Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is cha...Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is challenged by restricted electromagneticsensitivity and intricate sensing coupling. In this study, a sensitized polymericmicrowave actuator is fabricated by hybridizing a liquid crystal polymer with Ti3C2Tx(MXene). Compared to the initial counterpart, the hybrid polymer exhibits unique spacechargepolarization and interfacial polarization, resulting in significant improvements of230% in the dielectric loss factor and 830% in the apparent efficiency of electromagneticenergy harvest. The sensitized microwave actuation demonstrates as the shortenedresponse time of nearly 10 s, which is merely 13% of that for the initial shape memory polymer. Moreover, the ultra-low content of MXene (upto 0.15 wt%) benefits for maintaining the actuation potential of the hybrid polymer. An innovative self-powered sensing prototype that combinesdriving and piezoelectric polymers is developed, which generates real-time electric potential feedback (open-circuit potential of ~ 3 mV) duringactuation. The polarization-dominant energy conversion mechanism observed in the MXene-polymer hybrid structure furnishes a new approachfor developing efficient electromagnetic dissipative structures and shows potential for advancing polymeric electromagnetic intelligent devices.展开更多
Permanent magnet synchronous motor based electro-mechanical actuation servo drives have widespread applications in the aviation field,such as unmanned aerial vehicle electric servos,electric cabin doors,and mechanical...Permanent magnet synchronous motor based electro-mechanical actuation servo drives have widespread applications in the aviation field,such as unmanned aerial vehicle electric servos,electric cabin doors,and mechanical arms.The performance of the servo drive,which encompasses the response to the torque,efficiency,control bandwidth and the steady-state positioning accuracy,significantly influences the performance of the aviation actuation.Consequently,enhancing the control bandwidth and refining the positioning accuracy of aviation electro-mechanical actuation servo drives have emerged as a focal point of research.This paper investigates the multi-source disturbances present in aviation electro-mechanical actuation servo systems and summarizes recent research on high-performance servo control methods based on active disturbance rejection control(ADRC).We present a comprehensive overview of the research status pertaining to servo control architecture,strategies for suppressing disturbances in the current loop,and ADRC-based strategies for the position loop.We delineate the research challenges and difficulties encountered by aviation electro-mechanical actuation servo drive control technology.展开更多
Stimuli-responsive shape-changing materials,particularly hydrogel and liquid crystal elastomer(LCE),have demonstrated significant potential for applications across various fields.Although intricate deformation and act...Stimuli-responsive shape-changing materials,particularly hydrogel and liquid crystal elastomer(LCE),have demonstrated significant potential for applications across various fields.Although intricate deformation and actuation behaviors have been obtained in either hydrogels or LCEs,they typically undergo reversible shape change only once(e.g.,one expansion plus one contraction)during one heating/cooling cycle.Herein,we report a study of a novel liquid crystalline hydrogel(LCH)and the achievement of dual actuation in a single heating/cooling cycle by integrating the characteristics of thermoresponsive hydrogel and LCE.The dual actuation behavior arises from the reversible volume phase transition of poly(N-isopropylacrylamide)(PNIPAM)and the reversible order-disorder phase transition of LC mesogens in the LCH.Due to a temperature window separating the two transitions belonging to PNIPAM and LCE,LCH actuator can sequentially execute their respective actuation,thus deforming reversibly twice,during a heating/cooling cycle.The relative actuation degree of the two mechanisms is influenced by the mass ratio of PNIPAM to LCE in the LCH.Moreover,the initial shape of a bilayer actuator made with an active LCH layer and a passive polymer layer can be altered through hydration or dehydration of PNIPAM,which further modifies the dual actuation induced deformation.This work provides an example that shows the interest of developing LCH actuators.展开更多
Bulk nanoporous(np)metallic actuators have attracted increasing attention due to their large strain and low stimulation voltage.However,studies focusing upon the combined effect of composition and structure on the act...Bulk nanoporous(np)metallic actuators have attracted increasing attention due to their large strain and low stimulation voltage.However,studies focusing upon the combined effect of composition and structure on the actuation performance of metallic actuators are relatively scarce,and its underlying mechanism needs to be clarified Herein,a series of bulk np-NiPd samples with differen compositions and microstructures were fabricated using a dealloying-coarsening-dealloying strategy and chargecontrolled electrochemical dealloying,and the process involves only one component of precursor alloy.It has been found that the np-NiPd cubes show a composition/structure-dependent mechanical property and electrochemical actuation performance.Specially,the npNi_(70)Pd_(30)sample with a homogeneously porous structure and good network connectivity exhibits significantly larger strain amplitude and faster strain rate than other hierarchically porous NiPd samples(np-Ni_(50)Pd_(50)and npNi_(20)Pd_(80)).Moreover,the np-Ni_(70)Pd_(30)sample demonstrates good actuation stability with high strain retention after hundreds of cycles.Notably,the maximum strain amplitude(1.17%)is even comparable to that of advanced leadfree piezoceramic,and the maximum strain rate exceeds those of many reported metallic actuator materials.Our work indicates that good network connectivity plays a vita role in facilitating large/fast strain response in metallic actuators.展开更多
Developing hydroscopic actuators with simultaneous high elasticity,shape programmability and tunable actuating behaviors are highly desired but still challenging.In this study,we propose an orthogonal composite design...Developing hydroscopic actuators with simultaneous high elasticity,shape programmability and tunable actuating behaviors are highly desired but still challenging.In this study,we propose an orthogonal composite design to develop such a material.The developed composite elastomer comprises carboxyl group-grafted polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene(SEBS-g-COOH)as the elastic substrate,and a synthesized azobenzene derivative as the functional filler(Azo12).By surface treatment using acidic and base solutions,the carboxyl groups on the surface can reversibly transform into carboxylate groups,which render the composite tunable hygroscopic actuating functionality.On another aspect,the added filler undergoes trans-to-cis isomerization when exposed to UV light irradiation,leading to liquefaction of the crystalline aggregates formed by Azo12 molecules.The liquefied Azo12 molecules can autonomously resotre their trans form and reform the crystalline structure.This reversible change in crystralline structure is utilized to realize the shape memory property,and 5 wt%of Azo12addition is adequate for the composite to exhibit photo-responsive shape memory behavior without compromising much of the elasricity.The regualtion of external geometry by shape memory effect is effective in altering the actuating behavior.The proposed method can be extend to designing different composites with the demonstrated functionalities.展开更多
Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelect...Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelectric actuators. The primary focus of this study is to investigate the influence of an adhesively bonded piezoelectric actuator patch placed above a circular hole on the stress intensity factor (SIF) in an aluminium plate. The plate is subjected to uniaxial tensile stress, while the piezoelectric actuator is excited with varying voltage levels. The analysis is conducted using the finite element method (FEM), a powerful numerical technique for simulating complex structures. The study assesses the stress distribution and employs the SIF as an adequate criterion for evaluating the impact of different patch configurations. The results indicate a strong correlation between the applied voltage and the SIF. Whether the SIF increases or decreases depends on the polarization of the piezoelectric actuator. Particularly noteworthy is the finding that rectangular patches in a horizontal orientation significantly reduce the SIF compared to other patch geometries. Moreover, double-sided patches exhibit a pronounced decrease in the SIF compared to single-sided patches. In summary, this research underscores the potential of piezoelectric actuators in mitigating stress intensity in structures with circular hole with crack initiation. It offers valuable insights into the influence of applied voltage, patch geometry, and patch placement on the SIF, thereby contributing to developing effective strategies for enhancing structural integrity.展开更多
To prepare a conductive polymer actuator with decent performance,a self-built experimental platform for the preparation of polypyrrole film is employed.One of the essential goals is to examine the mechanical character...To prepare a conductive polymer actuator with decent performance,a self-built experimental platform for the preparation of polypyrrole film is employed.One of the essential goals is to examine the mechanical characteristics of the actuator in the presence of various combinations of process parameters,combined with the orthogonal test method of"four factors and three levels".The bending and sensing characteristics of actuators of various sizes are methodically examined using a self-made bending polypyrrole actuator.The functional relationship between the bending displacement and the output voltage signal is established by studying the characteristics of the actuator sensor subjected to various degrees of bending.The experimental results reveal that the bending displacement of the actuator tip almost exhibits a linear variation as a function of length and width.When the voltage reaches 0.8 V,the bending speed of the actuator tends to be stable.Finally,the mechanical properties of the self-assembled polypyrrole actuator are verified by the design and fabrication of the microgripper.展开更多
The introduction of wireless capsule endoscopy has brought a revolutionary change in the diagnostic procedures for gastrointestinal disorders.Biopsy,an essential procedure for disease diagnosis,has been integrated int...The introduction of wireless capsule endoscopy has brought a revolutionary change in the diagnostic procedures for gastrointestinal disorders.Biopsy,an essential procedure for disease diagnosis,has been integrated into robotic capsule endoscopy to augment diagnostic capabilities.In this study,we propose a magnetically driven biopsy robot based on a Kresling origami.Considering the bistable properties of Krelsing origami and the elasticity of the creases,a foldable structure of the robot with constant force characteristics is designed.The folding motion of the structure is used to deploy the needle into the target tissue.The robot is capable of performing rolling motion under the control of an external magnetic drive system,and a fine needle biopsy technique is used to collect deep tissue samples.We also conduct in vitro rolling experiments and sampling experiments on apple tissues and pork tissues,which verify the performance of the robot.展开更多
The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the ...The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the compact integration of the OMP presents challenges inefficiently dissipating internal heat,leading to a performance degradation of the EHA due to ele-vated temperatures.Therefore,accurately modeling and predicting the internal thermal dynamicsof the OMP hold considerable significance for monitoring the operational condition of the EHA.In view of this,a modeling method considering cumulative thermal coupling was hereby proposed.Based on the proposed method,the thermal models of the motor and the pump were established,taking into account heat accumulation and transfer.Taking the leakage oil as the heat couplingpoint between the motor and the pump,the dynamic thermal coupling model of the OMP wasdeveloped,with the thermal characteristics of the oil considered.Additionally,the comparativeexperiments were conducted to illustrate the efficiency of the proposed model.The experimentalresults demonstrate that the proposed dynamic thermal coupling model accurately captured thethermal behavior of OMP,outperforming the static thermal parameter model.Overall,thisadvancement is crucial for effectively monitoring the health of EHA and ensuring flight safety.展开更多
Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from b...Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from both academia and industry.However,the extensive literature that exists on this topic does not address identifying the severity of actuator faults and focuses mainly on actuator fault detection and isolation.In addition,previous studies of actuator fault identification have not dealt with multiple concurrent faults in real time,especially when these are accompanied by sudden failures under dynamic conditions.This study develops component-level models for fault identification in four typical actuators used in high-bypass ratio turbofan engines under both dynamic and steady-state conditions and these are then integrated with the engine performance model developed by the authors.The research results reported here present a novel method of quantifying actuator faults using dynamic effect compensation.The maximum error for each actuator is less than0.06%and 0.07%,with average computational time of less than 0.0058 s and 0.0086 s for steady-state and transient cases,respectively.These results confirm that the proposed method can accurately and efficiently identify concurrent actuator fault for an engine operating under either transient or steady-state conditions,even in the case of a sudden malfunction.The research results emonstrate the potential benefit to emergency response capabilities by introducing this method of monitoring the health of aero engines.展开更多
