Cu_(2)ZnSnSSe_(4)(CZTSSe)thin film solar cells,with adjustable bandgap and rich elemental content,hold promise in next-gen photovoltaics.Crystalline quality is pivotal for efficient light absorption and carrier transp...Cu_(2)ZnSnSSe_(4)(CZTSSe)thin film solar cells,with adjustable bandgap and rich elemental content,hold promise in next-gen photovoltaics.Crystalline quality is pivotal for efficient light absorption and carrier transport.During the post-selenization process,understanding crystal growth mechanisms,and improving layer quality are essential.We explored the effects of ramp rate and annealing temperature on CZTSSe films,using X-ray diffraction(XRD),Raman spectroscopy,scanning electron microscope(SEM),and ultraviolet-visual spectrophotometry(UV-Vis).The optimal performance occurred at 25.25°C/min ramp rate and 530°C annealing.This led to smoother surfaces,higher density,and larger grains.This condition produced a single-layer structure with large grains,no secondary phases,and a 1.14 eV bandgap,making it promising for photovoltaic applications.The study has highlighted the effect of selenization conditions on the characteristics of the CZTSSe absorber layer and has provided valuable information for developing CZTSSe thin film solar cells.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instr...Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instrument function,is measured in X-ray Thom-son scattering(XRTS)experiments,which allow the study of electronic structure properties at the microscopic level.Among the various ab initio methods,linear-response time-dependent density-functional theory(LR-TDDFT)is a key framework for simulating the DSF.The standard approach in LR-TDDFT for computing the DSF relies on the orbital representation.A significant drawback of this method is the unfavorable scaling of the number of required empty bands as the wavenumber increases,making LR-TDDFT impractical for modeling XRTS measurements over large energy scales,such as in backward scattering geometry.In this work,we consider and test an alternative approach to LR-TDDFT that employs the Liouville–Lanczos(LL)method for simulating the DSF of WDM.This approach does not require empty states and allows the DSF at large momentum transfer values and over a broad frequency range to be accessed.We compare the results obtained from the LL method with those from the solution of Dyson’s equation using the standard LR-TDDFT within the projector augmented-wave formalism for isochorically heated aluminum and warm dense hydrogen.Additionally,we utilize exact path integral Monte Carlo results for the imaginary-time density-density correlation function(ITCF)of warm dense hydrogen to rigorously benchmark the LL approach.We discuss the application of the LL method for calculating DSFs and ITCFs at different wavenumbers,the effects of pseudopotentials,and the role of Lorentzian smearing.The successful validation of the LL method under WDM conditions makes it a valuable addition to the ab initio simulation landscape,supporting experimental efforts and advancing WDM theory.展开更多
Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery...Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery.We rst derive the projection formulas for a vector onto the feasible sets.The centralized circumcentered-reection method is designed to solve the convex feasibility problem.Some numerical experiments demonstrate the feasibility and e ectiveness of the proposed algorithm,showing superior performance compared to conventional alternating projection methods.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
In CZTSSe solar cells,a simple sodium-incorporation post-treatment method toward solution-processed Cu2Zn Sn S4precursor films is presented in this work.An ultrathin NaCl film is deposited on Cu2Zn Sn S4precursor film...In CZTSSe solar cells,a simple sodium-incorporation post-treatment method toward solution-processed Cu2Zn Sn S4precursor films is presented in this work.An ultrathin NaCl film is deposited on Cu2Zn Sn S4precursor films by spin-coating NaCl solution.In subsequent selenization process,the introduction of Na Cl is found to be benefacial for the formation of Cu2-xSe,which can further facilitate the element transportation,leading to dense and smooth CZTSSe films with large grains and less impurity Cu2Sn(S,Se)3phase.SIMS depth profiles confirm the gradient distribution of the sodium element in Na-doped absorbers.Photoluminescence spectra show that the introduction of appropriate sodium into the absorber can inhibit the band tail states.As high as 11.18% of power conversion efficiency(PCE)is achieved for the device treated with 5 mg mL^-1 NaCl solution,and an average efficiency of Na-doped devices is 10.71%,13%higher than that of the control groups(9.45%).Besides,the depletion width and the charge recombination lifetime can also have regular variation with sodium treatment.This work offers an easy modification method for high-quality Na-doped CZTSSe films and high-performance devices,in the meantime,it can also help to further understand the effects of sodium in CZTSSe solar cells.展开更多
