Both the band filling effect and Fe/Mo disorder have a close correlation with the physical properties of the double perovskite Ca2FeMoO6. Two series of Ca2FeMoO6and Nd0.3Ca1.7FeMoO6ceramics sintered at(1050℃, 1200℃,...Both the band filling effect and Fe/Mo disorder have a close correlation with the physical properties of the double perovskite Ca2FeMoO6. Two series of Ca2FeMoO6and Nd0.3Ca1.7FeMoO6ceramics sintered at(1050℃, 1200℃, and 1300℃) were specially designed to comparatively investigate the band-filling effect and Fe/Mo disorder on the physical properties of Ca2FeMoO6. The x-ray diffraction indicates that Fe/Mo disorder is sensitive to the sintering temperature. The magnetization behavior is mainly controlled by the Fe/Mo disorder not by the band filling effect, manifested by a close correlation of saturated magnetization(Ms) with the Fe/Mo disorder. Interestingly, magnetoresistance(MR) property of the same composition is dominantly contributed by the grain boundary strength, which can be expressed by the macroscopic resistivity values. However, the band filling effect caused by the Nd-substitution can decrease the spin polarization, and thus suppress the MR performance fundamentally. Contrary to the MR response, the Curie temperature(TC) shows an obvious optimization due to the band filling effect, which increases the carrier density near the Fermi level responsible for the ferromagnetic coupling interaction strengthen. Maybe, our work can provoke further research interests into the correlation of the band-filling effects and Fe/Mo disorder with the physical properties of other Fe/Mo-based double perovskites.展开更多
In this study,a novel Ca_(2)GaTaO_(6):Sm^(3+)phosphor was developed using the conventional hightemperature solid-phase method.The phase structure and morphology test results of phosphor indicate that the Ca_(2)GaTaO_(...In this study,a novel Ca_(2)GaTaO_(6):Sm^(3+)phosphor was developed using the conventional hightemperature solid-phase method.The phase structure and morphology test results of phosphor indicate that the Ca_(2)GaTaO_(6):Sm^(3+)material was successfully synthesized and the Sm^(3+)ions were successfully doped into the host lattice.When utilizing 406 nm excitation,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor has the strongest emission intensity at 599 nm and shows orange-red emission,which is mainly owing to the^(4)G_(5/2)→^(6)H_(7/2)jump of Sm^(3+)ions.For the performance of different concentrations of Sm^(3+)ions,3 mol%performs the best.At this time,concentration quenching occurs,which is most predominantly induced by dipole-dipole(d-d)interactions.In terms of thermal stability,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor shows good properties,with the luminescence intensity at 423 K exhibiting 88.17%of that at 298 K.The white light-emitting diodes(WLEDs)devices prepared using Ca_(2)GaTaO_(6):Sm^(3+):0.03Sm^(3+)phosphor shows warm white light with excellent performance in terms of correlated color temperature and color rendering index(CCT=3642 K,CRI,Ra=93.5).In terms of anticounterfeit inks,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor also shows good potential.These research results show that Ca_(2)GaTaO_(6):Sm^(3+)phosphors have great performance for application in WLEDs and anti-counterfeit inks.展开更多
