Ovarian cancer remains a leading cause of gynecological cancer mortality1,and patients with advanced stage ovarian cancer frequently develop malignant ascites that foster immunosuppressive microenvironments and therap...Ovarian cancer remains a leading cause of gynecological cancer mortality1,and patients with advanced stage ovarian cancer frequently develop malignant ascites that foster immunosuppressive microenvironments and therapeutic resistance2,3.Although ascites have traditionally been considered detrimental,we report a paradoxical role in which they enhance the cytotoxicity ofγδT cells—a unique T cell subset that can be allogenically transferred for cancer treatment4,5—toward ovarian cancer.展开更多
Halogen substituents play a crucial role in the structural diversity and biological activity of natural products,and the synthesis of halogenated molecules remains an area of significant research interest.This study d...Halogen substituents play a crucial role in the structural diversity and biological activity of natural products,and the synthesis of halogenated molecules remains an area of significant research interest.This study describes the generation of 15 new halogenated angucyclinones through the incorporation of halogen-containing phenylamines into a biosynthetic C-ringcleaved angucyclinone under mild conditions.The newly synthesized compounds feature halogen substituents encompassing all four halogen atoms(F,Cl,Br,I),with some compounds containing multiple halogen types.Structural elucidation was accomplished through ultraviolet(UV),infrared spectroscopy(IR),mass spectrometry(MS),and nuclear magnetic resonance(NMR)spectroscopic analyses,expanding the structural diversity of angucyclinonetype polyketides.Cytotoxicity evaluations revealed that eight compounds demonstrated moderate cytotoxic activities against four human tumor cell lines,with half maximal inhibitory concentration(IC_(50))values ranging from 3.35±0.37 to 16.02±6.60μmol·L-1.These findings highlight the significant potential of combining biosynthetic and chemical approaches in generating bioactive halogenated molecules.展开更多
Antipalu is a phytomedicinal medicinal beverage that is popular in the District of Abidjan, particularly for the treatment of malaria. However, Antipalu could present potential health effects on patients, and few toxi...Antipalu is a phytomedicinal medicinal beverage that is popular in the District of Abidjan, particularly for the treatment of malaria. However, Antipalu could present potential health effects on patients, and few toxicological studies have been conducted before its use. In order to determine the cytotoxicity of Antipalu, two complementary tests, LDH activity and the MTT cell proliferation assay, were used using Vero cells. Vero cells were exposed to increasing concentrations of Antipalu and incubated for 24, 48 and 72 hours. In addition, forty (40) rats distributed randomly into 4 groups, including 10 animals per group (5 males and 5 females) were used for the potential hepatoxic effects. Animals in group 1 received distilled water and were used as a control group. On the other hand, Lot I, II and III received by gavage a volume of the Antipalu extract corresponding to 1 ml/100 g of body weight at 200 mg/kg, 400 mg/kg, 800 mg/kg, respectively. The extract was administered daily at the same time for 28 days and serum was collected once a week to evaluate hepatic biochemical markers. After 28 days of study, all rats were euthanized by an overdose of ether and the liver of the rats was removed for gross morphological and histopathological analysis. The results of the cell supernatant assay showed an increasing extracellular LDH enzyme activity with lethal concentrations at 10% and 50% (LC10 = 111 µg/mL and LC50 = 555 µg/mL, respectively). In addition, the MTT assay showed a decrease in mitochondrial activity and thus cell proliferation after 24, 48 and 72 H of incubation. Our study showed that Antipalu caused alterations in the plasma membranes of the cells, resulting in the release of lactase dehydrogenase (LDH) into the external environment and a decrease in the mitochondrial activity of the Vero cells. The biochemical parameters ALT, ASAT, ALPs, and GGT showed no significant change (P > 0.05) in the group of treated rats compared to the controls. However, these variations were moderate and transient, with values remaining almost within their standard limits. Microscopic observations of liver tissue sections from rats treated with the Antipalu showed no lesions, edema and necrosis. These results suggest that the Antipalu did not interfere with the functioning or alter the integrity of the liver.展开更多
Plasma electrolytic oxidation is a well-known technique for surface modification of biomedical magnesium alloys,with good corrosion protection and the ability to produce biocompatible and bioactive coatings.In this st...Plasma electrolytic oxidation is a well-known technique for surface modification of biomedical magnesium alloys,with good corrosion protection and the ability to produce biocompatible and bioactive coatings.In this study,calcium-phosphate coatings were produced on WE43 magnesium alloy for use,as orthopedic implants.Coating formation was prepared using different oxidation parameters with various duty ratios(DR)of 15,25 and 50%and current ratios(R)-2 or 1.6.Application of R with excess cathodic current(R>1)in processes with DR≥25%allowed attaining the soft-sparking regime(SSR)that resulted in thicker oxide coatings with higher degree of crystallinity compared to the films obtained without SSR.The results of the corrosion tests contributed to a noticeable improvement in the corrosion resistance of the magnesium alloy.Optimization of the oxidation parameters allowed the selection of the variants with the most favorable degradation behavior over the tested immersion period,indicating a successful modification of the magnesium alloy surface to obtain an implant biomaterial capable of providing controlled degradation.Furthermore,biological evaluation of the produced coatings showed that the proposed surface modifications significantly reduced the cytotoxic effects observed in direct contact with the material while still maintaining the cell proliferation-promoting effects of the material eluents.展开更多
Maternal consumption of a high-fat diet has been linked to increased risks of obesity and impaired glucose metabolism in offspring.However,the precise epigenetic mechanisms governing these intergenerational effects,pa...Maternal consumption of a high-fat diet has been linked to increased risks of obesity and impaired glucose metabolism in offspring.However,the precise epigenetic mechanisms governing these intergenerational effects,particularly during the early stages of offspring development,remain poorly understood.In this study,female C57BL/6J mice were randomly assigned to either a high-fat diet or normal chow diet throughout gestation and lactation.Methylated DNA immunoprecipitation(MeDIP)coupled with microarray analysis was employed to identify differentially methylated genes in the livers of offspring at weaning age.We found that maternal high-fat diet feeding predisposes offspring to obesity and impaired glucose metabolism as early as the weaning period.DNA methylation profile analysis unveiled a significant enrichment of differentially methylated genes within the natural killer(NK)cell-mediated cytotoxicity pathway.MeDIP-PCR validated reduced methylation levels of specific genes within this pathway,including tumour necrosis factorα(TNF-α),phosphoinositide 3-kinase(PI3K),and SHC adaptor protein 1(SHC1).Consistently,the expressions of TNF-α,PI3K,and SHC1 were significantly upregulated,accompanied by elevated serum TNF-αand interleukin-6(IL-6)levels in offspring from dams fed with high-fat diet.Moreover,we assessed the expressions of genes associated with NK cell activities,uncovering a notable rise in hepatic granzyme B levels and a trend towards increased CD107a expression in offspring from dams fed a high-fat diet.In addition,methylation levels of TNF-α,PI3K,and SHC1 promoters were inversely correlated with glucose response during glucose tolerance testing.In conclusion,our findings underscore the critical role of the NK cell-mediated cytotoxicity signaling pathway in mediating DNA methylation patterns,thereby contributing to the programming effects of maternal high-fat diet consumption on offspring glucose metabolism as early as the weaning period.展开更多