3D printing of flexible piezoelectric composites(3D-FPCs)is increasingly attracting the attention due to its unique advantage for customized smart applications.However,current research mainly focuses on the 0-3 piezoe...3D printing of flexible piezoelectric composites(3D-FPCs)is increasingly attracting the attention due to its unique advantage for customized smart applications.However,current research mainly focuses on the 0-3 piezoelectric composites,in which the piezoelectric ceramics are embedded in polymer matrix in the form of particles.The poor connectivity between particles much reduces the conduction of strain and charge in the composites,seriously limiting its application in actuation.In this work,a continuous lead zirconate titanate(PZT)double-layer ceramic scaffold was prepared by 3D printing and assembled with epoxy resin and interdigital electrodes together to manufacture a multifunctional device.The 3D-FPCs exhibit a free strain of 1830 ppm in actuating and are able to actuate a stainless-steel cantilever beam to produce a tip displacement of 5.71 mm.Additionally,the devices exhibit a sensitivity of 26.81V/g in sensing applications.Furthermore,3D-FPCs are demonstrated as actuators for mobile small robots and wearable sensors for sensing joint activities.展开更多
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv...Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.展开更多
Piezoelectric active vibration control holds paramount importance in space structures.An embedded piezoelectric actuator with a sandwich configuration is proposed,which enhances control accuracy by integrating various...Piezoelectric active vibration control holds paramount importance in space structures.An embedded piezoelectric actuator with a sandwich configuration is proposed,which enhances control accuracy by integrating various components.Firstly,the electromechanical coupling characteristics of the actuator are revealed,and the model is established.Secondly,the equivalent model of a cylindrical cantilever beam is investigated as the object,and the feasibility of the vibration control of the actuator is verified by simulation.Finally,the prototype comprised of two actuators,which respectively use the proposed embedded actuators for producing the vibration and suppressing the vibration,is developed,and the measurement system is constructed.Experimental results demonstrate the excellent control efficiency in two orthogonal directions,achieving a minimum vibration amplitude control of 0.00102 mm and a maximum vibration control of-42.74 d B.The integrated structure offers fast response,lightness,adaptability,and high control efficiency,which is conducive to enhancing the vibration control.展开更多
This paper presents an untethered pneumatic soft robot which can crawl both in horizontal and vertical pipes with different sizes and cross sections.This robot uses modular origami inspired soft-rigid hybrid actuator ...This paper presents an untethered pneumatic soft robot which can crawl both in horizontal and vertical pipes with different sizes and cross sections.This robot uses modular origami inspired soft-rigid hybrid actuator to produce telescoping and anchoring movements powered by vacuum pressure.The introduction of grooves to valley crease significantly lowers the full contraction vacuum pressure and improves the response,allowing the system can be driven by an onboard micro vacuum pump,enabling the possibility of miniaturization,integration,and untethered operation of the robot.A series of crawling experiments in pipes with different sizes and cross sections constructed by acrylic are conducted to validate the crawling performance of the robot.Within square cross-section pipes,the robot can achieve a velocity of 9.4 mm/s in horizontal crawling and 7.7 mm/s in vertical upward crawling.For horizontal crawling in circular pipes,it can reach a velocity of 8.0 mm/s.When fully charged,the robot can crawl for 40 min with a mileage of 16.649 m,which is sufficient for most drainage and industrial pipelines detection tasks.The robot demonstrates excellent endurance and speed performance that exceed most existing untethered soft pipe crawling robots.展开更多
This paper endeavours to bridge the existing gap in muscular actuator design for ligament-skeletal-inspired robots,thereby fostering the evolution of these robotic systems.We introduce two novel compliant actuators,na...This paper endeavours to bridge the existing gap in muscular actuator design for ligament-skeletal-inspired robots,thereby fostering the evolution of these robotic systems.We introduce two novel compliant actuators,namely the Internal Torsion Spring Compliant Actuator(ICA)and the External Spring Compliant Actuator(ECA),and present a comparative analysis against the previously conceived Magnet Integrated Soft Actuator(MISA)through computational and experimental results.These actuators,employing a motor-tendon system,emulate biological muscle-like forms,enhancing artificial muscle technology.Then,applications of the proposed actuators in a robotic arm inspired by the human musculoskeletal system are presented.Experiments demonstrate satisfactory power in tasks like lifting dumbbells(peak power:36 W),playing table tennis(end-effector speed:3.2 m/s),and door opening,without compromising biomimetic aesthetics.Compared to other linear stiffness serial elastic actuators(SEAs),ECA and ICA exhibit high power-to-volume(361×10^(3)W/m^(3))and power-to-mass(111.6 W/kg)ratios respectively,endorsing the biomimetic design’s promise in robotic development.展开更多
Tendon-driven robots have distinct advantages in high-dynamic performance motion and high-degree-of-freedom manipulation.However,these robots face challenges related to control complexity,intricate tendon drive paths,...Tendon-driven robots have distinct advantages in high-dynamic performance motion and high-degree-of-freedom manipulation.However,these robots face challenges related to control complexity,intricate tendon drive paths,and tendon slackness.In this study,the authors present a novel modular tendon-driven actuator design that integrates a series elastic element.The actuator incorporates a unique magnetic position sensing technology that enables observation of the length and tension of the tendon and features an exceptionally compact design.The modular architecture of the tendon-driven actuator addresses the complexity of tendon drive paths,while the tension observation functionality mitigates slackness issues.The design and modeling of the actuator are described in this paper,and a series of tests are conducted to validate the simulation model and to test the performance of the proposed actuator.The model can be used for training robot control neural networks based on simulation,thereby overcoming the challenges associated with controlling tendon-driven robots.展开更多
