CZTS(Cu_(2)ZnSnS_(4))is a quaternary semiconductor that is environmentally friendly,less expensive.In this paper,we report on the optimization and fabrication of CZTS-based heterojunction nanodevices for bifunctional ...CZTS(Cu_(2)ZnSnS_(4))is a quaternary semiconductor that is environmentally friendly,less expensive.In this paper,we report on the optimization and fabrication of CZTS-based heterojunction nanodevices for bifunctional applications such as solar cells and photodetectors.CZTS thin films were deposited on top of(Molybdenum)Mo-coated glass substrates via RF sputtering at 100 and 200 W.Rapid thermal processing(RTP)was used at 300,400,and 500℃temperatures.Cd S(cadmium sulphide)was deposited on CZTS using a chemical bath deposition system with 3-and 5-min deposition times.Zn O(zinc oxide)and AZO(aluminium doped zinc oxide)layers were deposited using RF(radio frequency)sputtering to create the solar device.XRD confirms the formation of a tetragonal structure with increased crystallinity due to the use of RTP.Raman reveals the characteristic Raman shift peak associated with CZTS at 336 and 335 cm^(-1).The FESEM shows a relationship with RTP temperature.Surface features,including grain size,vary with RTP temperature.The ideality factor is nearly 2,indicating imperfection in the Mo/CZTS interface.Schottky barrier height estimates range from 0.6 to 0.7 e V.Absorbance and transmittance show a predictable fluctuation with RTP temperature.Photovoltaic device was built using the higher crystalline feature of CZTS in conjunction with Cd S deposited at 3 and 5 min.The efficiency of Cd S deposited after 3 and 5 min was 1.15 and 0.97 percent,respectively.Fabricated devices were used for wavelength-dependent photodetection.This work demonstrated self-powered photodetection.展开更多
采用磁控溅射后硫化的方法制备Cu_2ZnSnS_4(CZTS)薄膜,分别用Zn和Zn S作为锌源,在镀钼的钠钙玻璃衬底上以Zn(或Zn S)/Sn/Cu的顺序制备出不同的CZTS薄膜预制层。首先对预制层进行低温合金,然后以硫粉作为硫源进行高温硫化,得到CZTS薄膜...采用磁控溅射后硫化的方法制备Cu_2ZnSnS_4(CZTS)薄膜,分别用Zn和Zn S作为锌源,在镀钼的钠钙玻璃衬底上以Zn(或Zn S)/Sn/Cu的顺序制备出不同的CZTS薄膜预制层。首先对预制层进行低温合金,然后以硫粉作为硫源进行高温硫化,得到CZTS薄膜。通过X射线衍射仪(XRD)、扫描电镜(SEM)及能谱仪(EDS)分别对所制备薄膜的晶体结构、表面形貌和薄膜组分进行分析表征;并用拉曼光谱表征了CZTS相的纯度。最后用CZTS薄膜制备了太阳电池,发现在预制层中以Zn S作为锌源得到的太阳电池有较高的性能参数,其开路电压:Voc=651 m V,短路电流密度:Jsc=11.4 m A/cm2,光电转换效率达到2.8%。展开更多
The Cu2ZnSnS4 (CZTS)-based solar cell is numerically simulated by a one-dimensional solar cell simulation soft- ware analysis of microelectronic and photonic structures (AMPS-1D). The device structure used in the ...The Cu2ZnSnS4 (CZTS)-based solar cell is numerically simulated by a one-dimensional solar cell simulation soft- ware analysis of microelectronic and photonic structures (AMPS-1D). The device structure used in the simulation is Al/ZnO:Al/nZn(O,S)/pCZTS/Mo. The primary motivation of this simulation work is to optimize the composition in the ZnO1-xSx buffer layer, which would yield higher conversion efficiency. By varying S/(S+O) ratio x, the conduction band offset (CBO) at CZTS/Zn(O,S) interface can range from -0.23 eV to 1.06eV if the full range of the ratio is considered. The optimal CBO of 0.23eV can be achieved when the ZnO1-xSx buffer has an S/(S+O) ratio of 0.6. The solar cell efficiency first increases with increasing sulfur content and then decreases abruptly for x〉 0.6, which reaches the highest value of 17.55% by our proposed optimal sulfur content x= 0.6. Our results provide guidance in dealing with the ZnO1-xSx buffer layer deposition for high efficiency CZTS solar cells.展开更多
通过溶剂热法,以含有PVP的醇类作溶剂,以CuCl_2·2H_2O、Zn(Ac)_2·2H_2O、SnCl_4·5H_2O作金属源,硫脲作硫源,在一定条件下反应,通过XRD、Raman、SEM、EDS、TEM、UV-Vis以及电化学分析系统研究醇类溶剂溶解度对CZTS颗粒的...通过溶剂热法,以含有PVP的醇类作溶剂,以CuCl_2·2H_2O、Zn(Ac)_2·2H_2O、SnCl_4·5H_2O作金属源,硫脲作硫源,在一定条件下反应,通过XRD、Raman、SEM、EDS、TEM、UV-Vis以及电化学分析系统研究醇类溶剂溶解度对CZTS颗粒的物相、结构、形貌以及光电性能的影响。结果表明:所选溶剂溶解度不同,对得到的CZTS颗粒的结晶性、形貌、原子比以及光电性能均有相应的影响;当选择溶解度为32.1的乙二醇作溶剂时,合成的颗粒结晶性较好,颗粒形貌为表面嵌有薄片的微球,颗粒表面缺陷形态为贫铜富锌结构,光学带隙为1.47 e V,与太阳能电池所需的最佳带隙接近,薄膜电阻率为45.86Ω·m。展开更多
