Research on the mechanical–electrical properties is crucial for designing and preparing high-temperature superconducting(HTS)cables.Various winding core structures can influence the mechanical–electrical behavior of...Research on the mechanical–electrical properties is crucial for designing and preparing high-temperature superconducting(HTS)cables.Various winding core structures can influence the mechanical–electrical behavior of cables,but the impact of alterations in the winding core structure on the mechanical–electrical behavior of superconducting cables remains unclear.This paper presents a 3D finite element model to predict the performance of three cables with different core structures when subjected to transverse compression and axial tension.The three cables analyzed are CORC(conductor-on-round-core),CORT(conductor-on-round-tube),and HFRC(conductor-on-spiral-tube).A parametric analysis is carried out by varying the core diameter and inner-to-outer diameter ratio.Results indicate that the CORT cable demonstrates better performance in transverse compression compared to the CORC cable,aligning with experimental data.Among the three cables,the HFRC cables exhibit the weakest resistance to transverse deformation.However,the HFRC cable demonstrates superior tensile deformation resistance compared to the CORT cable,provided that the transverse compression properties are maintained.Finite element results also show that the optimum inner-to-outer diameter ratios for achieving the best transverse compression performance are approximately 0.8 for CORT cables and 0.6 for HFRC cables.Meanwhile,the study explores the effect of structural changes in HTS cable winding cores on their electromagnetic properties.It recommends utilizing small tape gaps,lower frequencies,and spiral core construction to minimize eddy losses.The findings presented in this paper offer valuable insights for the commercialization and practical manufacturing of HTS cables.展开更多
This study investigates the nonlinear resonance responses of suspended cables subjected to multi-frequency excitations and time-delayed feedback.Two specific combinations and simultaneous resonances are selected for d...This study investigates the nonlinear resonance responses of suspended cables subjected to multi-frequency excitations and time-delayed feedback.Two specific combinations and simultaneous resonances are selected for detailed examination.Initially,utilizing Hamilton’s variational principle,a nonlinear vibration control model of suspended cables under multi-frequency excitations and longitudinal time-delayed velocity feedback is developed,and the Galerkin method is employed to obtain the discrete model.Subsequently,focusing solely on single-mode discretization,analytical solutions for the two simultaneous resonances are derived using the method of multiple scales.The frequency response equations are derived,and the stability analysis is presented for two simultaneous resonance cases.The results demonstrate that suspended cables exhibit complex nonlinearity under multi-frequency excitations.Multiple solutions under multi-frequency excitation can be distinguished through the frequency–response and the detuning-phase curves.By adjusting the control gain and time delay,the resonance range,response amplitude,and phase of suspended cables can be modified.展开更多
Cabin cables,as critical components of an aircraft's electrical system,significantly impact the operational efficiency and safety of the aircraft.The existing cable segmentation methods in civil aviation cabins ar...Cabin cables,as critical components of an aircraft's electrical system,significantly impact the operational efficiency and safety of the aircraft.The existing cable segmentation methods in civil aviation cabins are limited,especially in automation,heavily dependent on large amounts of data and resources,lacking the flexibility to adapt to different scenarios.To address these challenges,this paper introduces a novel image segmentation model,CableSAM,specifically designed for automated segmentation of cabin cables.CableSAM improves segmentation efficiency and accuracy using knowledge distillation and employs a context ensemble strategy.It accurately segments cables in various scenarios with minimal input prompts.Comparative experiments on three cable datasets demonstrate that CableSAM surpasses other advanced cable segmentation methods in performance.展开更多
The integrated systems of unmanned surface vehicles(USVs) and remotely operated vehicles(ROVs) have been extensively applied in marine exploration and seabed coverage. However, the simultaneous navigation of USV-ROV s...The integrated systems of unmanned surface vehicles(USVs) and remotely operated vehicles(ROVs) have been extensively applied in marine exploration and seabed coverage. However, the simultaneous navigation of USV-ROV systems is frequently limited by strong disturbances induced by waves or currents. This paper develops a novel rigidflexible coupling multibody dynamic model that incorporates disturbances of variable-length marine cables with geometrically nonlinear motion. A hybrid Lagrangian-Eulerian absolute nodal coordinate formulation(ANCF) element is developed to accurately model subsea cables which undergo significant overall motion, substantial deformation,and mass flow during the deployment of underwater equipment. Furthermore, the governing equations of the coupled USV-umbilical-ROV system are derived, considering wave-induced forces and current disturbances. A numerical solver based on the Newmark-beta method is proposed, along with an adaptive meshing technique near the release point. After validating three experimental cases, the cable disturbances at both the USV and ROV ends—caused by ocean currents, heave motion, and simultaneous navigation—are comprehensively compared and evaluated. Finally,it is demonstrated that a PD controller with disturbance compensation can enhance the simultaneous navigation performance of USV-ROV systems.展开更多
