Activities of FeO in CaO-SiO2-Al2O3-MgO-FeO slags were determined at 1673 K by electrochemical of the solid electrolyte cell: Mo [Mo+MoOu[ZrO2(MgO)[Fe+(CaO-SiO2-Al2O3-MgO-FeO)+Ag[Fe. The influences of slag com...Activities of FeO in CaO-SiO2-Al2O3-MgO-FeO slags were determined at 1673 K by electrochemical of the solid electrolyte cell: Mo [Mo+MoOu[ZrO2(MgO)[Fe+(CaO-SiO2-Al2O3-MgO-FeO)+Ag[Fe. The influences of slag compositions and basicity on FeO activities were analyzed. The results reveal that, for slags of fixed (%CaO)/(%SiO2) ratio, MgO and Al2O3 content, there was an increase of FeO activities with increase of FeO content. For slags with constant {(%CaO)+ (%MgO)}/(%SiO2) ratio, fixed FeO and A1203 content, FeO activities decreased when MgO content increased from 5% to 10%, and increased with the increase of MgO content when it was over 10%. The FeO activities increased when (%CaO)/(%SiO2) ratio changed from 1.03 to 1.30 in the slags of constant MgO, FeO and Al2O3 content.展开更多
The sulphide capacity of CaO-SiO2-Al2O3-MgO-FetO slags was studied at 1773 K using gas-slag equilibrium techniques. Utilizing a Pt crucible, the slag was equilibrated with a mixture of gases, namely, CO, CO2, SO2 and ...The sulphide capacity of CaO-SiO2-Al2O3-MgO-FetO slags was studied at 1773 K using gas-slag equilibrium techniques. Utilizing a Pt crucible, the slag was equilibrated with a mixture of gases, namely, CO, CO2, SO2 and N2 to provide the partial pressure of oxygen and sulphur. It was shown that at fixed FetO and Al2O3 contents and a fixed { (%CaO)+(%MgO)}/(%SIO2) ratio, the sulphide capacity decreases with increasing MgO content. At a constant (%CaO)/(%SiO2) ratio and constant MgO and Al2O3 contents, increasing the FetO content of the slags also results in an increase of the sulphide capacity. The rising basicity of (%CaO)/(%SiO2) from 1.0 to 1.4 at fixed MgO, FetO and Al2O3 contents significantly increases the sulphide capacity.展开更多
CaO-SiO2-Al2O3-MgO-Fex O slag occurs in the production process of Corex ironmaking technology. Most of its metallurgical properties, especially the phosphorus property, are different from the slag produced from blast ...CaO-SiO2-Al2O3-MgO-Fex O slag occurs in the production process of Corex ironmaking technology. Most of its metallurgical properties, especially the phosphorus property, are different from the slag produced from blast furnace or converter. In order to explore the dephosphorization ability of CaO-SiO2-Al2O3-MgO-Fex O slag, its phosphorus capacity was measured at 1673 K by gas-slag-metal equilibrium technique. An iron crucible was used as the reaction vessel, Ag alloy with 0.2 % P was used as the metal phase which equilibrated with CaO-SiO2-Al2O3-MgO-Fex O slag, and a constant flow of CO-CO2-N2 gas was used to provide oxygen partial pressure in the experi- ment. The effects of MgO, Fex O and basicity on slag phosphorus capacity were investigated by single factor test. The results show that the phosphorus capacity rises firstly and then decreases with increasing MgO content under the condition of basicity 1.3, Fe2 O content of 20% and A12 03 content of 12%. The phosphorus value reaches maximum as the MgO content is 8%. When the basicity of slag is 1.1, MgO content is 10%, and Al2O3 is 12%, the phos- phorus capacity increases with the increase of Fe, O content. The phosphorus capacity rises linearly when the basicity is increased from 1.1 to 1. 5.展开更多
The activity of VO in molten ternary CaO-SiO_2-VO Slag has been determined by chemical equilibrium method, using tin as the solvent metal. The relation between the activity and the content of VO, as well as the effect...The activity of VO in molten ternary CaO-SiO_2-VO Slag has been determined by chemical equilibrium method, using tin as the solvent metal. The relation between the activity and the content of VO, as well as the effect of slag basicity on activity of VO. are discussed.展开更多
Oxidization mechanism in CaO-FeOx-SiO2 slag with high iron content was investigated by blowing oxygen into molten slag so as to oxidize Fe(Ⅱ). The relationship between Fe(Ⅱ) content and oxidizing time at differe...Oxidization mechanism in CaO-FeOx-SiO2 slag with high iron content was investigated by blowing oxygen into molten slag so as to oxidize Fe(Ⅱ). The relationship between Fe(Ⅱ) content and oxidizing time at different temperatures was obtained by chemical analysis. Microstructure of slag was observed by metallographic microscope and SEM. Phases compositions were ascertained by EDXS and XRD. Grain size and crystallizing quantity of magnetite(Fe3O4) were determined by image analyzer. The oxidizing kinetic equations were deduced. Confirmed by graphical construction method, Fe(Ⅱ) oxidizing reaction in CaO-FeOx-SiO2 slag system is of first order, and the reaction apparent energy Ea is 296.67kJ/mol in the pure oxygen and 340.30kJ/mol in air. The enrichment and crystal growth mechanism of magnetite(Fe3O4) phases were investigated. In oxidizing process, content of fayalite declines, while that of magnetite(Fe3O4) increases, and iron resources enrich into magnetite(Fe3O4) phase. All these provide a theoretical base for compressive utilizing of those slags.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.50574036)
文摘Activities of FeO in CaO-SiO2-Al2O3-MgO-FeO slags were determined at 1673 K by electrochemical of the solid electrolyte cell: Mo [Mo+MoOu[ZrO2(MgO)[Fe+(CaO-SiO2-Al2O3-MgO-FeO)+Ag[Fe. The influences of slag compositions and basicity on FeO activities were analyzed. The results reveal that, for slags of fixed (%CaO)/(%SiO2) ratio, MgO and Al2O3 content, there was an increase of FeO activities with increase of FeO content. For slags with constant {(%CaO)+ (%MgO)}/(%SiO2) ratio, fixed FeO and A1203 content, FeO activities decreased when MgO content increased from 5% to 10%, and increased with the increase of MgO content when it was over 10%. The FeO activities increased when (%CaO)/(%SiO2) ratio changed from 1.03 to 1.30 in the slags of constant MgO, FeO and Al2O3 content.