Numerical analysis is an effective tool to research the industrial Czochralski (CZ) crystal growth aiming to improve crystal quality and reduce manufactur- ing costs. In this study, a set of global simulations were ...Numerical analysis is an effective tool to research the industrial Czochralski (CZ) crystal growth aiming to improve crystal quality and reduce manufactur- ing costs. In this study, a set of global simulations were carried out to investigate the effect of crystal-crucible rotation and pulling rate on melt convection and solid- liquid (SL) interface shape. Through analyses of the sim- ulation data, it is found that the interface deformation and inherent stress increase during the crystal growth process. The interface deflection increases from 7.4 to 51.3 mm with an increase in crystal size from 150 to 400 mm. In addition, the SL interface shape and flow pattern are sen- sitive to pulling rate and rotation rate. Reducing pulling rate can flat SL interface shape and add energy-consuming. Interface with low deflection can be achieved by adopting certain combination of crystal and crucible rotation rates. The effect of crystal rotation on SL interface shape is less significant at higher crucible rotation rates.展开更多
Motivated by the count sketch maximal weighted residual Kaczmarz (CS-MWRK) method presented by Zhang and Li (Appl. Math. Comput., 410, 126486), we combine the count sketch tech with the maximal weighted residual Kaczm...Motivated by the count sketch maximal weighted residual Kaczmarz (CS-MWRK) method presented by Zhang and Li (Appl. Math. Comput., 410, 126486), we combine the count sketch tech with the maximal weighted residual Kaczmarz Method with Oblique Projection (MWRKO) constructed by Wang, Li, Bao and Liu (arXiv: 2106.13606) to develop a new method for solving highly overdetermined linear systems. The convergence rate of the new method is analyzed. Numerical results demonstrate that our method performs better in computing time compared with the CS-MWRK and MWRKO methods.展开更多
We present an improvement of the finite temperature Lanczos method in order to apply this method to systems at very low temperature. One proposal is to introduce two steps in this method. In the first step, we use the...We present an improvement of the finite temperature Lanczos method in order to apply this method to systems at very low temperature. One proposal is to introduce two steps in this method. In the first step, we use the Chebyshev polynomial expansion to calculate exp(-H/T1) random vector>?at moderate temperature T1. In the second step, we apply the ordinary finite temperature Lanczos method using the calculated state as the initial state of the Lanczos method. Another proposal is to employ a sampling method for selecting a random vector. By this sampling, we can improve an efficiency of calculations. Using the improved finite temperature Lanczos method, we calculate the specific heat of the spin-1/2 Heisenberg model on the kagome lattices of 27 and 30 sites.展开更多
In this paper, we propose to replace the Chebyshev series used in pseudospectral methods with the equivalent Chebyshev economized power series that can be evaluated more rapidly. We keep the rest of the implementation...In this paper, we propose to replace the Chebyshev series used in pseudospectral methods with the equivalent Chebyshev economized power series that can be evaluated more rapidly. We keep the rest of the implementation the same as the spectral method so that there is no new mathematical principle involved. We show by numerical examples that the new approach works well and there is indeed no significant loss of solution accuracy. The advantages of using power series also include simplicity in its formulation and implementation such that it could be used for complex systems. We investigate the important issue of collocation point selection. Our numerical results indicate that there is a clear accuracy advantage of using collocation points corresponding to roots of the Chebyshev polynomial.展开更多