This paper proposes a new numerical simulation method for analyzing the parametric vibration of stay cables based on the theory of nonlinear dynamic response of structures under the asynchronous support excitation. Th...This paper proposes a new numerical simulation method for analyzing the parametric vibration of stay cables based on the theory of nonlinear dynamic response of structures under the asynchronous support excitation. The effects of important pa- rameters related to parametric vibration of cables, i.e., characteristics of structure, excitation frequency, excitation amplitude, damping effect of the air and the viscous damping coefficient of the cables, were investigated by using the proposed method for the cables with significant length difference as examples. The analysis results show that nonlinear finite element method is a powerful technique in analyzing the parametric vibration of cables, the behavior of parametric vibration of the two cables with different Irvine parameters has similar properties, the amplitudes of parametric vibration of cables are related to the frequency and amplitude of harmonic support excitations and the effect of distributed viscous damping on parametric vibration of the cables is very small.展开更多
The conductor on round core(CORC)cables are fabricated with multilayer high-temperature superconductor tapes,which are helically wound around a circular central former.The large Lorentz force will be generated by the ...The conductor on round core(CORC)cables are fabricated with multilayer high-temperature superconductor tapes,which are helically wound around a circular central former.The large Lorentz force will be generated by the transport current in CORC cables under high magnetic field,which will affect the stress and strain distributions of tapes in the cables and the performance of superconducting tape.This paper establishes a two-dimensional axisymmetric model to analyze the mechanical response of CORC cables subjected to the Lorentz force and analyzes the influence of air gaps on stress and strain distributions inside the cables.The T-A method is used to calculate the distributions of current density,magnetic field and the Lorentz force in CORC cables.The mechanical response of CORC cables is analyzed by applying the Lorentz force as an external load in the mechanical model.The direction of electromagnetic force is analyzed in CORC cables with and without shielding current,and the results show that the shielding current can lead to the concentration of electromagnetic force.The maximum stress and strain occur on both sides of the superconducting tapes in the cables with shielding current.Reducing the size of air gaps can reduce the stress and strain in the superconducting layers.The analysis of mechanical response of CORC cables can play an important role in optimizing the design of CORC cables and improving transmission performance.展开更多
Polymer/conductive filler composites have been widely used for the preparation of self-limiting heating cables with the positive temperature coefficient (PTC) effect. The control of conductive filler distribution and ...Polymer/conductive filler composites have been widely used for the preparation of self-limiting heating cables with the positive temperature coefficient (PTC) effect. The control of conductive filler distribution and network in polymer matrix is the most critical for performance of PTC materials. In order to compensate for the destruction of the filler network structure caused by strong shearing during processing, an excessive conductive filler content is usually added into the polymer matrix, which in turn sacrifices its processability and mechanical properties. In this work, a facile post-treatment of the as-extruded cable, including thermal and electrical treatment to produce high-density polyethylene (HDPE)/carbon black (CB) cable with excellent PTC effect, is developed. It is found for the as-extruded sample, the strong shearing makes the CB particles disperse uniformly in HDPE matrix, and 25 wt% CB is needed for the formation of conductive paths. For the thermal-treated sample, a gradually aggregated CB filler structure is observed, which leads to the improvement of PTC effect and the notable reduction of CB content to 20 wt%. It is very interesting to see that for the sample with combined thermal and electrical treatment, CB particles are agglomerated and oriented along the electric field direction to create substantial conductive paths, which leads to a further decrease of CB content down to 15 wt%. In this way, self-limiting heating cables with excellent processability, mechanical properties and PTC effect have simultaneously been achieved.展开更多
Electrical power companies are using more underground cables rather than overhead lines to distribute power to their customers. In practice, cables are generally installed in some compact ductbanks. Since the cost of ...Electrical power companies are using more underground cables rather than overhead lines to distribute power to their customers. In practice, cables are generally installed in some compact ductbanks. Since the cost of underground cables is very expensive, using the entire space of a ductbank is extremely important. But such usage is limited due to the overheating of cables. Overheating is generally caused by overload, which means the carrying current exceeds the ampacity of a cable. The ampacity of a cable depends on not only the material and design of a cable but also the distance between different cables. Thus the configuration of cables determines the total ampacity value and the potential use of a ductbank. In this paper, the best configuration based on ampacity is achieved for a three-row, five-column ductbank that is buried at a depth of one meter below the earth’s surface. Both balanced and unbalanced scenarios are considered, and all cables have two available types to be selected.展开更多
A new algorithm is proposed to solve the problems of shape-finding of suspension bridge with spatial cables what include tedious iteration,slow convergence speed and even no convergent under some circumstances.In this...A new algorithm is proposed to solve the problems of shape-finding of suspension bridge with spatial cables what include tedious iteration,slow convergence speed and even no convergent under some circumstances.In this paper,the stress analysis of the main cable is carried out,and the relationship between the slope change and the coordinate change is found.This paper also discussed how to find the minimum slope point of symmetrical or asymmetric main cable,and the deformation compatibility equation is established and solved to obtain the shape of main cable.The algorithm in this paper can ensure the convergence of the solution for the suspension bridge with spatial cables.The calculation accuracy is high through the demonstration of the calculation examples.展开更多
Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partit...Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partition the tunnel face and divide the excavation into multiple stages.However,these internal supports generally impose spatial constraints,limiting the use of large-scale excavation equipment and reducing construction efficiency.To address this constraint,this study adopts the“Shed-frame”principle to explore the feasibility of an innovative support system,which aims to replace internal supports with prestressed anchor cables and thus provide a more spacious working space with fewer internal obstructions.To evaluate its effectiveness,a field case involving the excavation of a 24-m span tunnel in soft rock is presented,and an analysis of extensive field data is conducted to study the deformation characteristics of the surrounding rock and the mechanical behavior of the support system.The results revealed that prestressed anchor cables integrated the initial support with the shed,creating an effective“shed-frame”system,which successively maintained tunnel deformation and frame stress levels within safe regulatory bounds.Moreover,the prestressed anchor cables bolstered the surrounding rock effectively and reduced the excavation-induced disturbance zone significantly.In summary,the proposed support system balances construction efficiency and safety.These field experiences may offer valuable insights into the popularization and further development of prestressed anchor cable support systems.展开更多
Under complex currents, the motion governing equations of marine cables are complex and nonlinear, and the calculations of cable configuration and tension become difficult compared with those under the uniform or simp...Under complex currents, the motion governing equations of marine cables are complex and nonlinear, and the calculations of cable configuration and tension become difficult compared with those under the uniform or simple currents. To obtain the numerical results, the usual Newton-Raphson iteration is often adopted, but its stability depends on the initial guessed solution to the governing equations. To improve the stability of numerical calculation, this paper proposed separated the particle swarm optimization, in which the variables are separated into several groups, and the dimension of search space is reduced to facilitate the particle swarm optimization. Via the separated particle swarm optimization, these governing nonlinear equations can be solved successfully with any initial solution, and the process of numerical calculation is very stable. For the calculations of cable configuration and tension of marine cables under complex currents, the proposed separated swarm particle optimization is more effective than the other particle swarm optimizations.展开更多
Using the finite element method (FEM) in two dimensions and the CST MICROWAVE STUDIO? (CST MWS) Transient Solver, the electromagnetic (EM) analysis and the design of a novel compact ultra wideband (UWB) bandpass filte...Using the finite element method (FEM) in two dimensions and the CST MICROWAVE STUDIO? (CST MWS) Transient Solver, the electromagnetic (EM) analysis and the design of a novel compact ultra wideband (UWB) bandpass filter using rectangular coaxial cables with square inner conductors, convenient for high power applications, are presented. The design of the UWB BP filter is based on the use of impedance steps and coupled-line sections. The center frequency around 6.85 GHz was selected, the bandwidth is between 3-10 GHz, the insertion-loss amounts to around 0.35 dB and the return loss is found higher than 10 dB in a large frequency range (4-9.5) GHz. The simulated results of stopband performances are better than 15 dB for a frequency range up to 11 GHz. For the selected center frequency and on a substrate with a dielectric constant of 2.03, the rectangular coaxial cables BPF with square inner conductors is only 6.7 × 8.9 × 33.4 mm in size.展开更多
近年来,发烧友对家中音响器材的音源、放大器、音箱这三大环节进行了升级之后,继续升级的目光自然地放在线材这个重要的环节上。面对市场上如雨后春笋般地涌现的各种线材,应以怎样的标准去选购线材呢?如何避开选购线材的误区呢?适...近年来,发烧友对家中音响器材的音源、放大器、音箱这三大环节进行了升级之后,继续升级的目光自然地放在线材这个重要的环节上。面对市场上如雨后春笋般地涌现的各种线材,应以怎样的标准去选购线材呢?如何避开选购线材的误区呢?适逢英国线材老厂牌ATLAS Cables的销售总监John S Carrick到访广州,于是带着上述问题有了以下的文字。展开更多
The structural engineering design of not conventional typologies imposes a complex path that begins evaluating procedures of a preliminary design and ends with complex procedures to validate the analysis response. Any...The structural engineering design of not conventional typologies imposes a complex path that begins evaluating procedures of a preliminary design and ends with complex procedures to validate the analysis response. Any guide lines to follow are often available. About complex shapes, in particular, any details are presented in the codes to evaluate wind action and so wind tunnel experiments are necessary to valuate this. The evaluation of wind tunnel data is a complex process that often needs new and specific subroutines programmed by researchers. The difficult increases when the objective is to study a not specific building but general aspects as for examples the dependence of a generic phenomenon by a geometric sample;in this case it is necessary to design and to program numerical subroutines before and then the wind tunnel experiments. Often, these subroutines are left detached and are non-generalizable process. Purpose of this paper is to describe a complete procedure to pre- and post-process wind tunnel data with the objective to design a not convectional structure as a tensile structure. In this particular case the research aim is a parametrization of the aerodynamic behavior of Hyperbolic Paraboloid roofs, shape used for cables net. The reason of the experiments is the absence in the international codes of the pressure coefficients for these geometries. The paper describes the numerical procedure evaluated to choose a sufficient representative geometric sample, the numerical procedure evaluated to design and to construct the wind tunnel models and FE models, the numerical procedure to evaluate and to use for FEM analyses of the wind tunnel data, the numerical procedure to calculate nonlinear structural analysis, and, finally some applications. All these numerical procedures use basic theory derived for example by the cable theory, the fluid mechanic, the nonlinear geometric analysis and other. However specific codes were necessary and were programmed to apply the theories on the specific case of study;the complete methodology followed is presented. The goal is to create a free open domain where the numerical procedures evaluated are merged, added, modified by researchers with the aim to obtain a common space of use for wind engineering of not conventional structure.展开更多