K−Na co-doped δ-MnO_(2)(KNMOH)nanoflowers were synthesized,and their cytotoxic effects against HeLa cervical cancer cells were evaluated.The KNMOH exhibited significant dose-and time-dependent cytotoxicity at concent...K−Na co-doped δ-MnO_(2)(KNMOH)nanoflowers were synthesized,and their cytotoxic effects against HeLa cervical cancer cells were evaluated.The KNMOH exhibited significant dose-and time-dependent cytotoxicity at concentrations of 50 and 100μg/mL.After 24 h of incubation treatment,cell viability decreased to(36.8±6.5)% and(33.4±6.4)%at 50 and 100μg/mL,respectively.With extended exposure to 48 h,cell viability was(45.2±2.3)%and(32.3±2.8)%at the same concentrations.Phase-contrast microscopy revealed characteristic morphological changes including cell shrinkage and membrane blebbing formation,indicative of cell death.These findings demonstrate the potential of KNMOH nanoflowers as a cytotoxic agent for cervical cancer applications and provide a foundation for further mechanistic studies.展开更多
Hybrid antioxidants cinnamoyldopamine(2a), p-coumaroyldopamine(2b), caffeoyldopamine(2c), feruloyldopamine(2d) and sinapoyldopamine(2e) were synthesized by conjugation of dopamine(DA) and hydroxycinnamic a...Hybrid antioxidants cinnamoyldopamine(2a), p-coumaroyldopamine(2b), caffeoyldopamine(2c), feruloyldopamine(2d) and sinapoyldopamine(2e) were synthesized by conjugation of dopamine(DA) and hydroxycinnamic acids(HCAs). The stabilities were studied in buffers at p H 1.3, p H 5.0, and p H 7.4 including the human plasma. All the compounds were found highly stable at acidic p H, but underwent hydrolysis at neutral p H. Furthermore, the hydrolysis proceeded much faster in plasma in the following order as indicated by half-life values(t1/2), 2c(1.21 h)〈2e(1.52 h)〈2d(1.85 h)〈2b(3.38 h)〈2a(3.88 h), correlating with the number of electron-donating groups. It has been proven by UV spectrum that 2c, 2d, and 2e displayed red shift of more than 50 nm as compared to 2a and 2b, because of the presence of OH and OCH3 groups. In addition, the compounds(2b–e) showed no cytotoxicity on normal HUVEC cells as DA, although 2a displayed a 16% inhibition of proliferation at 40 μM following 48 h incubation. Their free radical-scavenging activities were evaluated using ABTS^*+ and superoxide anion assays and the mechanisms were proposed. It was found that they all exhibited higher activities than trolox, a recognized antioxidant. Amazingly, in the case of the hybrids(2a–e), their activity was higher than that of HCAs while lower or comparable to that of DA, suggesting that there may be a "saturation effect" with the hybrid molecules in the antioxidant activities.展开更多
Ostreopsis cf.ovata is a marine benthic dinoflagellate in tropical and temperate seas and can produce potent toxic compounds.The existence of O.cf.ovata has been found in the Chinese coastal areas,but studies on its t...Ostreopsis cf.ovata is a marine benthic dinoflagellate in tropical and temperate seas and can produce potent toxic compounds.The existence of O.cf.ovata has been found in the Chinese coastal areas,but studies on its toxicity are very few.This study investigated the toxicity of the O.cf.ovata(TIO991)isolated from Weizhou Island in the South China Sea by using methanol and chloroform to extract toxic compounds from the algal cells cultured indoor.Experiments on mouse acute toxicity showed that the crude methanol extract(CME)of O.cf.ovata caused the death of mice in 16–18 min.Furthermore,CME inhibited the cell reproduction of human neuroblastoma cells(BE(2)-M17 cells)by Cell Counting Kit-8 with a dose-and time-effect relationship and caused cell death in the form of cell necrosis.We found that CME had strong hemolytic activity and was significantly inhibited by ouabain,indicating that CME might contain palytoxins.By contrast,the crude chloroform extract of O.cf.ovata was relatively weak in toxicity as obtained in our experiments on mouse acute toxicity,cytotoxicity,and hemolytic activity.This suggests that the algae may raise the potential threat to marine ecosystems and public health.展开更多
Rhizoma Coptidis (RC), a widely used traditional Chinese medicine, is commonly believed to be non-toxic. However, little is known about its cytotoxicity and relevant mechanisms at cellular and genetic levels. The pr...Rhizoma Coptidis (RC), a widely used traditional Chinese medicine, is commonly believed to be non-toxic. However, little is known about its cytotoxicity and relevant mechanisms at cellular and genetic levels. The present study aimed to explore the cytotoxicity of RC and its possible mechanisms related to cell cycle arrest, DNA damage and reactive oxygen species (ROS) level in L929 murine fibroblast cells. The cells were cultured in vitro and treated with different RC concentrations for 24 h. Cell viability was determined by CCK-8 method, morphological changes were observed with an inverted microscope, cell cycle and ROS level were examined by flow cytometry, and DNA damages were detected by comet assay. Our results showed that cell viability was significantly decreased in a dose-dependent manner when the RC concentration was higher than 1 mg/mL. ARC concentration above 1 mg/mL altered the morphology of L929 cells. Both cells at G2/M phase and the ROS level increased in the 2 mg/mL group. Each DNA damage indicator score increased in the groups with the RC concentration of above 0.05 mg/mL. Taken together, our study suggested that RC at a high dosage exhibited cytotoxicity on L929 cells, which was likely to be the consequences of cell cycle arrest, DNA damage and accumulation of intracellular ROS.展开更多
ABM: To investigate the cytotoxicity of the cytokine-induced killer (CIK) cells from the post-operation patients with primary hepatocellular carcinoma (HCC) to multidrug-resistant (MDR) cell of HCC both in vitro and i...ABM: To investigate the cytotoxicity of the cytokine-induced killer (CIK) cells from the post-operation patients with primary hepatocellular carcinoma (HCC) to multidrug-resistant (MDR) cell of HCC both in vitro and in vivo. METHODS: A drug-resistant cell line was established by culturing human HCC cell line Bel-7402 in complete RPMI 1640 medium with increasing concentrations of adriamycin from 10 to 2 000 nmol/L. CIK cells were obtained by inducing the peripheral blood mononuclear cells with rhlFN-γ, monoclonal anti-CD3 antibody, rhIL-1α as well as rhIL-2, which were added into the culture. To detect the cytotoxicity of the CIK cells from HCC patients, the Bel-7402/R was taken as target (T) cells and CIK cells as effect (E) cells. Cytotoxic test was performed and measured by MTT. As to in vivo test, CIK cells were transfused into patients with HCC. The tumor specimens of the patients were obtained and immunohistochemistry was carried out to detect CD3, CD45, CD45RO as well as CD68. RESULTS: A MDR 1 HCC cell line Bel-7402/R was established. Its MDR1 mRNA overexpressed which was shown by RT-PCR; the P-glycoprotein expression increased from 1.32% of parent cells to 54%. CIK cells expanded vigorously by more than 70-fold and the CD3+CD56+ increased by more than 600-fold after 3-wk incubation on average. The cytotoxicity of CIK from HCC patients to Bel-7402/R was about 50% and to L-02 below 10% (t = 8.87, P<0.01), the same as that of CIK from normal individuals. Each of the 17 patients received 1-5×1010of CIK cell transfusion. No side effects were observed. After CIK treatment, the tumor tissue nodules formed and a large amount of lymphocytes infiltrated in the liver cancer tissue and CD3, CD45, CD45RO, and CD68 increased greatly which was shown by immunohistochemistry. CONCLUSION: A stable MDR1 HCC cell line has been established which could recover from liquid nitrogen and CIK from HCC patients has strong cytotoxicity to MDR HCC cell. CIK adoptive immunotherapy is safe and has no side effects. Receivers improved their immunity to tumor evidently. CIK treatment may be a better choice for HCC patients after operation to prevent the recurrence, especially when tumors have developed drug resistance.展开更多