[Objectives]The research aimed to optimize the extraction method of triterpenoids from A. selengnesis. [Methods]The ultrasonic extraction of triterpenoids in A. selengnesis was optimized by single factor analysis( inc...[Objectives]The research aimed to optimize the extraction method of triterpenoids from A. selengnesis. [Methods]The ultrasonic extraction of triterpenoids in A. selengnesis was optimized by single factor analysis( including infusion time,ethanol concentration,ultrasonic power,extraction time,and liquid-solid ratio) and response surface method. [Results]The optimum extracting process of triterpenoids was as follows: infusion time of 65 min,ethanol concentration of 80%,ultrasonic power of 275 W,extraction time of 30 min,and liquid-solid ratio of 34 m L/g. Under the optimized condition,the extraction content of triterpenoids reached( 18. 26 ± 0. 10) mg/g. [Conclusions] The optimized extraction had a good modal on practice in developing and utilization.展开更多
We propose an improved finite temperature Lanczos method using the stochastic state selection method. In the finite temperature Lanczos method, we generate Lanczos states and calculate the eigenvalues. In addition we ...We propose an improved finite temperature Lanczos method using the stochastic state selection method. In the finite temperature Lanczos method, we generate Lanczos states and calculate the eigenvalues. In addition we have to calculate matrix elements that are the values of an operator between two Lanczos states. In the calculations of the matrix elements we have to keep the set of Lanczos states on the computer memory. Therefore the memory limits the system size in the calculations. Here we propose an application of the stochastic state selection method in order to weaken this limitation. This method is to select some parts of basis states stochastically and to abandon other basis state. Only by the selected basis states we calculate the inner product. After making the statistical average, we can obtain the correct value of the inner product. By the stochastic state selection method we can reduce the number of the basis states for calculations. As a result we can relax the limitation on the computer memory. In order to study the Higgs mode at finite temperature, we calculate the dynamical correlations of the two spin operators in the spin-1/2 Heisenberg antiferromagnet on the square lattice using the improved finite temperature Lanczos method. Our results on the lattices of up to 32 sites show that the Higgs mode exists at low temperature and it disappears gradually when the temperature becomes large. At high temperature we do not find this mode in the dynamical correlations.展开更多
We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states (TNS). The ground-state wave function is represented as a linear superposition com...We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states (TNS). The ground-state wave function is represented as a linear superposition composed from a set of TNS generated by Lanczos iteration. This method improves significantly the accuracy of the tensor-network algorithm and provides an effective way to enlarge the maximal bond dimension of TNS. The ground state such obtained contains significantly more entanglement than each individual TNS, reproducing correctly the logarithmic size dependence of the entanglement entropy in a critical system. The method can be generalized to non-Hamiltonian systems and to the calculation of low-lying excited states, dynamical correlation functions, and other physical properties of strongly correlated systems.展开更多
In this paper a new method for preventing welding hot cracking—the inverse strain method(ISM)is developed on the principle of welding mechan- ics.Effectiveness and feasiblity of method in preventing welding hot crack...In this paper a new method for preventing welding hot cracking—the inverse strain method(ISM)is developed on the principle of welding mechan- ics.Effectiveness and feasiblity of method in preventing welding hot cracking of high strength aluminum alloy LY12CZ by synchronous rolling during welding (SRDW)along both sides of the weld at a suitable distance behind the welding arc are examined.Experimental resulte indicate that welding hot cracking of LY12CY can be effectively prevented and the mechanical properties of welded joint can also be improved by the method.It is an important new solution for preventing hot cracking in welding of sheet metal.展开更多