Large-scale shaking table tests were conducted to study the dynamic response of a slope reinforced by double-row anti-sliding piles and prestressed anchor cables. The test results show that the reinforcement suppresse...Large-scale shaking table tests were conducted to study the dynamic response of a slope reinforced by double-row anti-sliding piles and prestressed anchor cables. The test results show that the reinforcement suppressed the acceleration amplification effectively. The axial force time histories are decomposed into a baseline part and a vibration part in this study. The baseline part of axial force well revealed the seismic slope stability, the peak vibration values of axial force of the anchor cables changed significantly in different area of the slope under seismic excitations. The peak lateral earth pressure acting on the back of the anti-sliding pile located at the slope toe was much larger than that acting on the back of the anti-sliding pile located at the slope waist. The test results indicate an obvious load sharing ratio difference between these two anti-slide piles, the load sharing ratio between the two anti-sliding piles located at the slope toe and the slope waist varied mainly in a range of 2-5. The anti-slide pile at the slope waist suppressed the horizontal displacement of the slope surface.展开更多
Distributed temperature sensing(DTS)using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content.In this method,the thermal and electrical properties of heated cables hav...Distributed temperature sensing(DTS)using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content.In this method,the thermal and electrical properties of heated cables have a significant influence on the measurement accuracy of soil moisture content.In this paper,the performances of two heated cables,i.e.the carbon-fiber heated cable(CFHC)and the metalnet heated cable(MNHC),are studied in the laboratory.Their structures,uniformity in the axial direction,measurement accuracy and suitability are evaluated.The test results indicate that the MNHC has a better uniformity in the axial direction than CFHC.Both CFHC and MNHC have high measurement accuracy.The CFHC is more suitable for short-distance measurement(500 m),while the MNHC can be used for longdistance measurement(>500 m).展开更多
This study provides new insights into the comparison of cable-stayed and extradosed bridges based on the safety assessment of their stay cables.These bridges are often regarded as identical structures owing to the use...This study provides new insights into the comparison of cable-stayed and extradosed bridges based on the safety assessment of their stay cables.These bridges are often regarded as identical structures owing to the use of inclined cables;however,the international standards for bridge design stipulate different safety factors for stay cables of both types of bridges.To address this misconception,a comparative study was carried out on the safety factors of stay cables under fatigue and ultimate limit states by considering the effects of various untoward and damaging factors,such as overloading,cable loss,and corrosion.The primary goal of this study is to describe the structural disparities between both types of bridges and evaluate their structural redundancies by employing deterministic and nondeterministic methods.To achieve this goal,three-dimensional finite-element models of both bridges were developed based on the current design guidelines for stay cables in Japan.After the balanced states of the bridge models were achieved,static analyses were performed for different safety factors of stay cables in a parametric manner.Finally,the first-order reliability method and Monte Carlo method were applied to determine the reliability index of stay cables.The analysis results show that cable-stayed and extradosed bridges exhibit different structural redundancies for different safety factors under the same loading conditions.Moreover,a significant increase in structural redundancy occurs with an incremental increase in the safety factors of stay cables.展开更多
Efficient numerical schemes were presented for the steady state solutions of towed marine cables. For most of towed systems,the steady state problem can be resolved into two-point boundary-value problem,or initial val...Efficient numerical schemes were presented for the steady state solutions of towed marine cables. For most of towed systems,the steady state problem can be resolved into two-point boundary-value problem,or initial value problem in some special cases where the initial values are available directly.A new technique was proposed and attempted to solve the two-point boundary-value problem rather than the conventional shooting method due to its algorithm complexity and low efficiency.First,the boundary conditions are transformed into a set of nonlinear governing equations about the initial values,then bisection method is employed to solve these nonlinear equations with the aid of 4th order Runge-Kutta method.In common sense,non-uniform (sheared) current is assumed,which varies in magnitude and direction with depth.The schemes are validated through the DE Zoysa's example,then several numerical examples are also presented to illustrate the numerical schemes.展开更多
基金supported by the National Natural Science Foundation of China(12072136).
