)and retains 86.5% capacity after 180 cycles. The optimized integration of nickel content and calcination temperature endows binary cathodes with balanced electrochemical performance,enabling commercial viability. 展开更多
关键词 Ni-Mn layered cathodes Lithium ion battery Calcination temperatures Nickel ratios
原文传递
Flash Calcination of Kaolinite Clay in a Pilot Reactor: Evaluation of Clay Color Change in Oxidizing, Inert and Reducing Atmospheres
7
作者 Gabriel Henrique Wienhage Vinícius Henrique de Freitas +4 位作者 Julio Zeppone Carlos Luis Filipe von Rainer Fabiani Luiz Felipe de Pinho Rodrigo de Souza Borges Vinicyus Rodolfo Wiggers 《Journal of Building Material Science》 2025年第1期73-82,共10页
Cement production,while essential for global infrastructure,contributes significantly to carbon dioxide emissions,accounting for approximately 7%of total emissions.To mitigate these environmental impacts,flash calcina... Cement production,while essential for global infrastructure,contributes significantly to carbon dioxide emissions,accounting for approximately 7%of total emissions.To mitigate these environmental impacts,flash calcination of kaolinitic clays has been investigated as a sustainable alternative.This technique involves the rapid heating of clays,enabling their use as supplementary cementitious materials.The primary objective of this study was to modify the color of calcined clay in various atmospheres(oxidizing,inert,and reducing)to achieve a grayish tone similar to commercial cement while preserving its reactive properties.The experimental procedure employed a tubular reactor with precise control of gas flows(atmospheric air,nitrogen,and a carbon monoxide–nitrogen mixture).Physicochemical characterization of the raw clay was conducted before calcination,with analyses repeated on the calcined clays following experimentation.Results indicated that clay calcined in an oxidizing atmosphere acquired a reddish hue,attributed to the oxidation of iron in hematite.The Clay exhibited a pinkish tone in an inert atmosphere,while calcination in a reducing atmosphere yielded the desired grayish color.Regarding pozzolanic activity,clays calcined in oxidizing and inert atmospheres displayed robust strength,ranging from 82%to 87%.Calcination in a reducing atmosphere resulted in slightly lower strength,around 74%,likely due to the clay’s chemical composition and the calcination process,which affects compound formation and material reactivity. 展开更多
关键词 Flash Calcination Kaolinite Clay Reducing Atmosphere Reduction of Hematite
在线阅读 下载PDF
Fabrication of Ni-Zn spinel ferrite with superior magnetic performance from electric arc furnace dust and iron scale
8
作者 Yang Li Wei-zhe Jie +4 位作者 Chang Chen Yi Su Wu Zhou Hua Zhang Hong-wei Ni 《Journal of Iron and Steel Research International》 2025年第1期105-114,共10页
The Ni-ZnFe_(2)O_(4)(NixZn_(1-x)Fe_(2)O_(4),x=0.4-0.7)spinel was synthesized using Zn2+extracted from electric arc furnace dust(EAFD),nickel chloride hexahydrate,and Fe^(3+)extracted from iron scale as raw materials.T... The Ni-ZnFe_(2)O_(4)(NixZn_(1-x)Fe_(2)O_(4),x=0.4-0.7)spinel was synthesized using Zn2+extracted from electric arc furnace dust(EAFD),nickel chloride hexahydrate,and Fe^(3+)extracted from iron scale as raw materials.The zinc was selectively extracted from EAFD using CaO roasting followed by NH_(4)Cl solution leaching.The ferric ion was leached from iron scale using HCl solution as acid lixiviant.The experimental results demonstrate a high level of efficiency in the extraction of zinc,with a rate of 97.5%,and the leaching rate of ferric ion is 96.89%.The composition of the leaching solution is primary zinc and iron with low calcium,which is beneficial to the preparation of spinel ferrite.The influence of Ni content(x)and calcination temperature on the synthesis and magnetic properties of NixZn_(1-x)Fe_(2)O_(4)compounds was investigated by X-ray diffraction,scanning electron microscopy,and vibrating sample magnetometry.The results revealed that both Ni content and calcination temperature significantly affect the synthesis and magnetic properties of spinel NixZn_(1-x)Fe_(2)O_(4).Under the conditions of Ni content set at x=0.6,calcination temperature of 1100℃,and a duration of 2 h,a spinel NixZn_(1-x)Fe_(2)O_(4)with high saturation magnetization(Ms=65.7 A m2 kg-1)and low coercivity(Hc=0.056 A m^(-1))was obtained. 展开更多