文摘CZTS(Cu_(2)ZnSnS_(4))is a quaternary semiconductor that is environmentally friendly,less expensive.In this paper,we report on the optimization and fabrication of CZTS-based heterojunction nanodevices for bifunctional applications such as solar cells and photodetectors.CZTS thin films were deposited on top of(Molybdenum)Mo-coated glass substrates via RF sputtering at 100 and 200 W.Rapid thermal processing(RTP)was used at 300,400,and 500℃temperatures.Cd S(cadmium sulphide)was deposited on CZTS using a chemical bath deposition system with 3-and 5-min deposition times.Zn O(zinc oxide)and AZO(aluminium doped zinc oxide)layers were deposited using RF(radio frequency)sputtering to create the solar device.XRD confirms the formation of a tetragonal structure with increased crystallinity due to the use of RTP.Raman reveals the characteristic Raman shift peak associated with CZTS at 336 and 335 cm^(-1).The FESEM shows a relationship with RTP temperature.Surface features,including grain size,vary with RTP temperature.The ideality factor is nearly 2,indicating imperfection in the Mo/CZTS interface.Schottky barrier height estimates range from 0.6 to 0.7 e V.Absorbance and transmittance show a predictable fluctuation with RTP temperature.Photovoltaic device was built using the higher crystalline feature of CZTS in conjunction with Cd S deposited at 3 and 5 min.The efficiency of Cd S deposited after 3 and 5 min was 1.15 and 0.97 percent,respectively.Fabricated devices were used for wavelength-dependent photodetection.This work demonstrated self-powered photodetection.
文摘采用磁控溅射后硫化的方法制备Cu_2ZnSnS_4(CZTS)薄膜,分别用Zn和Zn S作为锌源,在镀钼的钠钙玻璃衬底上以Zn(或Zn S)/Sn/Cu的顺序制备出不同的CZTS薄膜预制层。首先对预制层进行低温合金,然后以硫粉作为硫源进行高温硫化,得到CZTS薄膜。通过X射线衍射仪(XRD)、扫描电镜(SEM)及能谱仪(EDS)分别对所制备薄膜的晶体结构、表面形貌和薄膜组分进行分析表征;并用拉曼光谱表征了CZTS相的纯度。最后用CZTS薄膜制备了太阳电池,发现在预制层中以Zn S作为锌源得到的太阳电池有较高的性能参数,其开路电压:Voc=651 m V,短路电流密度:Jsc=11.4 m A/cm2,光电转换效率达到2.8%。
基金Supported by the Guiding Project of Strategic Emerging Industries of Fujian Provincial Department of Science and Technology under Grant No 2015H0010the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure of Shanghai Institute of Ceramics of Chinese Academy of Sciences under Grant No SKL201404SICthe Natural Science Foundation of Fujian Province under Grant No 2016J01751
文摘The Cu2ZnSnS4 (CZTS)-based solar cell is numerically simulated by a one-dimensional solar cell simulation soft- ware analysis of microelectronic and photonic structures (AMPS-1D). The device structure used in the simulation is Al/ZnO:Al/nZn(O,S)/pCZTS/Mo. The primary motivation of this simulation work is to optimize the composition in the ZnO1-xSx buffer layer, which would yield higher conversion efficiency. By varying S/(S+O) ratio x, the conduction band offset (CBO) at CZTS/Zn(O,S) interface can range from -0.23 eV to 1.06eV if the full range of the ratio is considered. The optimal CBO of 0.23eV can be achieved when the ZnO1-xSx buffer has an S/(S+O) ratio of 0.6. The solar cell efficiency first increases with increasing sulfur content and then decreases abruptly for x〉 0.6, which reaches the highest value of 17.55% by our proposed optimal sulfur content x= 0.6. Our results provide guidance in dealing with the ZnO1-xSx buffer layer deposition for high efficiency CZTS solar cells.
文摘通过溶剂热法,以含有PVP的醇类作溶剂,以CuCl_2·2H_2O、Zn(Ac)_2·2H_2O、SnCl_4·5H_2O作金属源,硫脲作硫源,在一定条件下反应,通过XRD、Raman、SEM、EDS、TEM、UV-Vis以及电化学分析系统研究醇类溶剂溶解度对CZTS颗粒的物相、结构、形貌以及光电性能的影响。结果表明:所选溶剂溶解度不同,对得到的CZTS颗粒的结晶性、形貌、原子比以及光电性能均有相应的影响;当选择溶解度为32.1的乙二醇作溶剂时,合成的颗粒结晶性较好,颗粒形貌为表面嵌有薄片的微球,颗粒表面缺陷形态为贫铜富锌结构,光学带隙为1.47 e V,与太阳能电池所需的最佳带隙接近,薄膜电阻率为45.86Ω·m。