文摘Research on the mechanical–electrical properties is crucial for designing and preparing high-temperature superconducting(HTS)cables.Various winding core structures can influence the mechanical–electrical behavior of cables,but the impact of alterations in the winding core structure on the mechanical–electrical behavior of superconducting cables remains unclear.This paper presents a 3D finite element model to predict the performance of three cables with different core structures when subjected to transverse compression and axial tension.The three cables analyzed are CORC(conductor-on-round-core),CORT(conductor-on-round-tube),and HFRC(conductor-on-spiral-tube).A parametric analysis is carried out by varying the core diameter and inner-to-outer diameter ratio.Results indicate that the CORT cable demonstrates better performance in transverse compression compared to the CORC cable,aligning with experimental data.Among the three cables,the HFRC cables exhibit the weakest resistance to transverse deformation.However,the HFRC cable demonstrates superior tensile deformation resistance compared to the CORT cable,provided that the transverse compression properties are maintained.Finite element results also show that the optimum inner-to-outer diameter ratios for achieving the best transverse compression performance are approximately 0.8 for CORT cables and 0.6 for HFRC cables.Meanwhile,the study explores the effect of structural changes in HTS cable winding cores on their electromagnetic properties.It recommends utilizing small tape gaps,lower frequencies,and spiral core construction to minimize eddy losses.The findings presented in this paper offer valuable insights for the commercialization and practical manufacturing of HTS cables.
基金supported in part by the National Natural Science Foundation of China(Grant No.12432001)Natural Science Foundation of Hunan Province(Grant Nos.2023JJ60527,2023JJ30152,and 2023JJ30259)the Natural Science Foundation of Changsha(KQ2202133).
文摘This study investigates the nonlinear resonance responses of suspended cables subjected to multi-frequency excitations and time-delayed feedback.Two specific combinations and simultaneous resonances are selected for detailed examination.Initially,utilizing Hamilton’s variational principle,a nonlinear vibration control model of suspended cables under multi-frequency excitations and longitudinal time-delayed velocity feedback is developed,and the Galerkin method is employed to obtain the discrete model.Subsequently,focusing solely on single-mode discretization,analytical solutions for the two simultaneous resonances are derived using the method of multiple scales.The frequency response equations are derived,and the stability analysis is presented for two simultaneous resonance cases.The results demonstrate that suspended cables exhibit complex nonlinearity under multi-frequency excitations.Multiple solutions under multi-frequency excitation can be distinguished through the frequency–response and the detuning-phase curves.By adjusting the control gain and time delay,the resonance range,response amplitude,and phase of suspended cables can be modified.
基金supported by the Innovation Foundation of National Commercial Aircraft Manufacturing Engineering Technology Research Center(No.COMAC-SFGS-2022-1877)in part by the National Natural Science Foundation of China(No.92048301)。
文摘Cabin cables,as critical components of an aircraft's electrical system,significantly impact the operational efficiency and safety of the aircraft.The existing cable segmentation methods in civil aviation cabins are limited,especially in automation,heavily dependent on large amounts of data and resources,lacking the flexibility to adapt to different scenarios.To address these challenges,this paper introduces a novel image segmentation model,CableSAM,specifically designed for automated segmentation of cabin cables.CableSAM improves segmentation efficiency and accuracy using knowledge distillation and employs a context ensemble strategy.It accurately segments cables in various scenarios with minimal input prompts.Comparative experiments on three cable datasets demonstrate that CableSAM surpasses other advanced cable segmentation methods in performance.