The cytotoxicities of single-walled carbon nanotubes (SWNTs) and acid purified single-walled carbon nanotubes (SWNT-COOH) were investigated by spectroscopic analysis. Cell viability and cell apoptosis were applied...The cytotoxicities of single-walled carbon nanotubes (SWNTs) and acid purified single-walled carbon nanotubes (SWNT-COOH) were investigated by spectroscopic analysis. Cell viability and cell apoptosis were applied to assessing the cytotoxicity of SWNT-COOH, cetyltrimethyl ammonium bromide (CTAB) and acid purified carbon nanotubes modified with cetyltrimethyl ammonium bromide (SWNT-COOH/CTAB). The results indicate that SWNTs are more toxic than SWNT-COOH. Concentration and time-curve analyses indicate that cytotoxicity of SWNT-COOH/CTAB is more related to the toxicity of the surfactant CTAB. The cytotoxicity effect of CTAB and SWNT-COOH/CTAB is acceptable at low concentrations (0.5-25μg/mL). The cytotoxicity observation suggests that SWNT-COOH/CTAB can safely applied to biomedical field at low concentrations (0.5-25μg/mL).展开更多
Objective:To evaluate the cytotoxicity and hepatoprotective potentials of extracts,fractions or isolated compound from the leaves of Feronia limonia(F.limonia).Methods:Qualitative phytochemical analysis of extracts,fr...Objective:To evaluate the cytotoxicity and hepatoprotective potentials of extracts,fractions or isolated compound from the leaves of Feronia limonia(F.limonia).Methods:Qualitative phytochemical analysis of extracts,fractions or compound was performed by means of thin layer chromatography and spectroscopic assays.The%purity of compound was measured by analytical HPLC.Extracts,fractions or compound have been individually evaluated for their cytotoxicity effects(10,20,100,250,500,750 and 1 000 μg/mL).Based on the inhibitory concentration(IC_(50)) obtained from the cell viability assay,graded concentrations of extracts,fractions or isolated compound were assessed(10,20,50,100,200 μg/mL) for its hepatoprotective potential against CCl_4-induced hepatotoxicity by monitoring activity levels of serum glutamatic pyruvatic transaminase(SGPT) and serum glutamic oxaloacetic transaminase(SGOT).Results:Results indicated that the methanol extract of F.limonia was non-toxic and hepatoprotective in nature as compared with the petroleum ether extract.The acetone fraction of methanolic extract also showed similar properties but the subsequent two fractions were cytotoxic.However,the pure compound isolated from the penultimate fraction of methanolic extract was non-toxic and hepatoprotective in nature.Biochemical investigations(SCOT,SCPT) further corroborated these cytological observations.Conclusions:It can be concluded from this study that F.limonia methanol extract,some fractions and pure isolated compound herein exhibit hepatoprotective activity.However,cytotoxicity recorded in the penultimate fraction and investigation of structural details of pure compound warrants further study.展开更多
With the increasing use of synthetic pyrethroids (SPs), the significance of ecological safety and health risk is an emerging concern, In this study, we evaluated the chronic aquatic toxicity of eis-bifenthrin (cis...With the increasing use of synthetic pyrethroids (SPs), the significance of ecological safety and health risk is an emerging concern, In this study, we evaluated the chronic aquatic toxicity of eis-bifenthrin (cis-BF) in Daphnia magna and its cytotoxicity in Chinese hamster ovary (CHO) cells as well as human cervical carcinoma (Hela) ceils. Chronic aquatic toxicity tests showed that cis-BF could significantly affect the reproduction of D. magna. The lowest observed effective concentration and the non-observed effective concentration of cis-BF to D. magna were 0.02 and 0.01 μg/L, respectively, and the chronic value was 0.014 μg/L. The intrinsic rate of natural increase was significantly decreased (p 〈 0.05) to 0.02 μg/L. The cytotoxicity assay demonstrated that cis-BF decreased cell viability in CHO and Hela cells in a concentration- and time-dependent manner. The IC50 values for Hela and CHO cells were 4.0 × 10^-5 and 3.2 × 10^-5 mol/L, respectively. Together, these results indicated that cis-BF induced chronic toxicity in both aquatic invertebrate animals and mammalian cells. These findings assist in understanding the impact of SPs on health and environmental safety. Considering the wide spectrum of SPs, a more comprehensive understanding of the negative effects is indispensible for planning future application and regulation of these pesticides.展开更多
The freshwater luminescent bacteria Vibrio-qinghaiensis sp.-Q67 test and the Vicia faba root tip test associated with solid-phase extraction were applied for cytotoxicity and genotoxicity assessment of organic substan...The freshwater luminescent bacteria Vibrio-qinghaiensis sp.-Q67 test and the Vicia faba root tip test associated with solid-phase extraction were applied for cytotoxicity and genotoxicity assessment of organic substances in three rivers, two lakes and effluent flows from two wastewater treatment plants (WWTPs) in Xi'an, China. Although the most seriously polluted fiver with high chemical oxygen demand (COD) and total organic carbon (TOC) showed high cytotoxicity (expressed as TIIs0, the toxicity impact index) and genotoxicity (expressed as RMCN, the relative frequency of micronucleus), no correlative relation was found between the ecotoxicity and organic content of the water samples. However, there was a linear correlative relation between TIIs0 and RMCN for most water samples except that from the Zaohe River, which receives discharge from WWTP and untreated industrial wastewaters. The ecotoxicity of the organic toxicants in the Chanhe River and Zaohe River indicated that cytotoxic and genotoxic effects were related to the pollutant source. The TII50 and RMCN were also found to correlate roughly to the dissolved oxygen concentration of the water. Sufficient dissolved oxygen in surface water is thus proved to be an indicator of a healthy water environmental condition.展开更多
To develop well defined in vitro cell system to test cytotoxicity of a number of model toxins, genetically engineered V79 Chinese hamster fibroblasts expressing isoenzymes of cytochrome P4501A1 XEM2 cells and V79 ce...To develop well defined in vitro cell system to test cytotoxicity of a number of model toxins, genetically engineered V79 Chinese hamster fibroblasts expressing isoenzymes of cytochrome P4501A1 XEM2 cells and V79 cells (parental), which lack cytochrome P450 enzyme activities, were used as controls. The cytotoxic effect of trans 7,8 dihydrbenzo(a)pyrene (BP 7,8 diol) on the parental cells V79 and V79 derived XEM2 cells were evaluated by two methods for cell viability. The data obtained expressed that BP 7,8 diol ranging from 1.0 μmol·L 1 to 5.0 μmol·L 1 in concentrations incubated for 24 h showed a strong cytotoxic effect in XEM2 cells (expressing rat cytochrome P4501A1) in a concentration dependent manner. Time dependent decrease for survival of XEM2 cells was also observed at 2.5 μmol·L 1 concentration. Likewise, BP 7,8 diol did not alter the survival of the parental cells V79 under the same condition. This study also showed that α naphthoflavone (αNF), a well known inhibitor of cytochrome P4501A1 might alter BP 7,8 diol induced cytotoxicity in the XEM2 cells. Our results suggested that cytochrome P4501A1 is responsible for BP 7, 8 diol induced cytotoxicity.展开更多