The work focuses on the utilization of the conventional solid-state sintering procedure to synthesize white phosphors Ca_(2)InTaO_(6):xDy^(3+)(0.02≤x≤0.12).Utilizing X-ray diffraction,the phase structure of samples ...The work focuses on the utilization of the conventional solid-state sintering procedure to synthesize white phosphors Ca_(2)InTaO_(6):xDy^(3+)(0.02≤x≤0.12).Utilizing X-ray diffraction,the phase structure of samples was examined,and the crystal structure was refined using the Rietveld method.A scanning electron microscope was used to analyze the microstructure of sample.First-principles calculations confirm that the indirect bandgap of Ca_(2)InTaO_(6)is 3.786 eV,The luminous properties and energy transfer mechanism of Ca_(2)InTaO_(6):xDy^(3+)were studied using photoluminescence spectroscopy.The^(4)F_(9/2)→^(6)H_(13/2)transition of Dy^(3+)ions is responsible for the greatest emission peak,which was measured at 575 nm.According to research,the lifespan falls as the concentration of Dy^(3+)doping amount rises because of frequent interaction and ene rgy transfer between Dy^(3+)ions.The correlated color temperature of the WLEDs packaged with Ca_(2)InTaO_(6):0.08Dy^(3+)is 4677 K and CIE 1931 chromaticity coordinates are(0.3578,0.3831).Meantime,the phosphor also shows outstanding te mperature stability property,which maintains 83.8%of its initial emission intensity at 450 K(activation energy of 0.1467 eV).The W-LEDs retain their performance for 100 min when powered at 3.4 V voltage and 600 mA current,demonstrating the packed W-LEDs'sustaine d operation at high temperatures.展开更多
A novel red-emitting phosphor tantalate Ca_(2)YTaO_(6):Eu^(3+)was synthesized by a solid-state reaction.The purity and surface morphology of the phosphors were characterized.The Ca_(2)YTaO_(6):Eu^(3+)phosphors show a ...A novel red-emitting phosphor tantalate Ca_(2)YTaO_(6):Eu^(3+)was synthesized by a solid-state reaction.The purity and surface morphology of the phosphors were characterized.The Ca_(2)YTaO_(6):Eu^(3+)phosphors show a sharp emission peak at 612 nm under near-ultraviolet(n-UV) at 395 nm because of the ^(5)D0→^(7)F_(2) transition of Eu^(3+).The optimal Eu^(3+)doping concentration in Ca_(2)YTaO_(6) is 40 mol% and the critical energy-transfer distance of Eu^(3+)ions was calculated to be 0.9 nm.The emission spectra of Ca_(2)YTaO_(6):Eu_(3+)from 300 to 480 K were investigated.The thermal-quenching temperature(T_(0.5)) of Ca_(2)YTaO_(6):Eu^(3+)is above 480 K.The color purity of Ca_(2)YTaO_(6):40 mol%Eu^(3+)is as high as 99.8%.The luminescence lifetime of Ca_(2)YTaO_(6):40 mol%Eu^(3+)was also discussed.The high color purity and high thermal stability of Eu^(3+)-doped Ca_(2)YTaO_(6) phosphors contribute to its application value in white lightemitting diodes(w-LEDs).展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.U1504107)the Doctoral Scientific Research Foundation(Grant No.qd15214)
文摘Both the band filling effect and Fe/Mo disorder have a close correlation with the physical properties of the double perovskite Ca2FeMoO6. Two series of Ca2FeMoO6and Nd0.3Ca1.7FeMoO6ceramics sintered at(1050℃, 1200℃, and 1300℃) were specially designed to comparatively investigate the band-filling effect and Fe/Mo disorder on the physical properties of Ca2FeMoO6. The x-ray diffraction indicates that Fe/Mo disorder is sensitive to the sintering temperature. The magnetization behavior is mainly controlled by the Fe/Mo disorder not by the band filling effect, manifested by a close correlation of saturated magnetization(Ms) with the Fe/Mo disorder. Interestingly, magnetoresistance(MR) property of the same composition is dominantly contributed by the grain boundary strength, which can be expressed by the macroscopic resistivity values. However, the band filling effect caused by the Nd-substitution can decrease the spin polarization, and thus suppress the MR performance fundamentally. Contrary to the MR response, the Curie temperature(TC) shows an obvious optimization due to the band filling effect, which increases the carrier density near the Fermi level responsible for the ferromagnetic coupling interaction strengthen. Maybe, our work can provoke further research interests into the correlation of the band-filling effects and Fe/Mo disorder with the physical properties of other Fe/Mo-based double perovskites.