基金financially supported in part by the General Program of the National Natural Science Foundation of China (Grant No.12272221)the State Key Laboratory of Ocean Engineering (Shanghai Jiao Tong University)(Grant No. GKZD010087)。
文摘The integrated systems of unmanned surface vehicles(USVs) and remotely operated vehicles(ROVs) have been extensively applied in marine exploration and seabed coverage. However, the simultaneous navigation of USV-ROV systems is frequently limited by strong disturbances induced by waves or currents. This paper develops a novel rigidflexible coupling multibody dynamic model that incorporates disturbances of variable-length marine cables with geometrically nonlinear motion. A hybrid Lagrangian-Eulerian absolute nodal coordinate formulation(ANCF) element is developed to accurately model subsea cables which undergo significant overall motion, substantial deformation,and mass flow during the deployment of underwater equipment. Furthermore, the governing equations of the coupled USV-umbilical-ROV system are derived, considering wave-induced forces and current disturbances. A numerical solver based on the Newmark-beta method is proposed, along with an adaptive meshing technique near the release point. After validating three experimental cases, the cable disturbances at both the USV and ROV ends—caused by ocean currents, heave motion, and simultaneous navigation—are comprehensively compared and evaluated. Finally,it is demonstrated that a PD controller with disturbance compensation can enhance the simultaneous navigation performance of USV-ROV systems.
基金Project (No. 50578141) supported by the National Natural Science Foundation of China
文摘This paper proposes a new numerical simulation method for analyzing the parametric vibration of stay cables based on the theory of nonlinear dynamic response of structures under the asynchronous support excitation. The effects of important pa- rameters related to parametric vibration of cables, i.e., characteristics of structure, excitation frequency, excitation amplitude, damping effect of the air and the viscous damping coefficient of the cables, were investigated by using the proposed method for the cables with significant length difference as examples. The analysis results show that nonlinear finite element method is a powerful technique in analyzing the parametric vibration of cables, the behavior of parametric vibration of the two cables with different Irvine parameters has similar properties, the amplitudes of parametric vibration of cables are related to the frequency and amplitude of harmonic support excitations and the effect of distributed viscous damping on parametric vibration of the cables is very small.
基金support from the National Natural Science Foundation of China(Nos.U2241267,11872195 and 12172155)Fundamental Research Funds for the Central Universities(No.lzujbky-2022-48).
文摘The conductor on round core(CORC)cables are fabricated with multilayer high-temperature superconductor tapes,which are helically wound around a circular central former.The large Lorentz force will be generated by the transport current in CORC cables under high magnetic field,which will affect the stress and strain distributions of tapes in the cables and the performance of superconducting tape.This paper establishes a two-dimensional axisymmetric model to analyze the mechanical response of CORC cables subjected to the Lorentz force and analyzes the influence of air gaps on stress and strain distributions inside the cables.The T-A method is used to calculate the distributions of current density,magnetic field and the Lorentz force in CORC cables.The mechanical response of CORC cables is analyzed by applying the Lorentz force as an external load in the mechanical model.The direction of electromagnetic force is analyzed in CORC cables with and without shielding current,and the results show that the shielding current can lead to the concentration of electromagnetic force.The maximum stress and strain occur on both sides of the superconducting tapes in the cables with shielding current.Reducing the size of air gaps can reduce the stress and strain in the superconducting layers.The analysis of mechanical response of CORC cables can play an important role in optimizing the design of CORC cables and improving transmission performance.
文摘Polymer/conductive filler composites have been widely used for the preparation of self-limiting heating cables with the positive temperature coefficient (PTC) effect. The control of conductive filler distribution and network in polymer matrix is the most critical for performance of PTC materials. In order to compensate for the destruction of the filler network structure caused by strong shearing during processing, an excessive conductive filler content is usually added into the polymer matrix, which in turn sacrifices its processability and mechanical properties. In this work, a facile post-treatment of the as-extruded cable, including thermal and electrical treatment to produce high-density polyethylene (HDPE)/carbon black (CB) cable with excellent PTC effect, is developed. It is found for the as-extruded sample, the strong shearing makes the CB particles disperse uniformly in HDPE matrix, and 25 wt% CB is needed for the formation of conductive paths. For the thermal-treated sample, a gradually aggregated CB filler structure is observed, which leads to the improvement of PTC effect and the notable reduction of CB content to 20 wt%. It is very interesting to see that for the sample with combined thermal and electrical treatment, CB particles are agglomerated and oriented along the electric field direction to create substantial conductive paths, which leads to a further decrease of CB content down to 15 wt%. In this way, self-limiting heating cables with excellent processability, mechanical properties and PTC effect have simultaneously been achieved.
文摘Electrical power companies are using more underground cables rather than overhead lines to distribute power to their customers. In practice, cables are generally installed in some compact ductbanks. Since the cost of underground cables is very expensive, using the entire space of a ductbank is extremely important. But such usage is limited due to the overheating of cables. Overheating is generally caused by overload, which means the carrying current exceeds the ampacity of a cable. The ampacity of a cable depends on not only the material and design of a cable but also the distance between different cables. Thus the configuration of cables determines the total ampacity value and the potential use of a ductbank. In this paper, the best configuration based on ampacity is achieved for a three-row, five-column ductbank that is buried at a depth of one meter below the earth’s surface. Both balanced and unbalanced scenarios are considered, and all cables have two available types to be selected.