Graphene quantum dots(GQDs) possess great potential in various applications due to their superior physicochemical properties and wide array of available surface modifications.However, the toxicity of GQDs has not been...Graphene quantum dots(GQDs) possess great potential in various applications due to their superior physicochemical properties and wide array of available surface modifications.However, the toxicity of GQDs has not been systematically assessed, thus hindered their further development; especially, the risk of surface modifications of GQDs is largely unknown. In this study, we employed a lung carcinoma A549 cells as the model to investigate the cytotoxicity and autophagy induction of three types GQDs, including cGQDs(COOH-GQDs), hGQDs(OH-GQDs), and aGQDs(NH_2-GQDs). The results showed hGQDs was the most toxic, as significant cell death was induced at the concentration of 100 μg/mL,determining by WST-1 assay as well as Annexin-V-FITC/PI apoptosis analysis, whereas cGQDs and aGQDs were non-cytotoxic within the measured concentration. Autophagy detection was performed by TEM examination, LC3 fluorescence tracking, and Westernblot. Both aGQDs and hGQDs induced cellular autophagy to various degrees except for cGQDs. Further analysis on autophagy pathways indicated all GQDs significantly activated p-p38 MAPK; p-ERK1/2 was inhibited by aGQDs and hGQDs but activated by c GQDs. p-JNK was inhibited by aGQDs and c GQDs, while activated by hGQDs. Simultaneously, Akt was activated by hGQDs but inhibited by aGQDs. Inhibition of autophagy by 3-MA significantly increased the cytotoxicity of GQDs, suggesting that autophagy played a protective role against the toxicity of GQDs. In conclusion, c GQDs showed excellent biocompatibility and may be considered for biological applications. Autophagy induction may be included in the health risk assessment of GQDs as it reflects the stress status which may eventually lead to diseases.展开更多
Ternary Zn-0.5A1-0.5Mg and quatemary Zn-0.5A1-0.5Mg-xBi (x = 0.1, 0.3 and 0.5) alloys were studied to evaluate the thermal and structural characteristics, mechanical properties, cytotoxicity and in vitro degradation...Ternary Zn-0.5A1-0.5Mg and quatemary Zn-0.5A1-0.5Mg-xBi (x = 0.1, 0.3 and 0.5) alloys were studied to evaluate the thermal and structural characteristics, mechanical properties, cytotoxicity and in vitro degradation behavior. Thermal analysis and microstructural observations showed that Zn-0.5A1-0.5Mg is composed of FCC-A1 + HCP- Zn + Mg2(Zn,A1)ll while a new phase a-Mg3Bi2 appeared after the addition of Bi to the Zn-0.5A1-0.5Mg ternary alloy. The results revealed that the quaternary Zn-A1-Mg-Bi alloys have higher tensile strength, elongation and hardness but slightly lower corrosion resistance than those of the temary Zn-AI-Mg alloy. Based on the MTT assay, the Zn-A1-Mg and Zn-A1-Mg-Bi alloys were found to be biocompatible, and thus, they can be considered for further investigation in an in vivo environment.展开更多
Gd3+-,Pr3+-or Sm3+-doped Co-Zn(Co0.5Zn0.5Fe2 O4)magnetic ferrites(i.e.,Co0.5Zn0.5Gd0.1Fe1.9O4,Co0.5Zn0.5Pr0.1Fe1.9O4 and Co0.5Zn0.5Sm0.1Fe1.9O4)were prepared using a facile sol-gel approach,and the structure,surface m...Gd3+-,Pr3+-or Sm3+-doped Co-Zn(Co0.5Zn0.5Fe2 O4)magnetic ferrites(i.e.,Co0.5Zn0.5Gd0.1Fe1.9O4,Co0.5Zn0.5Pr0.1Fe1.9O4 and Co0.5Zn0.5Sm0.1Fe1.9O4)were prepared using a facile sol-gel approach,and the structure,surface morphology and chemical composition of the products were studied by means of scanning electron microscopy(SEM),energy dispersive X-ray analysis(EDX),X-ray diffraction(XRD),UVvisible diffuse reflectance spectroscopy(DRS),photoluminescence(PL)spectroscopy,Fourier transform infrared spectroscopy(FT-IR)and vibrating sample magnetometer(VSM)spectroscopy.XRD patterns show the Co-Zn product is composed of cubic spinel phases with few impurities or secondary phases,and the average crystallite sizes of the samples are determined to be approximately^51—80,~99—181,~68—103 and^83—133 nm.Also the coercivity and remnant and saturation magnetizations,evaluated by vibrating sample magnetometer(VSM),are found to increase linearly with the incorporation of Gd3+,Pr3+and Sm3+in the product formulation.The CO1-xZnxFe2-yRyO4 photocatalyst sample is found to display a red shift in its absorption,and exhibits outstanding photocatalytic effects in the degradation of MO under ultraviolet(UV)light.This is attributed to the reduction of the band gap of cobalt-zinc ferrite due to the presence of rare earth ions.Further in vitro evaluations of the cytotoxic effects of the synthesized nanoparticles were performed on a HeLa cell line.展开更多
AIM:This study was designed to evaluate the anti-cancer actions of tanshinone I and tanshinone IIA,and six derivatives of tanshinone IIA on normal and cancerous colon cells.Structure activity relationship(SAR) analysi...AIM:This study was designed to evaluate the anti-cancer actions of tanshinone I and tanshinone IIA,and six derivatives of tanshinone IIA on normal and cancerous colon cells.Structure activity relationship(SAR) analysis was conducted to delineate the significance of the structural modifications of tanshinones for improved anti-cancer action.METHOD:Tanshinone derivatives were designed and synthesized according to the literature.The cytotoxicity of different compounds on colon cancer cells was determined by the MTT assay.Apoptotic activity of the tanshinones was measured by flow cytometry(FCM).RESULTS:Tanshinone I and tanshinone IIA both exhibited significant cytotoxicity on colon cancer cells.They are more effective in p53+/+ colon cancer cell line.It was also noted that the anti-cancer activity of tanshinone I was more potent and selective.Two of the derivatives of tanshinone IIA(N1 and N2) also exhibited cytotoxicity on colon cancer cells.CONCLUSIONS:The anti-colon cancer activity of tanshinone I was more potent and selective than tanshinone IIA,and is p53 dependent.The derivatives obtained by structural modifications of tanshinone IIA exhibited lower cytotoxicity on both normal and colon cancer cells.From steric and electronic characteristics point of view,it was concluded that structural modifications of ring A and furan or dihydrofuran ring D on the basic structure of tanshinones influences the activity.An increase of the delocalization of the A and B rings could enhance the cytotoxicity of such compounds,while a non-planar and small sized D ring region would provide improved anti-cancer activity.展开更多
Abstract Objective To investigate the toxic effects of decabromodiphenyl ethane (DBDPE), used as an alternative to decabromodiphenyl ether in vitro. Methods HepG2 cells were cultured in the presence of DBDPE at vari...Abstract Objective To investigate the toxic effects of decabromodiphenyl ethane (DBDPE), used as an alternative to decabromodiphenyl ether in vitro. Methods HepG2 cells were cultured in the presence of DBDPE at various concentrations (3.125-100.0 mg/L) for 24, 48, and 72 h respectively and the toxic effect of DBDPE was studied. Results As evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and lactate dehydrogenase assays and nuclear morphological changes, DBDPE inhibited HepG2 viability in a time- and dose-dependent manner within a range of 12.5 mg/L to 100 mg/L and for 48 h and 72 h. Induction of apoptosis was detected at 12.5-100 mg/L at 48 h and 72 h by propidium iodide staining, accompanied with overproduction of reactive oxygen species (ROS). Furthermore, N-acetyI-L-cysteine, a widely used ROS scavenger, significantly reduced DBDPE-induced ROS levels and increased HepG2 cells viability. Conclusion DBDPE has cytotoxic and anti-proliferation effect and can induce apoptosis in which ROS plays an important role展开更多
基金supported by the National Natural Science Foundation of China(Grant No.82274034)the Peking University Medicine plus X Pilot Program-Platform Construction Project(Grant No.2024YXXLHPT004).