Piezoelectric actuators are widely utilized in positioning systems to realize nano-scale resolution. However, the backward motion always generates for some piezoelectric actuators, which reduces the working efficiency...Piezoelectric actuators are widely utilized in positioning systems to realize nano-scale resolution. However, the backward motion always generates for some piezoelectric actuators, which reduces the working efficiency. Bionic motions have already been employed in the field of piezoelectric actuators to realize better performance. By imitating the movement form of seals, seal type piezoelectric actuator is capable to realize large operating strokes easily. Nevertheless, the conventional seal type piezoelectric actuator has a complicated structure and control system, which limits further applications. Hence, an improved bionic piezoelectric actuator is proposed to realize a long motion stroke and eliminate backward movement with a simplified structure and control method in this study. The composition and motion principle of the designed actuator are discussed, and the performance is investigated with simulations and experiments. Results confirm that the presented actuator effectively realizes the linear movement that has a large working stroke stably without backward motion. The smallest stepping displacement ΔL is 0.2 μm under 1 Hz and 50 V. The largest motion speed is 900 μm/s with 900 Hz and 120 V. The largest vertical and horizontal load are 250 g and 12 g, respectively. This work shows that the improved bionic piezoelectric actuator is feasible for eliminating backward motion and has a great working ability.展开更多
Soft underwater swimming robots driven by smart materials show unique advantages in ocean exploration,such as low noise,high flexibility and good environmental interaction ability.The dielectric elastomer(DE),as a new...Soft underwater swimming robots driven by smart materials show unique advantages in ocean exploration,such as low noise,high flexibility and good environmental interaction ability.The dielectric elastomer(DE),as a new kind of soft intelligent material,has the characteristics of a low elastic modulus,large deformation range,high energy density and fast response speed.DE actuator(DEA)drive systems use the deformation characteristics of dielectric materials to drive the mechanical system,which has become a research hotspot in the field of soft robots.In this paper,a tubular actuator based on DEs is designed and its performance is studied.Firstly,the structure and driving process of a DEA are described,and a tubular DEA is designed.Studying the elongation ratio of the DEA pre-stretching shows that when the axial elongation ratio is 3 times and the circumferential elongation ratio is 4 times,the maximum deformation effect can be obtained under voltage excitation.At a voltage of 6.0 k V,a single pipe section DEA achieves a bending angle of 25.9°and a driving force of 73.8 m N.Secondly,the effect of the DEA series on the bending angle and response characteristics is studied.The experimental results show that the maximum bending angle of the three joint actuators in series can reach 59.3°under6.0 k V voltage,which significantly improves the overall bending performance.In addition,the truncation frequency of the drive module after the series is increased to 0.62 Hz,showing better frequency response capability.The excellent performance of the pipe joint actuator in its bending angle,response characteristic and driving force is verified.展开更多
As a kind of ionic artificial muscle material,Ionic Polymer-Metal Composites(IPMCs)have the advantages of a low drive current,light weight,and significant flexibility.IPMCs are widely used in the fields of biomedicine...As a kind of ionic artificial muscle material,Ionic Polymer-Metal Composites(IPMCs)have the advantages of a low drive current,light weight,and significant flexibility.IPMCs are widely used in the fields of biomedicine,soft robots,etc.However,the displacement and blocking force of the traditional sheet-type Nafion-IPMC need to be improved,and it has the limitation of unidirectional actuation.In this paper,a new type of short side chain Aquivion material is used as the polymer in the IPMC.The cylindrical IPMC is prepared by extrusion technology to improve its actuation performance and realize multi-degree-of-freedom motion.In comparison to the traditional Nafion-IPMC,the ion exchange capacity,specific capacitance,and conductivity of Aquivion-IPMC are improved by 28%,27%,and 32%,respectively,and the displacement and blocking force are improved by 57%and 25%,respectively.The cylindrical actuators can be deflected in eight directions.This indicates that Aquivion,as a polymer membrane for IPMC,holds significant application potential.By designing a cylindrical IPMC electrode distribution,the multi-degree-of-freedom deflection of IPMC can be realized.展开更多
By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using comput...By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using computational fluid dynamics(CFD),the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated.Initially,the current model was utilized to examine the intricate,multi-dimensional flow,and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber.It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy,along with the combined effect of the propellant motion,are what create the pressure oscillation within the chamber.Additionally,a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion,including pyrotechnic charge,pyrotechnic particle size,and chamber structural dimension.The findings show that decreasing the pyrotechnic charge will lower the terminal velocity,while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber.The pyrotechnic particle size has minimal bearing on the terminal velocity.The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs.展开更多
基金supported by the National Natural Science Foundation of China(No.52373280,52177014,51977009,52273257)。
文摘Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is challenged by restricted electromagneticsensitivity and intricate sensing coupling. In this study, a sensitized polymericmicrowave actuator is fabricated by hybridizing a liquid crystal polymer with Ti3C2Tx(MXene). Compared to the initial counterpart, the hybrid polymer exhibits unique spacechargepolarization and interfacial polarization, resulting in significant improvements of230% in the dielectric loss factor and 830% in the apparent efficiency of electromagneticenergy harvest. The sensitized microwave actuation demonstrates as the shortenedresponse time of nearly 10 s, which is merely 13% of that for the initial shape memory polymer. Moreover, the ultra-low content of MXene (upto 0.15 wt%) benefits for maintaining the actuation potential of the hybrid polymer. An innovative self-powered sensing prototype that combinesdriving and piezoelectric polymers is developed, which generates real-time electric potential feedback (open-circuit potential of ~ 3 mV) duringactuation. The polarization-dominant energy conversion mechanism observed in the MXene-polymer hybrid structure furnishes a new approachfor developing efficient electromagnetic dissipative structures and shows potential for advancing polymeric electromagnetic intelligent devices.