文摘A new algorithm is proposed to solve the problems of shape-finding of suspension bridge with spatial cables what include tedious iteration,slow convergence speed and even no convergent under some circumstances.In this paper,the stress analysis of the main cable is carried out,and the relationship between the slope change and the coordinate change is found.This paper also discussed how to find the minimum slope point of symmetrical or asymmetric main cable,and the deformation compatibility equation is established and solved to obtain the shape of main cable.The algorithm in this paper can ensure the convergence of the solution for the suspension bridge with spatial cables.The calculation accuracy is high through the demonstration of the calculation examples.
基金supported by the National Natural Science Foundation of China through Grant No.51978523.
文摘Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partition the tunnel face and divide the excavation into multiple stages.However,these internal supports generally impose spatial constraints,limiting the use of large-scale excavation equipment and reducing construction efficiency.To address this constraint,this study adopts the“Shed-frame”principle to explore the feasibility of an innovative support system,which aims to replace internal supports with prestressed anchor cables and thus provide a more spacious working space with fewer internal obstructions.To evaluate its effectiveness,a field case involving the excavation of a 24-m span tunnel in soft rock is presented,and an analysis of extensive field data is conducted to study the deformation characteristics of the surrounding rock and the mechanical behavior of the support system.The results revealed that prestressed anchor cables integrated the initial support with the shed,creating an effective“shed-frame”system,which successively maintained tunnel deformation and frame stress levels within safe regulatory bounds.Moreover,the prestressed anchor cables bolstered the surrounding rock effectively and reduced the excavation-induced disturbance zone significantly.In summary,the proposed support system balances construction efficiency and safety.These field experiences may offer valuable insights into the popularization and further development of prestressed anchor cable support systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.51009092 and 51279107)the Scientific Research Foundation of State Education Ministry for the Returned Overseas Chinese Scholars
文摘Under complex currents, the motion governing equations of marine cables are complex and nonlinear, and the calculations of cable configuration and tension become difficult compared with those under the uniform or simple currents. To obtain the numerical results, the usual Newton-Raphson iteration is often adopted, but its stability depends on the initial guessed solution to the governing equations. To improve the stability of numerical calculation, this paper proposed separated the particle swarm optimization, in which the variables are separated into several groups, and the dimension of search space is reduced to facilitate the particle swarm optimization. Via the separated particle swarm optimization, these governing nonlinear equations can be solved successfully with any initial solution, and the process of numerical calculation is very stable. For the calculations of cable configuration and tension of marine cables under complex currents, the proposed separated swarm particle optimization is more effective than the other particle swarm optimizations.
文摘Using the finite element method (FEM) in two dimensions and the CST MICROWAVE STUDIO? (CST MWS) Transient Solver, the electromagnetic (EM) analysis and the design of a novel compact ultra wideband (UWB) bandpass filter using rectangular coaxial cables with square inner conductors, convenient for high power applications, are presented. The design of the UWB BP filter is based on the use of impedance steps and coupled-line sections. The center frequency around 6.85 GHz was selected, the bandwidth is between 3-10 GHz, the insertion-loss amounts to around 0.35 dB and the return loss is found higher than 10 dB in a large frequency range (4-9.5) GHz. The simulated results of stopband performances are better than 15 dB for a frequency range up to 11 GHz. For the selected center frequency and on a substrate with a dielectric constant of 2.03, the rectangular coaxial cables BPF with square inner conductors is only 6.7 × 8.9 × 33.4 mm in size.
文摘近年来,发烧友对家中音响器材的音源、放大器、音箱这三大环节进行了升级之后,继续升级的目光自然地放在线材这个重要的环节上。面对市场上如雨后春笋般地涌现的各种线材,应以怎样的标准去选购线材呢?如何避开选购线材的误区呢?适逢英国线材老厂牌ATLAS Cables的销售总监John S Carrick到访广州,于是带着上述问题有了以下的文字。
文摘The structural engineering design of not conventional typologies imposes a complex path that begins evaluating procedures of a preliminary design and ends with complex procedures to validate the analysis response. Any guide lines to follow are often available. About complex shapes, in particular, any details are presented in the codes to evaluate wind action and so wind tunnel experiments are necessary to valuate this. The evaluation of wind tunnel data is a complex process that often needs new and specific subroutines programmed by researchers. The difficult increases when the objective is to study a not specific building but general aspects as for examples the dependence of a generic phenomenon by a geometric sample;in this case it is necessary to design and to program numerical subroutines before and then the wind tunnel experiments. Often, these subroutines are left detached and are non-generalizable process. Purpose of this paper is to describe a complete procedure to pre- and post-process wind tunnel data with the objective to design a not convectional structure as a tensile structure. In this particular case the research aim is a parametrization of the aerodynamic behavior of Hyperbolic Paraboloid roofs, shape used for cables net. The reason of the experiments is the absence in the international codes of the pressure coefficients for these geometries. The paper describes the numerical procedure evaluated to choose a sufficient representative geometric sample, the numerical procedure evaluated to design and to construct the wind tunnel models and FE models, the numerical procedure to evaluate and to use for FEM analyses of the wind tunnel data, the numerical procedure to calculate nonlinear structural analysis, and, finally some applications. All these numerical procedures use basic theory derived for example by the cable theory, the fluid mechanic, the nonlinear geometric analysis and other. However specific codes were necessary and were programmed to apply the theories on the specific case of study;the complete methodology followed is presented. The goal is to create a free open domain where the numerical procedures evaluated are merged, added, modified by researchers with the aim to obtain a common space of use for wind engineering of not conventional structure.