文摘Ovarian cancer remains a leading cause of gynecological cancer mortality1,and patients with advanced stage ovarian cancer frequently develop malignant ascites that foster immunosuppressive microenvironments and therapeutic resistance2,3.Although ascites have traditionally been considered detrimental,we report a paradoxical role in which they enhance the cytotoxicity ofγδT cells—a unique T cell subset that can be allogenically transferred for cancer treatment4,5—toward ovarian cancer.
基金supported by the National Key Research and Development Program of China(Nos.2023YFC3503900,2023YFA0914102)National Natural Science Foundation of China(Nos.82325046,82273829,92357305,22377004,22077007)the key project at central government level:the ability establishment of sustainable use for valuable Chinese medicine resources(No.2060302-2201-17)。
文摘Halogen substituents play a crucial role in the structural diversity and biological activity of natural products,and the synthesis of halogenated molecules remains an area of significant research interest.This study describes the generation of 15 new halogenated angucyclinones through the incorporation of halogen-containing phenylamines into a biosynthetic C-ringcleaved angucyclinone under mild conditions.The newly synthesized compounds feature halogen substituents encompassing all four halogen atoms(F,Cl,Br,I),with some compounds containing multiple halogen types.Structural elucidation was accomplished through ultraviolet(UV),infrared spectroscopy(IR),mass spectrometry(MS),and nuclear magnetic resonance(NMR)spectroscopic analyses,expanding the structural diversity of angucyclinonetype polyketides.Cytotoxicity evaluations revealed that eight compounds demonstrated moderate cytotoxic activities against four human tumor cell lines,with half maximal inhibitory concentration(IC_(50))values ranging from 3.35±0.37 to 16.02±6.60μmol·L-1.These findings highlight the significant potential of combining biosynthetic and chemical approaches in generating bioactive halogenated molecules.
文摘Antipalu is a phytomedicinal medicinal beverage that is popular in the District of Abidjan, particularly for the treatment of malaria. However, Antipalu could present potential health effects on patients, and few toxicological studies have been conducted before its use. In order to determine the cytotoxicity of Antipalu, two complementary tests, LDH activity and the MTT cell proliferation assay, were used using Vero cells. Vero cells were exposed to increasing concentrations of Antipalu and incubated for 24, 48 and 72 hours. In addition, forty (40) rats distributed randomly into 4 groups, including 10 animals per group (5 males and 5 females) were used for the potential hepatoxic effects. Animals in group 1 received distilled water and were used as a control group. On the other hand, Lot I, II and III received by gavage a volume of the Antipalu extract corresponding to 1 ml/100 g of body weight at 200 mg/kg, 400 mg/kg, 800 mg/kg, respectively. The extract was administered daily at the same time for 28 days and serum was collected once a week to evaluate hepatic biochemical markers. After 28 days of study, all rats were euthanized by an overdose of ether and the liver of the rats was removed for gross morphological and histopathological analysis. The results of the cell supernatant assay showed an increasing extracellular LDH enzyme activity with lethal concentrations at 10% and 50% (LC10 = 111 µg/mL and LC50 = 555 µg/mL, respectively). In addition, the MTT assay showed a decrease in mitochondrial activity and thus cell proliferation after 24, 48 and 72 H of incubation. Our study showed that Antipalu caused alterations in the plasma membranes of the cells, resulting in the release of lactase dehydrogenase (LDH) into the external environment and a decrease in the mitochondrial activity of the Vero cells. The biochemical parameters ALT, ASAT, ALPs, and GGT showed no significant change (P > 0.05) in the group of treated rats compared to the controls. However, these variations were moderate and transient, with values remaining almost within their standard limits. Microscopic observations of liver tissue sections from rats treated with the Antipalu showed no lesions, edema and necrosis. These results suggest that the Antipalu did not interfere with the functioning or alter the integrity of the liver.
基金funded by Silesian University of Technology,no.07/020/BKM24/0104.
文摘Plasma electrolytic oxidation is a well-known technique for surface modification of biomedical magnesium alloys,with good corrosion protection and the ability to produce biocompatible and bioactive coatings.In this study,calcium-phosphate coatings were produced on WE43 magnesium alloy for use,as orthopedic implants.Coating formation was prepared using different oxidation parameters with various duty ratios(DR)of 15,25 and 50%and current ratios(R)-2 or 1.6.Application of R with excess cathodic current(R>1)in processes with DR≥25%allowed attaining the soft-sparking regime(SSR)that resulted in thicker oxide coatings with higher degree of crystallinity compared to the films obtained without SSR.The results of the corrosion tests contributed to a noticeable improvement in the corrosion resistance of the magnesium alloy.Optimization of the oxidation parameters allowed the selection of the variants with the most favorable degradation behavior over the tested immersion period,indicating a successful modification of the magnesium alloy surface to obtain an implant biomaterial capable of providing controlled degradation.Furthermore,biological evaluation of the produced coatings showed that the proposed surface modifications significantly reduced the cytotoxic effects observed in direct contact with the material while still maintaining the cell proliferation-promoting effects of the material eluents.
基金sponsored by National Natural Science Foundation of China(81800703)Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(GZC20231088)+8 种基金Beijing Nova Program(Z201100006820117 and 20220484181)Beijing Municipal Natural Science Foundation(7184252)the Fundamental Research Funds for the Central Universitiesthe Fundamental Research Funds for the Central Universities(BMU2021MX013)Peking University Clinical Scientist Training Program(BMU2023PYJH022)Peking University Medicine Seed Fund for Interdisciplinary ResearchChina Endocrine and Metabolism Young Scientific Talent Research Project(2022-N-02-01)China Diabetes Young Scientific Talent Research ProjectBethune-Merck Diabetes Research Fund of Bethune Charitable Foundation。
文摘Maternal consumption of a high-fat diet has been linked to increased risks of obesity and impaired glucose metabolism in offspring.However,the precise epigenetic mechanisms governing these intergenerational effects,particularly during the early stages of offspring development,remain poorly understood.In this study,female C57BL/6J mice were randomly assigned to either a high-fat diet or normal chow diet throughout gestation and lactation.Methylated DNA immunoprecipitation(MeDIP)coupled with microarray analysis was employed to identify differentially methylated genes in the livers of offspring at weaning age.We found that maternal high-fat diet feeding predisposes offspring to obesity and impaired glucose metabolism as early as the weaning period.DNA methylation profile analysis unveiled a significant enrichment of differentially methylated genes within the natural killer(NK)cell-mediated cytotoxicity pathway.MeDIP-PCR validated reduced methylation levels of specific genes within this pathway,including tumour necrosis factorα(TNF-α),phosphoinositide 3-kinase(PI3K),and SHC adaptor protein 1(SHC1).Consistently,the expressions of TNF-α,PI3K,and SHC1 were significantly upregulated,accompanied by elevated serum TNF-αand interleukin-6(IL-6)levels in offspring from dams fed with high-fat diet.Moreover,we assessed the expressions of genes associated with NK cell activities,uncovering a notable rise in hepatic granzyme B levels and a trend towards increased CD107a expression in offspring from dams fed a high-fat diet.In addition,methylation levels of TNF-α,PI3K,and SHC1 promoters were inversely correlated with glucose response during glucose tolerance testing.In conclusion,our findings underscore the critical role of the NK cell-mediated cytotoxicity signaling pathway in mediating DNA methylation patterns,thereby contributing to the programming effects of maternal high-fat diet consumption on offspring glucose metabolism as early as the weaning period.