基金supported by the National Natural Science Foundation of China(Nos.52177059 and 52407064).
文摘Permanent magnet synchronous motor based electro-mechanical actuation servo drives have widespread applications in the aviation field,such as unmanned aerial vehicle electric servos,electric cabin doors,and mechanical arms.The performance of the servo drive,which encompasses the response to the torque,efficiency,control bandwidth and the steady-state positioning accuracy,significantly influences the performance of the aviation actuation.Consequently,enhancing the control bandwidth and refining the positioning accuracy of aviation electro-mechanical actuation servo drives have emerged as a focal point of research.This paper investigates the multi-source disturbances present in aviation electro-mechanical actuation servo systems and summarizes recent research on high-performance servo control methods based on active disturbance rejection control(ADRC).We present a comprehensive overview of the research status pertaining to servo control architecture,strategies for suppressing disturbances in the current loop,and ADRC-based strategies for the position loop.We delineate the research challenges and difficulties encountered by aviation electro-mechanical actuation servo drive control technology.
基金financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC),le Fonds de recherche du Québec:Nature et technologies(FRQNT),and The Centre québécois sur les matériaux fonctionnels.
文摘Stimuli-responsive shape-changing materials,particularly hydrogel and liquid crystal elastomer(LCE),have demonstrated significant potential for applications across various fields.Although intricate deformation and actuation behaviors have been obtained in either hydrogels or LCEs,they typically undergo reversible shape change only once(e.g.,one expansion plus one contraction)during one heating/cooling cycle.Herein,we report a study of a novel liquid crystalline hydrogel(LCH)and the achievement of dual actuation in a single heating/cooling cycle by integrating the characteristics of thermoresponsive hydrogel and LCE.The dual actuation behavior arises from the reversible volume phase transition of poly(N-isopropylacrylamide)(PNIPAM)and the reversible order-disorder phase transition of LC mesogens in the LCH.Due to a temperature window separating the two transitions belonging to PNIPAM and LCE,LCH actuator can sequentially execute their respective actuation,thus deforming reversibly twice,during a heating/cooling cycle.The relative actuation degree of the two mechanisms is influenced by the mass ratio of PNIPAM to LCE in the LCH.Moreover,the initial shape of a bilayer actuator made with an active LCH layer and a passive polymer layer can be altered through hydration or dehydration of PNIPAM,which further modifies the dual actuation induced deformation.This work provides an example that shows the interest of developing LCH actuators.
基金financially supported by the National Natural Science Foundation of China(Nos.U23A20554 and 52371158)the Key Research and Development Program of Shan dong Province(No.2021ZLGX01)+2 种基金Taishan Scholar Foundation of Shandong Province,the Natural Science Foundation of Shan dong Province(No.ZR2022QB169)the Excellent Youth Science Fund Project of Shan dong Province(Overseas)(No.2023HWYQ-018)the Postdoctoral Science foundation of China(No.2022M710077)。
文摘Bulk nanoporous(np)metallic actuators have attracted increasing attention due to their large strain and low stimulation voltage.However,studies focusing upon the combined effect of composition and structure on the actuation performance of metallic actuators are relatively scarce,and its underlying mechanism needs to be clarified Herein,a series of bulk np-NiPd samples with differen compositions and microstructures were fabricated using a dealloying-coarsening-dealloying strategy and chargecontrolled electrochemical dealloying,and the process involves only one component of precursor alloy.It has been found that the np-NiPd cubes show a composition/structure-dependent mechanical property and electrochemical actuation performance.Specially,the npNi_(70)Pd_(30)sample with a homogeneously porous structure and good network connectivity exhibits significantly larger strain amplitude and faster strain rate than other hierarchically porous NiPd samples(np-Ni_(50)Pd_(50)and npNi_(20)Pd_(80)).Moreover,the np-Ni_(70)Pd_(30)sample demonstrates good actuation stability with high strain retention after hundreds of cycles.Notably,the maximum strain amplitude(1.17%)is even comparable to that of advanced leadfree piezoceramic,and the maximum strain rate exceeds those of many reported metallic actuator materials.Our work indicates that good network connectivity plays a vita role in facilitating large/fast strain response in metallic actuators.