This paper proposes an inexact Newton method via the Lanczos decomposed technique for solving the box-constrained nonlinear systems. An iterative direction is obtained by solving an affine scaling quadratic model with...This paper proposes an inexact Newton method via the Lanczos decomposed technique for solving the box-constrained nonlinear systems. An iterative direction is obtained by solving an affine scaling quadratic model with the Lanczos decomposed technique. By using the interior backtracking line search technique, an acceptable trial step length is found along this direction. The global convergence and the fast local convergence rate of the proposed algorithm are established under some reasonable conditions. Furthermore, the results of the numerical experiments show the effectiveness of the pro- posed algorithm.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
The finite temperature Lanczos method(FTLM),which is an exact diagonalization method intensively used in quantum many-body calculations,is formulated in the framework of orthogonal polynomials and Gauss quadrature.The...The finite temperature Lanczos method(FTLM),which is an exact diagonalization method intensively used in quantum many-body calculations,is formulated in the framework of orthogonal polynomials and Gauss quadrature.The main idea is to reduce finite temperature static and dynamic quantities into weighted summations related to one-and twodimensional Gauss quadratures.Then lower order Gauss quadrature,which is generated from Lanczos iteration,can be applied to approximate the initial weighted summation.This framework fills the conceptual gap between FTLM and kernel polynomial method,and makes it easy to apply orthogonal polynomial techniques in the FTLM calculation.展开更多
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract...To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.展开更多
This study addresses the challenge of real-time resistivity gradient measurement in the Czochralski(CZ)silicon production process.Due to the inability to directly measure this parameter,we propose a Long Short-Term Me...This study addresses the challenge of real-time resistivity gradient measurement in the Czochralski(CZ)silicon production process.Due to the inability to directly measure this parameter,we propose a Long Short-Term Memory soft-sensing model based on Convolutional Neural Network(CNN)and attention mechanism(CNN-ALSTM)that enhances traditional LSTM by integrating CNN and attention mechanism to overcome time lag variations during silicon pulling.The CNN module extracts spatial features from multi-source sensor data,while the attention-enhanced LSTM(ALSTM)dynamically adjusts historical parameter weights,enabling accurate resistivity gradient prediction.Experiments with real production data show that CNN-ALSTM outperforms SVR,FNN,RNN,XGBoost,and GRU,improving prediction accuracy by 11.76%,16.67%,21.05%,30.23%,and 9.09%,respectively.This soft-sensing approach enhances real-time monitoring and optimization of monocrystalline silicon growth.展开更多
基金supported by the Science and Technology Innovation Development Program(No.70304901).
文摘Cu_(2)ZnSnSSe_(4)(CZTSSe)thin film solar cells,with adjustable bandgap and rich elemental content,hold promise in next-gen photovoltaics.Crystalline quality is pivotal for efficient light absorption and carrier transport.During the post-selenization process,understanding crystal growth mechanisms,and improving layer quality are essential.We explored the effects of ramp rate and annealing temperature on CZTSSe films,using X-ray diffraction(XRD),Raman spectroscopy,scanning electron microscope(SEM),and ultraviolet-visual spectrophotometry(UV-Vis).The optimal performance occurred at 25.25°C/min ramp rate and 530°C annealing.This led to smoother surfaces,higher density,and larger grains.This condition produced a single-layer structure with large grains,no secondary phases,and a 1.14 eV bandgap,making it promising for photovoltaic applications.The study has highlighted the effect of selenization conditions on the characteristics of the CZTSSe absorber layer and has provided valuable information for developing CZTSSe thin film solar cells.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金supported by the Center for Advanced Systems Understanding(CASUS),financed by Germany’s Federal Ministry of Education and Research(BMBF)and the Saxon State Government out of the State Budget approved by the Saxon State Parliamentfunding from the European Research Council(ERC)under the European Union’s Horizon 2022 research and innovation programme(Grant Agreement No.101076233,“PREXTREME”)funding from the European Union’s Just Transition Fund(JTF)within the project Röntgenlaser-Optimierung der Laserfusion(ROLF),Contract No.5086999001,co-financed by the Saxon State Government out of the State Budget approved by the Saxon State Parliament.