文摘K−Na co-doped δ-MnO_(2)(KNMOH)nanoflowers were synthesized,and their cytotoxic effects against HeLa cervical cancer cells were evaluated.The KNMOH exhibited significant dose-and time-dependent cytotoxicity at concentrations of 50 and 100μg/mL.After 24 h of incubation treatment,cell viability decreased to(36.8±6.5)% and(33.4±6.4)%at 50 and 100μg/mL,respectively.With extended exposure to 48 h,cell viability was(45.2±2.3)%and(32.3±2.8)%at the same concentrations.Phase-contrast microscopy revealed characteristic morphological changes including cell shrinkage and membrane blebbing formation,indicative of cell death.These findings demonstrate the potential of KNMOH nanoflowers as a cytotoxic agent for cervical cancer applications and provide a foundation for further mechanistic studies.
基金The National Natural Science Foundation of China(Grant No.21302079)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2014-151)
文摘Hybrid antioxidants cinnamoyldopamine(2a), p-coumaroyldopamine(2b), caffeoyldopamine(2c), feruloyldopamine(2d) and sinapoyldopamine(2e) were synthesized by conjugation of dopamine(DA) and hydroxycinnamic acids(HCAs). The stabilities were studied in buffers at p H 1.3, p H 5.0, and p H 7.4 including the human plasma. All the compounds were found highly stable at acidic p H, but underwent hydrolysis at neutral p H. Furthermore, the hydrolysis proceeded much faster in plasma in the following order as indicated by half-life values(t1/2), 2c(1.21 h)〈2e(1.52 h)〈2d(1.85 h)〈2b(3.38 h)〈2a(3.88 h), correlating with the number of electron-donating groups. It has been proven by UV spectrum that 2c, 2d, and 2e displayed red shift of more than 50 nm as compared to 2a and 2b, because of the presence of OH and OCH3 groups. In addition, the compounds(2b–e) showed no cytotoxicity on normal HUVEC cells as DA, although 2a displayed a 16% inhibition of proliferation at 40 μM following 48 h incubation. Their free radical-scavenging activities were evaluated using ABTS^*+ and superoxide anion assays and the mechanisms were proposed. It was found that they all exhibited higher activities than trolox, a recognized antioxidant. Amazingly, in the case of the hybrids(2a–e), their activity was higher than that of HCAs while lower or comparable to that of DA, suggesting that there may be a "saturation effect" with the hybrid molecules in the antioxidant activities.
基金Supported by the Special Research for the Science and Technology Basic Resources Investigation Program of China(No.2018FY100200)the National Natural Science Foundation of China(No.42176206)the Natural Science Foundation of Shandong Province(No.ZR2021MD071)。
文摘Ostreopsis cf.ovata is a marine benthic dinoflagellate in tropical and temperate seas and can produce potent toxic compounds.The existence of O.cf.ovata has been found in the Chinese coastal areas,but studies on its toxicity are very few.This study investigated the toxicity of the O.cf.ovata(TIO991)isolated from Weizhou Island in the South China Sea by using methanol and chloroform to extract toxic compounds from the algal cells cultured indoor.Experiments on mouse acute toxicity showed that the crude methanol extract(CME)of O.cf.ovata caused the death of mice in 16–18 min.Furthermore,CME inhibited the cell reproduction of human neuroblastoma cells(BE(2)-M17 cells)by Cell Counting Kit-8 with a dose-and time-effect relationship and caused cell death in the form of cell necrosis.We found that CME had strong hemolytic activity and was significantly inhibited by ouabain,indicating that CME might contain palytoxins.By contrast,the crude chloroform extract of O.cf.ovata was relatively weak in toxicity as obtained in our experiments on mouse acute toxicity,cytotoxicity,and hemolytic activity.This suggests that the algae may raise the potential threat to marine ecosystems and public health.
基金National Natural Science Foundation of China(Grant No.31172358)
文摘Rhizoma Coptidis (RC), a widely used traditional Chinese medicine, is commonly believed to be non-toxic. However, little is known about its cytotoxicity and relevant mechanisms at cellular and genetic levels. The present study aimed to explore the cytotoxicity of RC and its possible mechanisms related to cell cycle arrest, DNA damage and reactive oxygen species (ROS) level in L929 murine fibroblast cells. The cells were cultured in vitro and treated with different RC concentrations for 24 h. Cell viability was determined by CCK-8 method, morphological changes were observed with an inverted microscope, cell cycle and ROS level were examined by flow cytometry, and DNA damages were detected by comet assay. Our results showed that cell viability was significantly decreased in a dose-dependent manner when the RC concentration was higher than 1 mg/mL. ARC concentration above 1 mg/mL altered the morphology of L929 cells. Both cells at G2/M phase and the ROS level increased in the 2 mg/mL group. Each DNA damage indicator score increased in the groups with the RC concentration of above 0.05 mg/mL. Taken together, our study suggested that RC at a high dosage exhibited cytotoxicity on L929 cells, which was likely to be the consequences of cell cycle arrest, DNA damage and accumulation of intracellular ROS.
文摘ABM: To investigate the cytotoxicity of the cytokine-induced killer (CIK) cells from the post-operation patients with primary hepatocellular carcinoma (HCC) to multidrug-resistant (MDR) cell of HCC both in vitro and in vivo. METHODS: A drug-resistant cell line was established by culturing human HCC cell line Bel-7402 in complete RPMI 1640 medium with increasing concentrations of adriamycin from 10 to 2 000 nmol/L. CIK cells were obtained by inducing the peripheral blood mononuclear cells with rhlFN-γ, monoclonal anti-CD3 antibody, rhIL-1α as well as rhIL-2, which were added into the culture. To detect the cytotoxicity of the CIK cells from HCC patients, the Bel-7402/R was taken as target (T) cells and CIK cells as effect (E) cells. Cytotoxic test was performed and measured by MTT. As to in vivo test, CIK cells were transfused into patients with HCC. The tumor specimens of the patients were obtained and immunohistochemistry was carried out to detect CD3, CD45, CD45RO as well as CD68. RESULTS: A MDR 1 HCC cell line Bel-7402/R was established. Its MDR1 mRNA overexpressed which was shown by RT-PCR; the P-glycoprotein expression increased from 1.32% of parent cells to 54%. CIK cells expanded vigorously by more than 70-fold and the CD3+CD56+ increased by more than 600-fold after 3-wk incubation on average. The cytotoxicity of CIK from HCC patients to Bel-7402/R was about 50% and to L-02 below 10% (t = 8.87, P<0.01), the same as that of CIK from normal individuals. Each of the 17 patients received 1-5×1010of CIK cell transfusion. No side effects were observed. After CIK treatment, the tumor tissue nodules formed and a large amount of lymphocytes infiltrated in the liver cancer tissue and CD3, CD45, CD45RO, and CD68 increased greatly which was shown by immunohistochemistry. CONCLUSION: A stable MDR1 HCC cell line has been established which could recover from liquid nitrogen and CIK from HCC patients has strong cytotoxicity to MDR HCC cell. CIK adoptive immunotherapy is safe and has no side effects. Receivers improved their immunity to tumor evidently. CIK treatment may be a better choice for HCC patients after operation to prevent the recurrence, especially when tumors have developed drug resistance.