基金financially supported by the National Natural Science Foundation of China(Nos.51803115 and 21636006)the Fundamental Research Funds for the Central Universities(Nos.GK201901001,2021CSLY008,2021CSZL003 and GK202103032)the Innovation Capability Support Program of Shaanxi(No.2020TD-024)。
文摘Developing hydroscopic actuators with simultaneous high elasticity,shape programmability and tunable actuating behaviors are highly desired but still challenging.In this study,we propose an orthogonal composite design to develop such a material.The developed composite elastomer comprises carboxyl group-grafted polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene(SEBS-g-COOH)as the elastic substrate,and a synthesized azobenzene derivative as the functional filler(Azo12).By surface treatment using acidic and base solutions,the carboxyl groups on the surface can reversibly transform into carboxylate groups,which render the composite tunable hygroscopic actuating functionality.On another aspect,the added filler undergoes trans-to-cis isomerization when exposed to UV light irradiation,leading to liquefaction of the crystalline aggregates formed by Azo12 molecules.The liquefied Azo12 molecules can autonomously resotre their trans form and reform the crystalline structure.This reversible change in crystralline structure is utilized to realize the shape memory property,and 5 wt%of Azo12addition is adequate for the composite to exhibit photo-responsive shape memory behavior without compromising much of the elasricity.The regualtion of external geometry by shape memory effect is effective in altering the actuating behavior.The proposed method can be extend to designing different composites with the demonstrated functionalities.
文摘Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelectric actuators. The primary focus of this study is to investigate the influence of an adhesively bonded piezoelectric actuator patch placed above a circular hole on the stress intensity factor (SIF) in an aluminium plate. The plate is subjected to uniaxial tensile stress, while the piezoelectric actuator is excited with varying voltage levels. The analysis is conducted using the finite element method (FEM), a powerful numerical technique for simulating complex structures. The study assesses the stress distribution and employs the SIF as an adequate criterion for evaluating the impact of different patch configurations. The results indicate a strong correlation between the applied voltage and the SIF. Whether the SIF increases or decreases depends on the polarization of the piezoelectric actuator. Particularly noteworthy is the finding that rectangular patches in a horizontal orientation significantly reduce the SIF compared to other patch geometries. Moreover, double-sided patches exhibit a pronounced decrease in the SIF compared to single-sided patches. In summary, this research underscores the potential of piezoelectric actuators in mitigating stress intensity in structures with circular hole with crack initiation. It offers valuable insights into the influence of applied voltage, patch geometry, and patch placement on the SIF, thereby contributing to developing effective strategies for enhancing structural integrity.
基金Funded by the National Natural Science Foundation of Hunan Province,Chinal(No.2021JJ60012)。
文摘To prepare a conductive polymer actuator with decent performance,a self-built experimental platform for the preparation of polypyrrole film is employed.One of the essential goals is to examine the mechanical characteristics of the actuator in the presence of various combinations of process parameters,combined with the orthogonal test method of"four factors and three levels".The bending and sensing characteristics of actuators of various sizes are methodically examined using a self-made bending polypyrrole actuator.The functional relationship between the bending displacement and the output voltage signal is established by studying the characteristics of the actuator sensor subjected to various degrees of bending.The experimental results reveal that the bending displacement of the actuator tip almost exhibits a linear variation as a function of length and width.When the voltage reaches 0.8 V,the bending speed of the actuator tends to be stable.Finally,the mechanical properties of the self-assembled polypyrrole actuator are verified by the design and fabrication of the microgripper.
基金supported by the National Natural Science Foundation of China(Grant Nos.51805047 and 52175003)the Outstanding Youth Program of Hunan Education Department(Grant No.23B0335)the Natural Science Foundation of Hunan Province(Grant Nos.2023JJ30021 and 2023JJ50077).
文摘The introduction of wireless capsule endoscopy has brought a revolutionary change in the diagnostic procedures for gastrointestinal disorders.Biopsy,an essential procedure for disease diagnosis,has been integrated into robotic capsule endoscopy to augment diagnostic capabilities.In this study,we propose a magnetically driven biopsy robot based on a Kresling origami.Considering the bistable properties of Krelsing origami and the elasticity of the creases,a foldable structure of the robot with constant force characteristics is designed.The folding motion of the structure is used to deploy the needle into the target tissue.The robot is capable of performing rolling motion under the control of an external magnetic drive system,and a fine needle biopsy technique is used to collect deep tissue samples.We also conduct in vitro rolling experiments and sampling experiments on apple tissues and pork tissues,which verify the performance of the robot.
基金supported by the National Key R&D Program of China(No.2021YFB2011300)the National Natural Science Foundation of China(Nos.52275044,U2233212)。
文摘The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the compact integration of the OMP presents challenges inefficiently dissipating internal heat,leading to a performance degradation of the EHA due to ele-vated temperatures.Therefore,accurately modeling and predicting the internal thermal dynamicsof the OMP hold considerable significance for monitoring the operational condition of the EHA.In view of this,a modeling method considering cumulative thermal coupling was hereby proposed.Based on the proposed method,the thermal models of the motor and the pump were established,taking into account heat accumulation and transfer.Taking the leakage oil as the heat couplingpoint between the motor and the pump,the dynamic thermal coupling model of the OMP wasdeveloped,with the thermal characteristics of the oil considered.Additionally,the comparativeexperiments were conducted to illustrate the efficiency of the proposed model.The experimentalresults demonstrate that the proposed dynamic thermal coupling model accurately captured thethermal behavior of OMP,outperforming the static thermal parameter model.Overall,thisadvancement is crucial for effectively monitoring the health of EHA and ensuring flight safety.