文摘Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instrument function,is measured in X-ray Thom-son scattering(XRTS)experiments,which allow the study of electronic structure properties at the microscopic level.Among the various ab initio methods,linear-response time-dependent density-functional theory(LR-TDDFT)is a key framework for simulating the DSF.The standard approach in LR-TDDFT for computing the DSF relies on the orbital representation.A significant drawback of this method is the unfavorable scaling of the number of required empty bands as the wavenumber increases,making LR-TDDFT impractical for modeling XRTS measurements over large energy scales,such as in backward scattering geometry.In this work,we consider and test an alternative approach to LR-TDDFT that employs the Liouville–Lanczos(LL)method for simulating the DSF of WDM.This approach does not require empty states and allows the DSF at large momentum transfer values and over a broad frequency range to be accessed.We compare the results obtained from the LL method with those from the solution of Dyson’s equation using the standard LR-TDDFT within the projector augmented-wave formalism for isochorically heated aluminum and warm dense hydrogen.Additionally,we utilize exact path integral Monte Carlo results for the imaginary-time density-density correlation function(ITCF)of warm dense hydrogen to rigorously benchmark the LL approach.We discuss the application of the LL method for calculating DSFs and ITCFs at different wavenumbers,the effects of pseudopotentials,and the role of Lorentzian smearing.The successful validation of the LL method under WDM conditions makes it a valuable addition to the ab initio simulation landscape,supporting experimental efforts and advancing WDM theory.
基金Supported by the Natural Science Foundation of Guangxi Province(Grant Nos.2023GXNSFAA026067,2024GXN SFAA010521)the National Natural Science Foundation of China(Nos.12361079,12201149,12261026).
文摘Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery.We rst derive the projection formulas for a vector onto the feasible sets.The centralized circumcentered-reection method is designed to solve the convex feasibility problem.Some numerical experiments demonstrate the feasibility and e ectiveness of the proposed algorithm,showing superior performance compared to conventional alternating projection methods.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金financially supported by the National Natural Science Foundation of China (Nos. 51421002, 51627803, 91733301, 51761145042, 21501183, 51402348, 53872321, and 11874402)the Knowledge Innovation Program and the Strategic Priority Research Program (Grant XDB 12010400) of the Chinese Academy of Sciences
文摘In CZTSSe solar cells,a simple sodium-incorporation post-treatment method toward solution-processed Cu2Zn Sn S4precursor films is presented in this work.An ultrathin NaCl film is deposited on Cu2Zn Sn S4precursor films by spin-coating NaCl solution.In subsequent selenization process,the introduction of Na Cl is found to be benefacial for the formation of Cu2-xSe,which can further facilitate the element transportation,leading to dense and smooth CZTSSe films with large grains and less impurity Cu2Sn(S,Se)3phase.SIMS depth profiles confirm the gradient distribution of the sodium element in Na-doped absorbers.Photoluminescence spectra show that the introduction of appropriate sodium into the absorber can inhibit the band tail states.As high as 11.18% of power conversion efficiency(PCE)is achieved for the device treated with 5 mg mL^-1 NaCl solution,and an average efficiency of Na-doped devices is 10.71%,13%higher than that of the control groups(9.45%).Besides,the depletion width and the charge recombination lifetime can also have regular variation with sodium treatment.This work offers an easy modification method for high-quality Na-doped CZTSSe films and high-performance devices,in the meantime,it can also help to further understand the effects of sodium in CZTSSe solar cells.