基金Project(81172546)supported by the National Natural Science Foundation of ChinaProject(20120162110078)supported by Doctoral Fund of Ministry of Education of China+1 种基金Project(2011ssxp198)supported by the Graduate Degree Thesis Innovation Foundation of Central South University,ChinaProject(13JJ2015)supported by Hunan Provincial Natural Science Foundation of China
文摘The cytotoxicities of single-walled carbon nanotubes (SWNTs) and acid purified single-walled carbon nanotubes (SWNT-COOH) were investigated by spectroscopic analysis. Cell viability and cell apoptosis were applied to assessing the cytotoxicity of SWNT-COOH, cetyltrimethyl ammonium bromide (CTAB) and acid purified carbon nanotubes modified with cetyltrimethyl ammonium bromide (SWNT-COOH/CTAB). The results indicate that SWNTs are more toxic than SWNT-COOH. Concentration and time-curve analyses indicate that cytotoxicity of SWNT-COOH/CTAB is more related to the toxicity of the surfactant CTAB. The cytotoxicity effect of CTAB and SWNT-COOH/CTAB is acceptable at low concentrations (0.5-25μg/mL). The cytotoxicity observation suggests that SWNT-COOH/CTAB can safely applied to biomedical field at low concentrations (0.5-25μg/mL).
文摘Objective:To evaluate the cytotoxicity and hepatoprotective potentials of extracts,fractions or isolated compound from the leaves of Feronia limonia(F.limonia).Methods:Qualitative phytochemical analysis of extracts,fractions or compound was performed by means of thin layer chromatography and spectroscopic assays.The%purity of compound was measured by analytical HPLC.Extracts,fractions or compound have been individually evaluated for their cytotoxicity effects(10,20,100,250,500,750 and 1 000 μg/mL).Based on the inhibitory concentration(IC_(50)) obtained from the cell viability assay,graded concentrations of extracts,fractions or isolated compound were assessed(10,20,50,100,200 μg/mL) for its hepatoprotective potential against CCl_4-induced hepatotoxicity by monitoring activity levels of serum glutamatic pyruvatic transaminase(SGPT) and serum glutamic oxaloacetic transaminase(SGOT).Results:Results indicated that the methanol extract of F.limonia was non-toxic and hepatoprotective in nature as compared with the petroleum ether extract.The acetone fraction of methanolic extract also showed similar properties but the subsequent two fractions were cytotoxic.However,the pure compound isolated from the penultimate fraction of methanolic extract was non-toxic and hepatoprotective in nature.Biochemical investigations(SCOT,SCPT) further corroborated these cytological observations.Conclusions:It can be concluded from this study that F.limonia methanol extract,some fractions and pure isolated compound herein exhibit hepatoprotective activity.However,cytotoxicity recorded in the penultimate fraction and investigation of structural details of pure compound warrants further study.
基金supported by the National Natural Science Foundations of China (No. 20877071, 20837002)the National Basic Research Program (973) of China (No.2009CB421603)
文摘With the increasing use of synthetic pyrethroids (SPs), the significance of ecological safety and health risk is an emerging concern, In this study, we evaluated the chronic aquatic toxicity of eis-bifenthrin (cis-BF) in Daphnia magna and its cytotoxicity in Chinese hamster ovary (CHO) cells as well as human cervical carcinoma (Hela) ceils. Chronic aquatic toxicity tests showed that cis-BF could significantly affect the reproduction of D. magna. The lowest observed effective concentration and the non-observed effective concentration of cis-BF to D. magna were 0.02 and 0.01 μg/L, respectively, and the chronic value was 0.014 μg/L. The intrinsic rate of natural increase was significantly decreased (p 〈 0.05) to 0.02 μg/L. The cytotoxicity assay demonstrated that cis-BF decreased cell viability in CHO and Hela cells in a concentration- and time-dependent manner. The IC50 values for Hela and CHO cells were 4.0 × 10^-5 and 3.2 × 10^-5 mol/L, respectively. Together, these results indicated that cis-BF induced chronic toxicity in both aquatic invertebrate animals and mammalian cells. These findings assist in understanding the impact of SPs on health and environmental safety. Considering the wide spectrum of SPs, a more comprehensive understanding of the negative effects is indispensible for planning future application and regulation of these pesticides.
基金supported by the National Natural Science Foundation of China (No. 50838005)the Program for Changjiang Scholars and Innovative Research Team inUniversity (No. IRT0853)the National Program of Water Pollution Control (No. 2008ZX07317-004)
文摘The freshwater luminescent bacteria Vibrio-qinghaiensis sp.-Q67 test and the Vicia faba root tip test associated with solid-phase extraction were applied for cytotoxicity and genotoxicity assessment of organic substances in three rivers, two lakes and effluent flows from two wastewater treatment plants (WWTPs) in Xi'an, China. Although the most seriously polluted fiver with high chemical oxygen demand (COD) and total organic carbon (TOC) showed high cytotoxicity (expressed as TIIs0, the toxicity impact index) and genotoxicity (expressed as RMCN, the relative frequency of micronucleus), no correlative relation was found between the ecotoxicity and organic content of the water samples. However, there was a linear correlative relation between TIIs0 and RMCN for most water samples except that from the Zaohe River, which receives discharge from WWTP and untreated industrial wastewaters. The ecotoxicity of the organic toxicants in the Chanhe River and Zaohe River indicated that cytotoxic and genotoxic effects were related to the pollutant source. The TII50 and RMCN were also found to correlate roughly to the dissolved oxygen concentration of the water. Sufficient dissolved oxygen in surface water is thus proved to be an indicator of a healthy water environmental condition.
文摘To develop well defined in vitro cell system to test cytotoxicity of a number of model toxins, genetically engineered V79 Chinese hamster fibroblasts expressing isoenzymes of cytochrome P4501A1 XEM2 cells and V79 cells (parental), which lack cytochrome P450 enzyme activities, were used as controls. The cytotoxic effect of trans 7,8 dihydrbenzo(a)pyrene (BP 7,8 diol) on the parental cells V79 and V79 derived XEM2 cells were evaluated by two methods for cell viability. The data obtained expressed that BP 7,8 diol ranging from 1.0 μmol·L 1 to 5.0 μmol·L 1 in concentrations incubated for 24 h showed a strong cytotoxic effect in XEM2 cells (expressing rat cytochrome P4501A1) in a concentration dependent manner. Time dependent decrease for survival of XEM2 cells was also observed at 2.5 μmol·L 1 concentration. Likewise, BP 7,8 diol did not alter the survival of the parental cells V79 under the same condition. This study also showed that α naphthoflavone (αNF), a well known inhibitor of cytochrome P4501A1 might alter BP 7,8 diol induced cytotoxicity in the XEM2 cells. Our results suggested that cytochrome P4501A1 is responsible for BP 7, 8 diol induced cytotoxicity.