关键词 Electric furnace arc dust Iron scale Spinel ferrite Magnetic performance Calcination temperature
原文传递
Surface regulation of perovskite LaPd_(0.1)Mn_(0.9)O_(3)for improved toluene oxidation activity
9
作者 Lei Li Yanjie Liang +3 位作者 Jie Li Jingling Shao Jianjian Zhu Dong Wang 《Journal of Rare Earths》 2025年第3期534-542,I0004,共10页
Surface regulation is a crucial technique for improving catalytic performance in heterogeneous catalysis.Although perovskite oxides containing noble metals show good performance and excellent thermal stability,the enc... Surface regulation is a crucial technique for improving catalytic performance in heterogeneous catalysis.Although perovskite oxides containing noble metals show good performance and excellent thermal stability,the encapsulation of noble metals in perovskite lattice restricts the exposure/usage of active sites.Herein,a method of high-temperature calcination coupling with selective dissolution was adopted to tune the physicochemical environment on the LaPd_(0.1)Mn_(0.9)O_(3)catalyst surface.The X-ray diffraction(XRD)and Raman results reveal that more Pd species emerge on the surface by elevating the calcination temperature,resulting in improved catalytic toluene oxidation activity.A further acid-etching of the LPMO-900 catalyst can also boost catalytic performance,being attributed to the enhanced redox ability and abundant surface oxygen vacancies.In addition,the optimized catalyst also exhibits excellent resistance to sintering and water vapor.This study provides new avenues for the rational design of highly efficient perovskite-based catalysts. 展开更多
关键词 Perovskite oxide Noble metal Surface regulation Thermal calcination Acid etching Rare earths
原文传递
High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation
10
作者 Meng Wang Yan Zhang +2 位作者 Yunbo Yu Wenpo Shan Hong He 《Chinese Chemical Letters》 2025年第1期534-538,共5页
Catalytic oxidation of soot is of great importance for emission control on diesel vehicles.In this work,a highly active Cs/Co/Ce-Sn catalyst was investigated for soot oxidation,and it was unexpectedly found that high-... Catalytic oxidation of soot is of great importance for emission control on diesel vehicles.In this work,a highly active Cs/Co/Ce-Sn catalyst was investigated for soot oxidation,and it was unexpectedly found that high-temperature calcination greatly improved the activity of the catalyst.When the calcination temperature was increased from 500℃ to 750℃,T_(50) decreased from 456.9℃ to 389.8℃ in a NO/O_(2)/H_(2)O/N_(2) atmosphere.Characterization results revealed that high-temperature calcination can promote the ability to transfer negative charge density from Cs to other metal cations in Cs/Co/Ce-Sn,which will facilitate the production of more oxygen defects and the generation of more surface-active oxygen species.Surfaceactive oxygen species are beneficial to the oxidation of NO to NO_(2),leading to the high yield of NO_(2) exploitation.Therefore,the Cs/Co/Ce-Sn catalyst calcined at 750℃ demonstrated higher activity than that calcined at 500℃.This work provides a pathway to prepare high efficiency catalysts for the removal of soot and significant insight into the effects of calcination on soot oxidation catalysts. 展开更多
关键词 Soot oxidation CALCINATION Surface defects Surface-active oxygen species NO_(2)
原文传递
Preparation of Silicon Fertilizer Using Lithium Pyroxene Acid-leaching Residues as Starting Materials
11
作者 CHEN Jianghua LUO Dawei +2 位作者 GAO Zijie RONG Ke DENG Jiabao 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期389-399,共11页