基金support by the National Natural Science Foundation of China(Grant No.52402520)。
文摘Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from both academia and industry.However,the extensive literature that exists on this topic does not address identifying the severity of actuator faults and focuses mainly on actuator fault detection and isolation.In addition,previous studies of actuator fault identification have not dealt with multiple concurrent faults in real time,especially when these are accompanied by sudden failures under dynamic conditions.This study develops component-level models for fault identification in four typical actuators used in high-bypass ratio turbofan engines under both dynamic and steady-state conditions and these are then integrated with the engine performance model developed by the authors.The research results reported here present a novel method of quantifying actuator faults using dynamic effect compensation.The maximum error for each actuator is less than0.06%and 0.07%,with average computational time of less than 0.0058 s and 0.0086 s for steady-state and transient cases,respectively.These results confirm that the proposed method can accurately and efficiently identify concurrent actuator fault for an engine operating under either transient or steady-state conditions,even in the case of a sudden malfunction.The research results emonstrate the potential benefit to emergency response capabilities by introducing this method of monitoring the health of aero engines.
基金supported by the National Key R&D Program of China(2020YFA0711700)the National Natural Science Foundation of China(Grant No.U19A2087,52172134,52102150)the Science and Technology Innovation Program of Hunan Province(No.2022RC1029).
文摘3D printing of flexible piezoelectric composites(3D-FPCs)is increasingly attracting the attention due to its unique advantage for customized smart applications.However,current research mainly focuses on the 0-3 piezoelectric composites,in which the piezoelectric ceramics are embedded in polymer matrix in the form of particles.The poor connectivity between particles much reduces the conduction of strain and charge in the composites,seriously limiting its application in actuation.In this work,a continuous lead zirconate titanate(PZT)double-layer ceramic scaffold was prepared by 3D printing and assembled with epoxy resin and interdigital electrodes together to manufacture a multifunctional device.The 3D-FPCs exhibit a free strain of 1830 ppm in actuating and are able to actuate a stainless-steel cantilever beam to produce a tip displacement of 5.71 mm.Additionally,the devices exhibit a sensitivity of 26.81V/g in sensing applications.Furthermore,3D-FPCs are demonstrated as actuators for mobile small robots and wearable sensors for sensing joint activities.
基金supported in part by the National Natural Science Foundation of China(62173255,62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems(ZDSYS20220330161800001)
文摘Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.
基金supported by the National Natural Science Foundation of China(Nos.52275022,52175015 and U2037603)the Natural Science Foundation of Jiangsu Province,China(Nos.BK20222011 and BK20230093)the State Key Laboratory of Mechanics and Control for Aerospace Structures,China(No.MCAS-S-0223G01)。
文摘Piezoelectric active vibration control holds paramount importance in space structures.An embedded piezoelectric actuator with a sandwich configuration is proposed,which enhances control accuracy by integrating various components.Firstly,the electromechanical coupling characteristics of the actuator are revealed,and the model is established.Secondly,the equivalent model of a cylindrical cantilever beam is investigated as the object,and the feasibility of the vibration control of the actuator is verified by simulation.Finally,the prototype comprised of two actuators,which respectively use the proposed embedded actuators for producing the vibration and suppressing the vibration,is developed,and the measurement system is constructed.Experimental results demonstrate the excellent control efficiency in two orthogonal directions,achieving a minimum vibration amplitude control of 0.00102 mm and a maximum vibration control of-42.74 d B.The integrated structure offers fast response,lightness,adaptability,and high control efficiency,which is conducive to enhancing the vibration control.
基金supported by National Natural Science Foundation of China under Grant no.52475067.
文摘This paper presents an untethered pneumatic soft robot which can crawl both in horizontal and vertical pipes with different sizes and cross sections.This robot uses modular origami inspired soft-rigid hybrid actuator to produce telescoping and anchoring movements powered by vacuum pressure.The introduction of grooves to valley crease significantly lowers the full contraction vacuum pressure and improves the response,allowing the system can be driven by an onboard micro vacuum pump,enabling the possibility of miniaturization,integration,and untethered operation of the robot.A series of crawling experiments in pipes with different sizes and cross sections constructed by acrylic are conducted to validate the crawling performance of the robot.Within square cross-section pipes,the robot can achieve a velocity of 9.4 mm/s in horizontal crawling and 7.7 mm/s in vertical upward crawling.For horizontal crawling in circular pipes,it can reach a velocity of 8.0 mm/s.When fully charged,the robot can crawl for 40 min with a mileage of 16.649 m,which is sufficient for most drainage and industrial pipelines detection tasks.The robot demonstrates excellent endurance and speed performance that exceed most existing untethered soft pipe crawling robots.
基金research project funded by the National Natural Science Foundation of China(NSFC)under Grant 91948302 and Grant 52021003Research England fund at NERIC.
文摘This paper endeavours to bridge the existing gap in muscular actuator design for ligament-skeletal-inspired robots,thereby fostering the evolution of these robotic systems.We introduce two novel compliant actuators,namely the Internal Torsion Spring Compliant Actuator(ICA)and the External Spring Compliant Actuator(ECA),and present a comparative analysis against the previously conceived Magnet Integrated Soft Actuator(MISA)through computational and experimental results.These actuators,employing a motor-tendon system,emulate biological muscle-like forms,enhancing artificial muscle technology.Then,applications of the proposed actuators in a robotic arm inspired by the human musculoskeletal system are presented.Experiments demonstrate satisfactory power in tasks like lifting dumbbells(peak power:36 W),playing table tennis(end-effector speed:3.2 m/s),and door opening,without compromising biomimetic aesthetics.Compared to other linear stiffness serial elastic actuators(SEAs),ECA and ICA exhibit high power-to-volume(361×10^(3)W/m^(3))and power-to-mass(111.6 W/kg)ratios respectively,endorsing the biomimetic design’s promise in robotic development.
