Aqueous Zn-ion batteries (AZIBs) have received considerable attention owing to their various advantages such as safety,low cost,simple battery assembly conditions,and high ionic conductivity.However,they still suffer ...Aqueous Zn-ion batteries (AZIBs) have received considerable attention owing to their various advantages such as safety,low cost,simple battery assembly conditions,and high ionic conductivity.However,they still suffer from serious problems,including uncontrollable dendrite growth,corrosion,hydrogen evolution reaction (HER) from water decomposition,electrode passivation,and unexpected by-products.The creation of a uniform artificial nanocrystal layer on the Zn anode surface is a promising strategy for resolving these issues.Herein,we propose the use of a perovskite CaTiO_(3)(CTO) protective layer on Zn(CTO@Zn) as a promising approach for improving the performance of AZIBs.The CTO artificial layer provides an efficient pathway for Zn ion diffusion towards the Zn metal because of the high dielectric constant (εr=180) and ferroelectric characteristics that enable the alignment of dipole moments and redistribute the Zn^(2+)ions in the CTO layer.By avoiding the direct contact of the Zn anode with the electrolyte solution,the uneven dendrite growth,corrosion,parasitic side reactions,and HER are mitigated,while CTO retains its mechanical and chemical robustness during cycling.Consequently,CTO@Zn demonstrates an improved lifespan in a symmetric cell configuration compared with bare Zn.CTO@Zn shows steady overpotential (~68 m V) for 1500 h at 1 mA cm^(-2)/0.5 mA h cm^(-2),excelling bare Zn.Moreover,when paired with the V_(2)O_(5)-C cathode,the CTO@Zn//V_(2)O_(5)-C full battery delivers 148.4 mA h g^(-1)(based on the mass of the cathode) after 300 cycles.This study provides new insights into Zn metal anodes and the development of high-performance AZIBs.展开更多
基金Basic Science Research Capacity Enhancement Project through the Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (2019R1A6C1010016)Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (NRF-2021R1F1A1050130)。
文摘Aqueous Zn-ion batteries (AZIBs) have received considerable attention owing to their various advantages such as safety,low cost,simple battery assembly conditions,and high ionic conductivity.However,they still suffer from serious problems,including uncontrollable dendrite growth,corrosion,hydrogen evolution reaction (HER) from water decomposition,electrode passivation,and unexpected by-products.The creation of a uniform artificial nanocrystal layer on the Zn anode surface is a promising strategy for resolving these issues.Herein,we propose the use of a perovskite CaTiO_(3)(CTO) protective layer on Zn(CTO@Zn) as a promising approach for improving the performance of AZIBs.The CTO artificial layer provides an efficient pathway for Zn ion diffusion towards the Zn metal because of the high dielectric constant (εr=180) and ferroelectric characteristics that enable the alignment of dipole moments and redistribute the Zn^(2+)ions in the CTO layer.By avoiding the direct contact of the Zn anode with the electrolyte solution,the uneven dendrite growth,corrosion,parasitic side reactions,and HER are mitigated,while CTO retains its mechanical and chemical robustness during cycling.Consequently,CTO@Zn demonstrates an improved lifespan in a symmetric cell configuration compared with bare Zn.CTO@Zn shows steady overpotential (~68 m V) for 1500 h at 1 mA cm^(-2)/0.5 mA h cm^(-2),excelling bare Zn.Moreover,when paired with the V_(2)O_(5)-C cathode,the CTO@Zn//V_(2)O_(5)-C full battery delivers 148.4 mA h g^(-1)(based on the mass of the cathode) after 300 cycles.This study provides new insights into Zn metal anodes and the development of high-performance AZIBs.