We focus on a novel and economical route for the synthesis of Si fertilizer via the calcination method using lithium pyroxene acid-leaching residues as the starting materials.The molar ratio of Si/K/Ca of 1:1.4:0.8,ca... We focus on a novel and economical route for the synthesis of Si fertilizer via the calcination method using lithium pyroxene acid-leaching residues as the starting materials.The molar ratio of Si/K/Ca of 1:1.4:0.8,calcination temperature of 900℃and calcination time of 120 min were identified as the optimal conditions to maximize the available Si content of the prepared Si fertilizer.The performance of the resulting product satisfies the Chinese agricultural standard for silica fertilizers,providing a new solution for the large-scale harmless and sustainable reuse of lithium pyroxene tailings.The X-ray diffraction(XRD)and Fourier transform infrared spectroscopy(FTIR)characterization elucidated the formation mechanism of silica fertilizers,and identified KAlSiO_(4)and K_(4)CaSi_(3)O_(9)as the primary silicates products.Observation of the surface morphology of the samples was conducted by scanning electron microscopy(SEM)and X-ray energy dispersive spectrometry(EDS),and compositional analysis of the micro-regions.The acceleration action of CaCO_(3)in the decomposition process of lithium pyroxene acid-leaching residues was demonstrated by the thermogravimetry-differential scanning calorimetry(TG-DSC)test.Determination of heavy metal elements in Si fertilizer was performed by ICP-OES.Potting experiments confirmed that the best growth of pakchoi was achieved when 5 g·kg^(-1)of Si fertilizer was applied.These evidence suggests that the Si fertilizer prepared in this study is a promising candidate for a silica-supplemented soil. 展开更多
关键词 lithium pyroxene acid-leaching residues available silicon calcination method Si fertilizer
原文传递
A hydraulic binder for compacted clay under wet-dry cycles:Low carbon limestone calcined clay cement
12
作者 Nauman Ijaz Weimin Ye +4 位作者 Qiong Wang Yonggui Chen Zia ur Rehman Zain Ijaz Usama Khalid 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5970-5988,共19页
High-plastic clays with significant volume change due to moisture variations present critical challenges to civil engineering structures.Limestone calcined clay cement(LC3),an innovative and sustainable hydraulic bind... High-plastic clays with significant volume change due to moisture variations present critical challenges to civil engineering structures.Limestone calcined clay cement(LC3),an innovative and sustainable hydraulic binder,demonstrates significant potential for improving the engineering characteristics of such soils.Nevertheless,the impact of LC3 on the physico-mechanical characteristics of treated soil under a cyclic wet-dry environment remains unclear.This study for the first time investigates LC3's impact on the long-term durability of treated high-plastic clays through comprehensive macro-micro testing including physical,mechanical,mineralogical,and microstructural investigations with an emphasis on wet-dry cycles.The results revealed that LC3 treatment exhibits significant resistance to wet-dry cycles by completely mitigating the swelling potential,and a considerable reduction in plasticity resulting in enhanced workability.The compressibility and shear strength parameters have been significantly improved to several orders of magnitude.However,after six wet-dry cycles,a slight to modest reduction is observed,but overall durability remains superior to untreated soil.Cohesive and structural bonding ratios quantitatively assessed the impact of wet-dry cycles emphasizing the advantage of LC3 treatment.According to mineralogical and microstructural evaluation,the mechanism behind the adverse effects of wet-dry cycles on the compressibility and strength behavior of LC3-treated soil is mainly attributed to:(1)weakening of CSH/C(A)SH and ettringite(AFt)phases by exhibiting lower peak intensities;and(2)larger pore spaces due to repeated wet-dry cycles.These findings highlight LC3's performance in enhancing the long-term behavior and resilience of treated soils in real-world scenarios,providing durable solutions for infrastructure challenges. 展开更多