基金supported in part by the National Key R&D Program of China under Grant 2024YFB4707900the National Natural Science Foundation of China under Grant 91948302 and Grant 52021003.
文摘Tendon-driven robots have distinct advantages in high-dynamic performance motion and high-degree-of-freedom manipulation.However,these robots face challenges related to control complexity,intricate tendon drive paths,and tendon slackness.In this study,the authors present a novel modular tendon-driven actuator design that integrates a series elastic element.The actuator incorporates a unique magnetic position sensing technology that enables observation of the length and tension of the tendon and features an exceptionally compact design.The modular architecture of the tendon-driven actuator addresses the complexity of tendon drive paths,while the tension observation functionality mitigates slackness issues.The design and modeling of the actuator are described in this paper,and a series of tests are conducted to validate the simulation model and to test the performance of the proposed actuator.The model can be used for training robot control neural networks based on simulation,thereby overcoming the challenges associated with controlling tendon-driven robots.
基金supported by The Key Science and Technology Plan Project of Jinhua City,China:2023-3-084,2023-2-011Zhejiang Provincial"Revealing the list and taking command"Project of China KYH06Y22349Open Fund Project of Key Laboratory of CNC Equipment reliability,Ministry of Education JLU-cncr-202407.
文摘Piezoelectric actuators are widely utilized in positioning systems to realize nano-scale resolution. However, the backward motion always generates for some piezoelectric actuators, which reduces the working efficiency. Bionic motions have already been employed in the field of piezoelectric actuators to realize better performance. By imitating the movement form of seals, seal type piezoelectric actuator is capable to realize large operating strokes easily. Nevertheless, the conventional seal type piezoelectric actuator has a complicated structure and control system, which limits further applications. Hence, an improved bionic piezoelectric actuator is proposed to realize a long motion stroke and eliminate backward movement with a simplified structure and control method in this study. The composition and motion principle of the designed actuator are discussed, and the performance is investigated with simulations and experiments. Results confirm that the presented actuator effectively realizes the linear movement that has a large working stroke stably without backward motion. The smallest stepping displacement ΔL is 0.2 μm under 1 Hz and 50 V. The largest motion speed is 900 μm/s with 900 Hz and 120 V. The largest vertical and horizontal load are 250 g and 12 g, respectively. This work shows that the improved bionic piezoelectric actuator is feasible for eliminating backward motion and has a great working ability.
基金Project supported by the Science and Technology Research Project of Henan Province in China(Grant No.222102220022)。
文摘Soft underwater swimming robots driven by smart materials show unique advantages in ocean exploration,such as low noise,high flexibility and good environmental interaction ability.The dielectric elastomer(DE),as a new kind of soft intelligent material,has the characteristics of a low elastic modulus,large deformation range,high energy density and fast response speed.DE actuator(DEA)drive systems use the deformation characteristics of dielectric materials to drive the mechanical system,which has become a research hotspot in the field of soft robots.In this paper,a tubular actuator based on DEs is designed and its performance is studied.Firstly,the structure and driving process of a DEA are described,and a tubular DEA is designed.Studying the elongation ratio of the DEA pre-stretching shows that when the axial elongation ratio is 3 times and the circumferential elongation ratio is 4 times,the maximum deformation effect can be obtained under voltage excitation.At a voltage of 6.0 k V,a single pipe section DEA achieves a bending angle of 25.9°and a driving force of 73.8 m N.Secondly,the effect of the DEA series on the bending angle and response characteristics is studied.The experimental results show that the maximum bending angle of the three joint actuators in series can reach 59.3°under6.0 k V voltage,which significantly improves the overall bending performance.In addition,the truncation frequency of the drive module after the series is increased to 0.62 Hz,showing better frequency response capability.The excellent performance of the pipe joint actuator in its bending angle,response characteristic and driving force is verified.
基金financial support from the National Natural Science Foundation of China(Grant No.U1637101)The Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures(1005-ZAG23011).
文摘As a kind of ionic artificial muscle material,Ionic Polymer-Metal Composites(IPMCs)have the advantages of a low drive current,light weight,and significant flexibility.IPMCs are widely used in the fields of biomedicine,soft robots,etc.However,the displacement and blocking force of the traditional sheet-type Nafion-IPMC need to be improved,and it has the limitation of unidirectional actuation.In this paper,a new type of short side chain Aquivion material is used as the polymer in the IPMC.The cylindrical IPMC is prepared by extrusion technology to improve its actuation performance and realize multi-degree-of-freedom motion.In comparison to the traditional Nafion-IPMC,the ion exchange capacity,specific capacitance,and conductivity of Aquivion-IPMC are improved by 28%,27%,and 32%,respectively,and the displacement and blocking force are improved by 57%and 25%,respectively.The cylindrical actuators can be deflected in eight directions.This indicates that Aquivion,as a polymer membrane for IPMC,holds significant application potential.By designing a cylindrical IPMC electrode distribution,the multi-degree-of-freedom deflection of IPMC can be realized.
基金supported by the National Natural Science Foundation of China(Grant No.11972194).
文摘By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using computational fluid dynamics(CFD),the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated.Initially,the current model was utilized to examine the intricate,multi-dimensional flow,and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber.It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy,along with the combined effect of the propellant motion,are what create the pressure oscillation within the chamber.Additionally,a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion,including pyrotechnic charge,pyrotechnic particle size,and chamber structural dimension.The findings show that decreasing the pyrotechnic charge will lower the terminal velocity,while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber.The pyrotechnic particle size has minimal bearing on the terminal velocity.The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs.