The effects of artificial aging(T6)on the creep resistance with tensile stresses in the range of 50−80 MPa at 175℃were investigated for an extruded Mg−1.22Al−0.31Ca−0.44Mn(wt.%)alloy.The Guinier-Preston(G.P.)zones pr...The effects of artificial aging(T6)on the creep resistance with tensile stresses in the range of 50−80 MPa at 175℃were investigated for an extruded Mg−1.22Al−0.31Ca−0.44Mn(wt.%)alloy.The Guinier-Preston(G.P.)zones primarily precipitate in the sample aged at 200℃for 1 h(T6-200℃/1h),while the Al_(2)Ca phases mainly precipitate in the sample aged at 275℃for 8 h(T6-275℃/8h).The T6-200℃/1h sample exhibits excellent creep resistance,with a steady-state creep rate one order of magnitude lower than that of the T6-275℃/8h sample.The abnormally high stress exponent(~8.2)observed in the T6-200℃/1h sample is associated with the power-law breakdown mechanism.TEM analysis illuminates that the creep mechanism for the T6-200℃/1h sample is cross-slip between basal and prismatic dislocations,while the T6-275℃/8h sample exhibits a mixed mechanism of dislocation cross-slip and climb.Compared with the Al_(2)Ca phase,the dense G.P.zones effectively impede dislocation climb and glide during the creep process,demonstrating superior creep resistance of the T6-200℃/1h sample.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 52175322, 52271031)the Natural Science Foundation of Jilin Province, China (No. SKL202302015)。
文摘The effects of artificial aging(T6)on the creep resistance with tensile stresses in the range of 50−80 MPa at 175℃were investigated for an extruded Mg−1.22Al−0.31Ca−0.44Mn(wt.%)alloy.The Guinier-Preston(G.P.)zones primarily precipitate in the sample aged at 200℃for 1 h(T6-200℃/1h),while the Al_(2)Ca phases mainly precipitate in the sample aged at 275℃for 8 h(T6-275℃/8h).The T6-200℃/1h sample exhibits excellent creep resistance,with a steady-state creep rate one order of magnitude lower than that of the T6-275℃/8h sample.The abnormally high stress exponent(~8.2)observed in the T6-200℃/1h sample is associated with the power-law breakdown mechanism.TEM analysis illuminates that the creep mechanism for the T6-200℃/1h sample is cross-slip between basal and prismatic dislocations,while the T6-275℃/8h sample exhibits a mixed mechanism of dislocation cross-slip and climb.Compared with the Al_(2)Ca phase,the dense G.P.zones effectively impede dislocation climb and glide during the creep process,demonstrating superior creep resistance of the T6-200℃/1h sample.