关键词 Low carbon limestone calcined clay cement (LC3) Sustainable geomaterial Cyclic wet-dry environment Bonding ratio Durability Mineralogical-microstructural behavior
在线阅读 下载PDF
Highly active Cu/SiO_2 catalysts for hydrogenation of diethyl malonate to 1,3-propanediol 被引量:7
13
作者 丁同梅 田恒水 +2 位作者 刘纪昌 吴文滨 余锦涛 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第4期484-493,共10页
Cu/SiO2 catalysts prepared by the ammonia evaporation method were applied to hydrogenation of diethyl malonate to 1,3‐propanediol. The calcination temperature played an important role in the structural evolution and ... Cu/SiO2 catalysts prepared by the ammonia evaporation method were applied to hydrogenation of diethyl malonate to 1,3‐propanediol. The calcination temperature played an important role in the structural evolution and catalytic performance of the Cu/SiO2 catalysts, which were systematically characterized by N2 adsorption‐desorption, inductively coupled plasma‐atomic emission spectros‐copy, N2O chemisorption, X‐ray diffraction, Fourier transform infrared spectroscopy, H2 tempera‐ture‐programmed reduction, transmission electron microscopy, and X‐ray photoelectron spectros‐copy. When the Cu/SiO2 catalyst was calcined at 723 K, 90.7%conversion of diethyl malonate and 32.3%selectivity of 1,3‐propanediol were achieved. Compared with Cu/SiO2 catalysts calcined at other temperatures, the enhanced catalytic performance of the Cu/SiO2 catalyst calcined at 723 K can be attributed to better dispersion of copper species, larger cupreous surface area and greater amount of copper phyllosilicate, which results in a higher ratio of Cu+/Cu0. The synergetic effect of Cu0 and Cu+is suggested to be responsible for the optimum activity. 展开更多
关键词 COPPER SILICA Diethyl malonate HYDROGENATION 1 3-PROPANEDIOL Calcination temperature
在线阅读 下载PDF
Optimization of preparing V_2O_5 by calcination from ammonium metavanadate using response surface methodology 被引量:6
14
作者 刘秉国 彭金辉 +3 位作者 万润东 张利波 郭胜惠 张世敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期673-678,共6页
Parameters of technique to prepare vanadium pentoxide by calcination from ammonium metavanadate were optimized using central composite design of response surface methodology. A quadratic equation model for decompositi... Parameters of technique to prepare vanadium pentoxide by calcination from ammonium metavanadate were optimized using central composite design of response surface methodology. A quadratic equation model for decomposition rate was built and effects of main factors and their corresponding relationships were obtained. The results of the statistical analysis show that the decomposition rate of ammonium metavanadate is significantly affected by calcination temperature and calcination time. The optimized calcination conditions are as follows: calcination temperature 669.71 K, calcination time 35.9 min and sample mass 4.25 g. The decomposition rate of ammonium metavanadate is 99.71%,which coincides well with experimental value of 99.27% under the optimized conditions, suggesting that regressive equation fits the decomposition rates perfectly. XRD reveals that it is feasible to prepare the V2O5 by calcination from ammonium metavanadate using response surface methodology. 展开更多
关键词 vanadium pentoxide ammonium metavanadate CALCINATION response surface methodology
在线阅读 下载PDF
Element distribution of high iron-bearing zinc calcine in high gradient magnetic field 被引量:5
15
作者 李密 彭兵 +3 位作者 柴立元 王纪明 彭宁 闫缓 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2261-2267,共7页