基金This project was financially supported by the National Natural Science Foundation of China (No.50574036) and Natural Science Foun-dation of HeBei Province, China (No.502267).
文摘The sulphide capacity of CaO-SiO2-Al2O3-MgO-FetO slags was studied at 1773 K using gas-slag equilibrium techniques. Utilizing a Pt crucible, the slag was equilibrated with a mixture of gases, namely, CO, CO2, SO2 and N2 to provide the partial pressure of oxygen and sulphur. It was shown that at fixed FetO and Al2O3 contents and a fixed { (%CaO)+(%MgO)}/(%SIO2) ratio, the sulphide capacity decreases with increasing MgO content. At a constant (%CaO)/(%SiO2) ratio and constant MgO and Al2O3 contents, increasing the FetO content of the slags also results in an increase of the sulphide capacity. The rising basicity of (%CaO)/(%SiO2) from 1.0 to 1.4 at fixed MgO, FetO and Al2O3 contents significantly increases the sulphide capacity.
基金Item Sponsored by the State Key Program of National Natural Science Foundation of China(U1360205)National Natural Science Foundation of China(51174074)
文摘CaO-SiO2-Al2O3-MgO-Fex O slag occurs in the production process of Corex ironmaking technology. Most of its metallurgical properties, especially the phosphorus property, are different from the slag produced from blast furnace or converter. In order to explore the dephosphorization ability of CaO-SiO2-Al2O3-MgO-Fex O slag, its phosphorus capacity was measured at 1673 K by gas-slag-metal equilibrium technique. An iron crucible was used as the reaction vessel, Ag alloy with 0.2 % P was used as the metal phase which equilibrated with CaO-SiO2-Al2O3-MgO-Fex O slag, and a constant flow of CO-CO2-N2 gas was used to provide oxygen partial pressure in the experi- ment. The effects of MgO, Fex O and basicity on slag phosphorus capacity were investigated by single factor test. The results show that the phosphorus capacity rises firstly and then decreases with increasing MgO content under the condition of basicity 1.3, Fe2 O content of 20% and A12 03 content of 12%. The phosphorus value reaches maximum as the MgO content is 8%. When the basicity of slag is 1.1, MgO content is 10%, and Al2O3 is 12%, the phos- phorus capacity increases with the increase of Fe, O content. The phosphorus capacity rises linearly when the basicity is increased from 1.1 to 1. 5.
文摘The activity of VO in molten ternary CaO-SiO_2-VO Slag has been determined by chemical equilibrium method, using tin as the solvent metal. The relation between the activity and the content of VO, as well as the effect of slag basicity on activity of VO. are discussed.
基金Key Project(50234040) supported by the National Natural Science Foundation of China
文摘Oxidization mechanism in CaO-FeOx-SiO2 slag with high iron content was investigated by blowing oxygen into molten slag so as to oxidize Fe(Ⅱ). The relationship between Fe(Ⅱ) content and oxidizing time at different temperatures was obtained by chemical analysis. Microstructure of slag was observed by metallographic microscope and SEM. Phases compositions were ascertained by EDXS and XRD. Grain size and crystallizing quantity of magnetite(Fe3O4) were determined by image analyzer. The oxidizing kinetic equations were deduced. Confirmed by graphical construction method, Fe(Ⅱ) oxidizing reaction in CaO-FeOx-SiO2 slag system is of first order, and the reaction apparent energy Ea is 296.67kJ/mol in the pure oxygen and 340.30kJ/mol in air. The enrichment and crystal growth mechanism of magnetite(Fe3O4) phases were investigated. In oxidizing process, content of fayalite declines, while that of magnetite(Fe3O4) increases, and iron resources enrich into magnetite(Fe3O4) phase. All these provide a theoretical base for compressive utilizing of those slags.