基金financially supported by the National Key R&D Program of China(No.2018YFC1508601)the Fundamental Research Funds for the Central University(20822041B4038)
文摘Large-scale shaking table tests were conducted to study the dynamic response of a slope reinforced by double-row anti-sliding piles and prestressed anchor cables. The test results show that the reinforcement suppressed the acceleration amplification effectively. The axial force time histories are decomposed into a baseline part and a vibration part in this study. The baseline part of axial force well revealed the seismic slope stability, the peak vibration values of axial force of the anchor cables changed significantly in different area of the slope under seismic excitations. The peak lateral earth pressure acting on the back of the anti-sliding pile located at the slope toe was much larger than that acting on the back of the anti-sliding pile located at the slope waist. The test results indicate an obvious load sharing ratio difference between these two anti-slide piles, the load sharing ratio between the two anti-sliding piles located at the slope toe and the slope waist varied mainly in a range of 2-5. The anti-slide pile at the slope waist suppressed the horizontal displacement of the slope surface.
基金The financial supports provided by the National Natural Science Foundation of China(Grant Nos.41230636,41372265,41427801)National Basic Research Program of China(973 Project)(Grant No.2011CB710605)
文摘Distributed temperature sensing(DTS)using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content.In this method,the thermal and electrical properties of heated cables have a significant influence on the measurement accuracy of soil moisture content.In this paper,the performances of two heated cables,i.e.the carbon-fiber heated cable(CFHC)and the metalnet heated cable(MNHC),are studied in the laboratory.Their structures,uniformity in the axial direction,measurement accuracy and suitability are evaluated.The test results indicate that the MNHC has a better uniformity in the axial direction than CFHC.Both CFHC and MNHC have high measurement accuracy.The CFHC is more suitable for short-distance measurement(500 m),while the MNHC can be used for longdistance measurement(>500 m).
文摘This study provides new insights into the comparison of cable-stayed and extradosed bridges based on the safety assessment of their stay cables.These bridges are often regarded as identical structures owing to the use of inclined cables;however,the international standards for bridge design stipulate different safety factors for stay cables of both types of bridges.To address this misconception,a comparative study was carried out on the safety factors of stay cables under fatigue and ultimate limit states by considering the effects of various untoward and damaging factors,such as overloading,cable loss,and corrosion.The primary goal of this study is to describe the structural disparities between both types of bridges and evaluate their structural redundancies by employing deterministic and nondeterministic methods.To achieve this goal,three-dimensional finite-element models of both bridges were developed based on the current design guidelines for stay cables in Japan.After the balanced states of the bridge models were achieved,static analyses were performed for different safety factors of stay cables in a parametric manner.Finally,the first-order reliability method and Monte Carlo method were applied to determine the reliability index of stay cables.The analysis results show that cable-stayed and extradosed bridges exhibit different structural redundancies for different safety factors under the same loading conditions.Moreover,a significant increase in structural redundancy occurs with an incremental increase in the safety factors of stay cables.
文摘Efficient numerical schemes were presented for the steady state solutions of towed marine cables. For most of towed systems,the steady state problem can be resolved into two-point boundary-value problem,or initial value problem in some special cases where the initial values are available directly.A new technique was proposed and attempted to solve the two-point boundary-value problem rather than the conventional shooting method due to its algorithm complexity and low efficiency.First,the boundary conditions are transformed into a set of nonlinear governing equations about the initial values,then bisection method is employed to solve these nonlinear equations with the aid of 4th order Runge-Kutta method.In common sense,non-uniform (sheared) current is assumed,which varies in magnitude and direction with depth.The schemes are validated through the DE Zoysa's example,then several numerical examples are also presented to illustrate the numerical schemes.