基金financially supported by the Major National Science and Technology Projects (No. 2009ZX02011)
文摘Numerical analysis is an effective tool to research the industrial Czochralski (CZ) crystal growth aiming to improve crystal quality and reduce manufactur- ing costs. In this study, a set of global simulations were carried out to investigate the effect of crystal-crucible rotation and pulling rate on melt convection and solid- liquid (SL) interface shape. Through analyses of the sim- ulation data, it is found that the interface deformation and inherent stress increase during the crystal growth process. The interface deflection increases from 7.4 to 51.3 mm with an increase in crystal size from 150 to 400 mm. In addition, the SL interface shape and flow pattern are sen- sitive to pulling rate and rotation rate. Reducing pulling rate can flat SL interface shape and add energy-consuming. Interface with low deflection can be achieved by adopting certain combination of crystal and crucible rotation rates. The effect of crystal rotation on SL interface shape is less significant at higher crucible rotation rates.
文摘Motivated by the count sketch maximal weighted residual Kaczmarz (CS-MWRK) method presented by Zhang and Li (Appl. Math. Comput., 410, 126486), we combine the count sketch tech with the maximal weighted residual Kaczmarz Method with Oblique Projection (MWRKO) constructed by Wang, Li, Bao and Liu (arXiv: 2106.13606) to develop a new method for solving highly overdetermined linear systems. The convergence rate of the new method is analyzed. Numerical results demonstrate that our method performs better in computing time compared with the CS-MWRK and MWRKO methods.
文摘We present an improvement of the finite temperature Lanczos method in order to apply this method to systems at very low temperature. One proposal is to introduce two steps in this method. In the first step, we use the Chebyshev polynomial expansion to calculate exp(-H/T1) random vector>?at moderate temperature T1. In the second step, we apply the ordinary finite temperature Lanczos method using the calculated state as the initial state of the Lanczos method. Another proposal is to employ a sampling method for selecting a random vector. By this sampling, we can improve an efficiency of calculations. Using the improved finite temperature Lanczos method, we calculate the specific heat of the spin-1/2 Heisenberg model on the kagome lattices of 27 and 30 sites.
文摘In this paper, we propose to replace the Chebyshev series used in pseudospectral methods with the equivalent Chebyshev economized power series that can be evaluated more rapidly. We keep the rest of the implementation the same as the spectral method so that there is no new mathematical principle involved. We show by numerical examples that the new approach works well and there is indeed no significant loss of solution accuracy. The advantages of using power series also include simplicity in its formulation and implementation such that it could be used for complex systems. We investigate the important issue of collocation point selection. Our numerical results indicate that there is a clear accuracy advantage of using collocation points corresponding to roots of the Chebyshev polynomial.
基金Supported by Project of Huai'an Municipal Science and Technology Bureau in Jiangsu Province(SN1082)
文摘[Objectives]The research aimed to optimize the extraction method of triterpenoids from A. selengnesis. [Methods]The ultrasonic extraction of triterpenoids in A. selengnesis was optimized by single factor analysis( including infusion time,ethanol concentration,ultrasonic power,extraction time,and liquid-solid ratio) and response surface method. [Results]The optimum extracting process of triterpenoids was as follows: infusion time of 65 min,ethanol concentration of 80%,ultrasonic power of 275 W,extraction time of 30 min,and liquid-solid ratio of 34 m L/g. Under the optimized condition,the extraction content of triterpenoids reached( 18. 26 ± 0. 10) mg/g. [Conclusions] The optimized extraction had a good modal on practice in developing and utilization.