基金supported by the National Natural Science Foundation of China(Nos.21477146,21577163)the National Key Research and Development Program of China(No.2017YFF0211203-3)+1 种基金the Key Research Program of Frontier Sciences,CAS(No.QYZDJ-SSW-DQC020-02)the Chinese Academy of Sciences(No.XDB14040101)
文摘Graphene quantum dots(GQDs) possess great potential in various applications due to their superior physicochemical properties and wide array of available surface modifications.However, the toxicity of GQDs has not been systematically assessed, thus hindered their further development; especially, the risk of surface modifications of GQDs is largely unknown. In this study, we employed a lung carcinoma A549 cells as the model to investigate the cytotoxicity and autophagy induction of three types GQDs, including cGQDs(COOH-GQDs), hGQDs(OH-GQDs), and aGQDs(NH_2-GQDs). The results showed hGQDs was the most toxic, as significant cell death was induced at the concentration of 100 μg/mL,determining by WST-1 assay as well as Annexin-V-FITC/PI apoptosis analysis, whereas cGQDs and aGQDs were non-cytotoxic within the measured concentration. Autophagy detection was performed by TEM examination, LC3 fluorescence tracking, and Westernblot. Both aGQDs and hGQDs induced cellular autophagy to various degrees except for cGQDs. Further analysis on autophagy pathways indicated all GQDs significantly activated p-p38 MAPK; p-ERK1/2 was inhibited by aGQDs and hGQDs but activated by c GQDs. p-JNK was inhibited by aGQDs and c GQDs, while activated by hGQDs. Simultaneously, Akt was activated by hGQDs but inhibited by aGQDs. Inhibition of autophagy by 3-MA significantly increased the cytotoxicity of GQDs, suggesting that autophagy played a protective role against the toxicity of GQDs. In conclusion, c GQDs showed excellent biocompatibility and may be considered for biological applications. Autophagy induction may be included in the health risk assessment of GQDs as it reflects the stress status which may eventually lead to diseases.
文摘Ternary Zn-0.5A1-0.5Mg and quatemary Zn-0.5A1-0.5Mg-xBi (x = 0.1, 0.3 and 0.5) alloys were studied to evaluate the thermal and structural characteristics, mechanical properties, cytotoxicity and in vitro degradation behavior. Thermal analysis and microstructural observations showed that Zn-0.5A1-0.5Mg is composed of FCC-A1 + HCP- Zn + Mg2(Zn,A1)ll while a new phase a-Mg3Bi2 appeared after the addition of Bi to the Zn-0.5A1-0.5Mg ternary alloy. The results revealed that the quaternary Zn-A1-Mg-Bi alloys have higher tensile strength, elongation and hardness but slightly lower corrosion resistance than those of the temary Zn-AI-Mg alloy. Based on the MTT assay, the Zn-A1-Mg and Zn-A1-Mg-Bi alloys were found to be biocompatible, and thus, they can be considered for further investigation in an in vivo environment.
文摘Gd3+-,Pr3+-or Sm3+-doped Co-Zn(Co0.5Zn0.5Fe2 O4)magnetic ferrites(i.e.,Co0.5Zn0.5Gd0.1Fe1.9O4,Co0.5Zn0.5Pr0.1Fe1.9O4 and Co0.5Zn0.5Sm0.1Fe1.9O4)were prepared using a facile sol-gel approach,and the structure,surface morphology and chemical composition of the products were studied by means of scanning electron microscopy(SEM),energy dispersive X-ray analysis(EDX),X-ray diffraction(XRD),UVvisible diffuse reflectance spectroscopy(DRS),photoluminescence(PL)spectroscopy,Fourier transform infrared spectroscopy(FT-IR)and vibrating sample magnetometer(VSM)spectroscopy.XRD patterns show the Co-Zn product is composed of cubic spinel phases with few impurities or secondary phases,and the average crystallite sizes of the samples are determined to be approximately^51—80,~99—181,~68—103 and^83—133 nm.Also the coercivity and remnant and saturation magnetizations,evaluated by vibrating sample magnetometer(VSM),are found to increase linearly with the incorporation of Gd3+,Pr3+and Sm3+in the product formulation.The CO1-xZnxFe2-yRyO4 photocatalyst sample is found to display a red shift in its absorption,and exhibits outstanding photocatalytic effects in the degradation of MO under ultraviolet(UV)light.This is attributed to the reduction of the band gap of cobalt-zinc ferrite due to the presence of rare earth ions.Further in vitro evaluations of the cytotoxic effects of the synthesized nanoparticles were performed on a HeLa cell line.
基金supported by the National Major Scientific and Technological Special Project for"Significant New Drugs Development"(No.2011ZX09401-028)
文摘AIM:This study was designed to evaluate the anti-cancer actions of tanshinone I and tanshinone IIA,and six derivatives of tanshinone IIA on normal and cancerous colon cells.Structure activity relationship(SAR) analysis was conducted to delineate the significance of the structural modifications of tanshinones for improved anti-cancer action.METHOD:Tanshinone derivatives were designed and synthesized according to the literature.The cytotoxicity of different compounds on colon cancer cells was determined by the MTT assay.Apoptotic activity of the tanshinones was measured by flow cytometry(FCM).RESULTS:Tanshinone I and tanshinone IIA both exhibited significant cytotoxicity on colon cancer cells.They are more effective in p53+/+ colon cancer cell line.It was also noted that the anti-cancer activity of tanshinone I was more potent and selective.Two of the derivatives of tanshinone IIA(N1 and N2) also exhibited cytotoxicity on colon cancer cells.CONCLUSIONS:The anti-colon cancer activity of tanshinone I was more potent and selective than tanshinone IIA,and is p53 dependent.The derivatives obtained by structural modifications of tanshinone IIA exhibited lower cytotoxicity on both normal and colon cancer cells.From steric and electronic characteristics point of view,it was concluded that structural modifications of ring A and furan or dihydrofuran ring D on the basic structure of tanshinones influences the activity.An increase of the delocalization of the A and B rings could enhance the cytotoxicity of such compounds,while a non-planar and small sized D ring region would provide improved anti-cancer activity.
基金supported by the NSFC(No.20877102)"973"project(No.2010CB933904)
文摘Abstract Objective To investigate the toxic effects of decabromodiphenyl ethane (DBDPE), used as an alternative to decabromodiphenyl ether in vitro. Methods HepG2 cells were cultured in the presence of DBDPE at various concentrations (3.125-100.0 mg/L) for 24, 48, and 72 h respectively and the toxic effect of DBDPE was studied. Results As evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and lactate dehydrogenase assays and nuclear morphological changes, DBDPE inhibited HepG2 viability in a time- and dose-dependent manner within a range of 12.5 mg/L to 100 mg/L and for 48 h and 72 h. Induction of apoptosis was detected at 12.5-100 mg/L at 48 h and 72 h by propidium iodide staining, accompanied with overproduction of reactive oxygen species (ROS). Furthermore, N-acetyI-L-cysteine, a widely used ROS scavenger, significantly reduced DBDPE-induced ROS levels and increased HepG2 cells viability. Conclusion DBDPE has cytotoxic and anti-proliferation effect and can induce apoptosis in which ROS plays an important role