基金supported by Guizhou Provincial Basic Research Program(Natural Science)(Qian ke he ji chu-ZK2024 YiBan 095)。
文摘In this study,a novel Ca_(2)GaTaO_(6):Sm^(3+)phosphor was developed using the conventional hightemperature solid-phase method.The phase structure and morphology test results of phosphor indicate that the Ca_(2)GaTaO_(6):Sm^(3+)material was successfully synthesized and the Sm^(3+)ions were successfully doped into the host lattice.When utilizing 406 nm excitation,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor has the strongest emission intensity at 599 nm and shows orange-red emission,which is mainly owing to the^(4)G_(5/2)→^(6)H_(7/2)jump of Sm^(3+)ions.For the performance of different concentrations of Sm^(3+)ions,3 mol%performs the best.At this time,concentration quenching occurs,which is most predominantly induced by dipole-dipole(d-d)interactions.In terms of thermal stability,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor shows good properties,with the luminescence intensity at 423 K exhibiting 88.17%of that at 298 K.The white light-emitting diodes(WLEDs)devices prepared using Ca_(2)GaTaO_(6):Sm^(3+):0.03Sm^(3+)phosphor shows warm white light with excellent performance in terms of correlated color temperature and color rendering index(CCT=3642 K,CRI,Ra=93.5).In terms of anticounterfeit inks,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor also shows good potential.These research results show that Ca_(2)GaTaO_(6):Sm^(3+)phosphors have great performance for application in WLEDs and anti-counterfeit inks.
基金Project supported by the Science and Technology Foundation of Guizhou Province(20201Y271)。
文摘The work focuses on the utilization of the conventional solid-state sintering procedure to synthesize white phosphors Ca_(2)InTaO_(6):xDy^(3+)(0.02≤x≤0.12).Utilizing X-ray diffraction,the phase structure of samples was examined,and the crystal structure was refined using the Rietveld method.A scanning electron microscope was used to analyze the microstructure of sample.First-principles calculations confirm that the indirect bandgap of Ca_(2)InTaO_(6)is 3.786 eV,The luminous properties and energy transfer mechanism of Ca_(2)InTaO_(6):xDy^(3+)were studied using photoluminescence spectroscopy.The^(4)F_(9/2)→^(6)H_(13/2)transition of Dy^(3+)ions is responsible for the greatest emission peak,which was measured at 575 nm.According to research,the lifespan falls as the concentration of Dy^(3+)doping amount rises because of frequent interaction and ene rgy transfer between Dy^(3+)ions.The correlated color temperature of the WLEDs packaged with Ca_(2)InTaO_(6):0.08Dy^(3+)is 4677 K and CIE 1931 chromaticity coordinates are(0.3578,0.3831).Meantime,the phosphor also shows outstanding te mperature stability property,which maintains 83.8%of its initial emission intensity at 450 K(activation energy of 0.1467 eV).The W-LEDs retain their performance for 100 min when powered at 3.4 V voltage and 600 mA current,demonstrating the packed W-LEDs'sustaine d operation at high temperatures.
基金financially supported by the National Natural Science Foundation of China (Grant No. 51862012)the Natural Science Foundation of Jiangxi Province (Grants No. 20202BAB204008, 20165ABC28010)the Innovation Leadership Program of Ganzhou。
基金The work was supported by Undergraduate Innovation Fund of Northwest A&F UniversityChina(201910712069)+3 种基金Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications(2019XGJSKFJJ01)the Construction Program of the key discipline in Hunan Provincethe Projects of the Education Department of Hunan Province(No.18A465)Science and Technology Plan Project of Chenzhou City(jsyf2017014)。
文摘A novel red-emitting phosphor tantalate Ca_(2)YTaO_(6):Eu^(3+)was synthesized by a solid-state reaction.The purity and surface morphology of the phosphors were characterized.The Ca_(2)YTaO_(6):Eu^(3+)phosphors show a sharp emission peak at 612 nm under near-ultraviolet(n-UV) at 395 nm because of the ^(5)D0→^(7)F_(2) transition of Eu^(3+).The optimal Eu^(3+)doping concentration in Ca_(2)YTaO_(6) is 40 mol% and the critical energy-transfer distance of Eu^(3+)ions was calculated to be 0.9 nm.The emission spectra of Ca_(2)YTaO_(6):Eu_(3+)from 300 to 480 K were investigated.The thermal-quenching temperature(T_(0.5)) of Ca_(2)YTaO_(6):Eu^(3+)is above 480 K.The color purity of Ca_(2)YTaO_(6):40 mol%Eu^(3+)is as high as 99.8%.The luminescence lifetime of Ca_(2)YTaO_(6):40 mol%Eu^(3+)was also discussed.The high color purity and high thermal stability of Eu^(3+)-doped Ca_(2)YTaO_(6) phosphors contribute to its application value in white lightemitting diodes(w-LEDs).