文摘We propose an improved finite temperature Lanczos method using the stochastic state selection method. In the finite temperature Lanczos method, we generate Lanczos states and calculate the eigenvalues. In addition we have to calculate matrix elements that are the values of an operator between two Lanczos states. In the calculations of the matrix elements we have to keep the set of Lanczos states on the computer memory. Therefore the memory limits the system size in the calculations. Here we propose an application of the stochastic state selection method in order to weaken this limitation. This method is to select some parts of basis states stochastically and to abandon other basis state. Only by the selected basis states we calculate the inner product. After making the statistical average, we can obtain the correct value of the inner product. By the stochastic state selection method we can reduce the number of the basis states for calculations. As a result we can relax the limitation on the computer memory. In order to study the Higgs mode at finite temperature, we calculate the dynamical correlations of the two spin operators in the spin-1/2 Heisenberg antiferromagnet on the square lattice using the improved finite temperature Lanczos method. Our results on the lattices of up to 32 sites show that the Higgs mode exists at low temperature and it disappears gradually when the temperature becomes large. At high temperature we do not find this mode in the dynamical correlations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11190024 and 11474331)
文摘We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states (TNS). The ground-state wave function is represented as a linear superposition composed from a set of TNS generated by Lanczos iteration. This method improves significantly the accuracy of the tensor-network algorithm and provides an effective way to enlarge the maximal bond dimension of TNS. The ground state such obtained contains significantly more entanglement than each individual TNS, reproducing correctly the logarithmic size dependence of the entanglement entropy in a critical system. The method can be generalized to non-Hamiltonian systems and to the calculation of low-lying excited states, dynamical correlation functions, and other physical properties of strongly correlated systems.
文摘In this paper a new method for preventing welding hot cracking—the inverse strain method(ISM)is developed on the principle of welding mechan- ics.Effectiveness and feasiblity of method in preventing welding hot cracking of high strength aluminum alloy LY12CZ by synchronous rolling during welding (SRDW)along both sides of the weld at a suitable distance behind the welding arc are examined.Experimental resulte indicate that welding hot cracking of LY12CY can be effectively prevented and the mechanical properties of welded joint can also be improved by the method.It is an important new solution for preventing hot cracking in welding of sheet metal.
基金Project supported by the National Natural Science Foundation of China (No. 10871130)the Ph. D.Programs Foundation of Ministry of Education of China (No. 20093127110005)the Shanghai Leading Academic Discipline Project (No. T0401)
文摘This paper proposes an inexact Newton method via the Lanczos decomposed technique for solving the box-constrained nonlinear systems. An iterative direction is obtained by solving an affine scaling quadratic model with the Lanczos decomposed technique. By using the interior backtracking line search technique, an acceptable trial step length is found along this direction. The global convergence and the fast local convergence rate of the proposed algorithm are established under some reasonable conditions. Furthermore, the results of the numerical experiments show the effectiveness of the pro- posed algorithm.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.11734002 and U1930402)。
文摘The finite temperature Lanczos method(FTLM),which is an exact diagonalization method intensively used in quantum many-body calculations,is formulated in the framework of orthogonal polynomials and Gauss quadrature.The main idea is to reduce finite temperature static and dynamic quantities into weighted summations related to one-and twodimensional Gauss quadratures.Then lower order Gauss quadrature,which is generated from Lanczos iteration,can be applied to approximate the initial weighted summation.This framework fills the conceptual gap between FTLM and kernel polynomial method,and makes it easy to apply orthogonal polynomial techniques in the FTLM calculation.
基金funded by the project of the Major Scientific and Technological Projects of CNOOC in the 14th Five-Year Plan(No.KJGG2022-0701)the CNOOC Research Institute(No.2020PFS-03).
文摘To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.
文摘This study addresses the challenge of real-time resistivity gradient measurement in the Czochralski(CZ)silicon production process.Due to the inability to directly measure this parameter,we propose a Long Short-Term Memory soft-sensing model based on Convolutional Neural Network(CNN)and attention mechanism(CNN-ALSTM)that enhances traditional LSTM by integrating CNN and attention mechanism to overcome time lag variations during silicon pulling.The CNN module extracts spatial features from multi-source sensor data,while the attention-enhanced LSTM(ALSTM)dynamically adjusts historical parameter weights,enabling accurate resistivity gradient prediction.Experiments with real production data show that CNN-ALSTM outperforms SVR,FNN,RNN,XGBoost,and GRU,improving prediction accuracy by 11.76%,16.67%,21.05%,30.23%,and 9.09%,respectively.This soft-sensing approach enhances real-time monitoring and optimization of monocrystalline silicon growth.