High gradient magnetic separation was conducted in order to separate insoluble zinc ferrite from zinc calcine before acid leaching of hydrometallurgical process. Chemical composition and structural characterization of... High gradient magnetic separation was conducted in order to separate insoluble zinc ferrite from zinc calcine before acid leaching of hydrometallurgical process. Chemical composition and structural characterization of zinc calcine were studied via inductively coupled plasma (ICP), X-ray diffraction (XRD), Mossbauer spectra, scanning electron microscopy (SEM) and laser particle analysis (LPA). The parameters of magnetic separation which affect the distribution of zinc ferrite and undesired elements, such as calcium, sulfur and lead in magnetic concentrate were investigated. The results of high gradient magnetic separation indicate that more than 85% of zinc ferrite is distributed into magnetic concentrate from the zinc calcine under the magnetic induction of 0.70 T. In addition, about 60% of calcium and 40% of sulfur distribute in non magnetic phases of tailings during magnetic separation process. Most of lead distributes uniformly along the zinc calcine in superfine particle size. 展开更多
关键词 zinc calcine zinc ferrite magnetic separation element distribution
在线阅读 下载PDF
Effect of Calcination Temperature on Catalytic Activity and Textual Property of Cu/HMOR Catalysts in Dimethyl Ether Carbonylation Reaction 被引量:3
16
作者 张雪 李宇萍 +4 位作者 仇松柏 王铁军 马隆龙 张琦 定明月 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第2期220-224,I0004,共6页
The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exch... The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exchange process. The results showed that the catalytic activity was obviously affected by the calcination temperature. The maximal DME conversion of 97.2% and the MA selectivity of 97.9% were obtained over the Cu/HMOR calcined at 430 ℃ under conditions of 210 ℃, 1.5 MPa, and GSHV of 4883 h^-1. The obtained Cu/HMOR catalysts were characterized by powder X-ray diffraction, N2 absorption, NH3 temperature program desorption, CO temperature program desorption, and Raman techniques. Proper calcination temperature was effective to promote copper ions migration and diffusion, and led the support HMOR to possess more acid activity sites, which exhibited the complete decomposing of copper nitrate, large surface area and optimum micropore structure, more amount of CO adsorption site and proper amount of weak acid centers. 展开更多
关键词 Dimethyl ether Methyl acetate Calcination temperature CARBONYLATION HMOR
在线阅读 下载PDF
Effect of Calcination Temperature on La-Modified Al2O3 Catalysts for Vapor Phase Hydrofluorination of Acetylene to Vinyl Fluoride 被引量:4
17
作者 毕庆员 鲁继青 +2 位作者 邢丽琼 郭明 罗孟飞 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第1期89-94,I0002,共7页
A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts c... A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts calcined at different temperatures were characterized using NH3-TPD, pyridine-FTIR, X-ray diffraction, and Raman techniques. It was found that the calcination process could not only change the structure of these catalysts but also modify the amount of surface acidity on the catalysts. The catalyst calcined at 400 ℃ exhibited the highest conversion of acetylene (94.6%) and highest selectivity to vinyl fluoride (83.4%) and lower coke deposition selectivity (0.72%). The highest activity was related to the largest amount of surface acidity on the catalyst, and the coke deposition was also related to the total amount of surface acidic sites. 展开更多
关键词 La2O3-Al2O3 catalyst Hydrofluorination reaction Vinyl fluoride ACETYLENE Calcination temperature
在线阅读 下载PDF
Low temperature molten salt synthesis of porous La_(1-x)Sr_xMn_(0.8)Fe_(0.2)O_3(0≤x≤0.6) microspheres with high catalytic activity for CO oxidation 被引量:4
18
作者 黄学辉 牛鹏举 商晓辉 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1431-1439,共9页
A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patt... A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patterns showed that single phase LaMn0.8Fe0.2O3 with good crystallinity was syn‐thesized at 450℃ after 4 h. Transmission electron microscope images exhibited that the LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h possessed a porous spherical morphology com‐posed of aggregated nanocrystallites. Field emission scanning electron microscope images indicated that the growth of the porous LaMn0.8Fe0.2O3 microspheres has two stages. SEM pictures showed that a higher calcination temperature than 450?? had an adverse effect on the formation of a po‐rous spherical structure. The LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h displayed a high BET surface area of 55.73 m2/g with a pore size of 9.38 nm. Fourier transform infrared spectra suggested that Sr2+ions entered the A sites and induced a decrease of the binding energy between Mn and O. The CO conversion with the La1‐xSrxMn0.8Fe0.2O3 (0≤x≤0.6) samples indicated that the La0.4Sr0.6Mn0.8Fe0.2O3 sample had the best catalytic activity and stability. Further analysis by X‐ray photoelectron spectroscopy demonstrated that Sr2+doping altered the content of Mn4+ions, oxygen vacancies and adsorbed oxygen species on the surface, which affected the catalytic performance for CO oxidation. 展开更多
关键词 Molten salt method δ-MnO2 microsphere Porous spherical structure Calcination temperature Carbon monoxide oxidation
在线阅读 下载PDF
Adsorption of glutamic acid from aqueous solution with calcined layered double Mg-Fe-CO_3 hydroxide 被引量:1
19
作者 焦飞鹏 帅丽 +3 位作者 于金刚 蒋新宇 陈晓青 杜邵龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3971-3978,共8页
Layered double Mg-Fe-CO3 hydroxide (Mg-Fe-LDH) with a mole ratio of Mg to Fe of 3 was synthesized by coprecipitation method and calcined product Mg-Fe-CLDH was obtained by heating Mg-Fe-LDH at 500 ℃ for 6 h. The as... Layered double Mg-Fe-CO3 hydroxide (Mg-Fe-LDH) with a mole ratio of Mg to Fe of 3 was synthesized by coprecipitation method and calcined product Mg-Fe-CLDH was obtained by heating Mg-Fe-LDH at 500 ℃ for 6 h. The as prepared Mg-Fe-LDH and calcined Mg-Fe-CLDH were used for removal of glutamic acid (Glu) from aqueous solution, respectively. Batch studies were carried out to address various experimental parameters such as contact time, pH, initial glutamic acid (Glu) concentration, co-existing anions and temperature. Glu was removed effectively (99.9%) under the optimized experimental conditions with Mg-Fe-CLDH. The adsorption kinetics follows the Ho’s pseudo second-order model. Isotherms for adsorption with Mg-Fe-CLDH at different solution temperatures were well described using the Langmuir model with a good correlation coefficient. The intraparticle diffusion model fitted the data well, which suggests that the intraparticle diffusion is not only the rate-limiting step. 展开更多
关键词 calcined layered double hydroxides glutamic acid ADSORPTION
在线阅读 下载PDF
Model of limestone calcination / sulfation under oxy-fuel fluidized bed combustion
20
作者 王春波 刘洪才 陈亮 《Journal of Southeast University(English Edition)》 EI CAS 2015年第2期238-243,共6页
The characteristics of the simultaneous calcination/ sulfation of limestone under oxy-fuel fluidized bed combustion were studied and compared with those of the sulfation of precalcined CaO. During the calcination stag... The characteristics of the simultaneous calcination/ sulfation of limestone under oxy-fuel fluidized bed combustion were studied and compared with those of the sulfation of precalcined CaO. During the calcination stage, SO2 can react with product CaO and slow down the CaCO3 decomposition rate by the covering effect of the CaSO4 product. The sulfation rate of simultaneous calcinatiort/sulfation is slower than that of precalcined CaO, but with a long enough sulfation time, the calcium conversion of simultaneous calcination/sulfation is higher than that of the precalcined CaO. A grain-micrograin model is established to describe the simultaneous calcination, sintering and sulfation of limestone. The graln-micrograln model can reflect the true reaction process of the calcination and sulfation of limestone in oxy-fuel fluidized bed combustion. 展开更多
关键词 OXY-FUEL LIMESTONE simultaneous calcination/sulfation grain-micrograin model
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部