Aligning leaf nitrogen(N) distribution to match the light gradient is crucial for maximizing canopy dry matter production(DMP) and improving N utilization efficiency. However, the relationship between the gradient of ...Aligning leaf nitrogen(N) distribution to match the light gradient is crucial for maximizing canopy dry matter production(DMP) and improving N utilization efficiency. However, the relationship between the gradient of root-derived cytokinins and N distribution in rice leaves and its impact on DMP and the underlying mechanisms remains poorly understood. A two-year field experiment was conducted using two japonica N-efficient varieties(NEVs) and two japonica N-inefficient varieties(NIVs) under four different N rates(0, 90, 180, and 360 kg N ha^(-1)). These selected varieties exhibited similar values in the coefficient of light extinction(K_(L)). Results showed that at lower N rates(0–180 kg N ha^(-1)), the NEVs exhibited greater dry matter weight at maturity, higher grain yield, and improved internal N use efficiency(IE_(N)) compared to the NIVs, despite possessing comparable total N uptake. Compared with the NIVs, the NEVs exhibited a more pronounced nitrogen distribution gradient in leaves, as indicated by the coefficient of nitrogen extinction(K_(N)) values during the middle and early grain-filling stages. This enhanced gradient led to improved coordination between light and nitrogen, resulting in greater photosynthetic production, particularly at lower N rates. Furthermore, the NEVs demonstrated a larger gradient of zeatin(Z)+zeatin riboside(ZR) in leaves(i.e., higher ratios of Z+ZR levels between upper and lower leaves), enhanced expression levels of genes related to N export in lower leaves and Z+ZR loading in the root, respectively, elevated enzymes activities related to N assimilation in upper leaves, in relative to the NIVs. Correlation and random forest analyses demonstrated a strong positive correlation between the Z+ZR gradient, K_(N), and DMP, and the gradient facilitated the export of N from lower leaves and its assimilation in upper leaves, contributing significantly to both K_(N) and DMP. This process was closely linked to root activity, including root oxidation activity, root Z+ZR content, and Z+ZR loading capacity, as confirmed by applying an inhibitor or a promoter of cytokinins biosynthesis to roots. Interestingly, at the N rate of 360 kg N ha^(-1), both NEVs and NIVs showed indistinguishable plant traits, achieving a super high-yielding level(over 10.5 t ha^(-1)) but with remarkably low IE_(N). The results suggest that increasing the Z+ZR gradient can improve K_(N) and DMP, where it needs to maintain higher root activity, thus leading to high yield and high IE_(N). Further research is needed to explore and develop cultivation practices with reduced N to unlock the super-high-yielding potential of the NEVs.展开更多
This review chronicles the development of the cytokinin research during the last 30 years. Cytokinin and auxin are the two major plant growth hormones that control virtually all aspects of growth and development in hi...This review chronicles the development of the cytokinin research during the last 30 years. Cytokinin and auxin are the two major plant growth hormones that control virtually all aspects of growth and development in higher plants. The pathways for cytokinin biosynthesis and metabolism have been characterized by the identification of isopentenyl pyrophosphate transferase, cytokinin oxidases, cytokinin hydroxylase, zeatin cis-/trans-isomerase, cytokinin phosphoribosyl hydrolases, cytokinin-specific riboside phosphorylase, and others enzymes. Loss-of function mutant phenotypes of cytokinin degradation/activating enzymes indicate the regulation of concentration and spatial distribution of bio-active cytokinin plays a pivotal role in the increase in panicle size, in the numbers of floral organs, and eventually in seed yield. One of the most fundamental questions in the cytokinin field is one concerning the prevalence of cis-zeatin in monocotyledonous crops (rice and maize) and in dicotyledonous legumes (pea, chickpea) and potato/sweet potato. A hypothesis is that cis-zeatin is synthesized by the cis-specific hydroxylation of the terminal methyl group of N6-isopentenyl side chain of N6-isopentenyl adenosine (i6Ado) or of their mono-, di-, or tri-phosphates catalyzed by the cis-specific hydroxylase. A second potential pathway is the isomerization of trans-zeatin to cis-zeatin by zeatin cis-/trans-isomerase. A second fundamental question to be addressed is the physiological role of cis-zeatin. Some have argued for a special function of cis-zeatin to account for the prevalence of the cis-zeatin in the plant kingdom from algae to higher plants.展开更多
The present study reports an efficient protocol for in vitro propagation of Thymus vulgaris L., an aromatic and medicinal plant in Morocco. Initially, we performed in vitro multiplication of Thymus vulgaris explants e...The present study reports an efficient protocol for in vitro propagation of Thymus vulgaris L., an aromatic and medicinal plant in Morocco. Initially, we performed in vitro multiplication of Thymus vulgaris explants existing in the laboratory and obtained from micropropagation by shoot tip culture. Afterwards, we have evaluated the effect of six macronutrients. After that, seven cytokinins (Kin, BAP, 2iP, DPU, Adenine, Zeatine and TDZ) in three different concentrations (0.46, 0.93, 2.32 μM) have been evaluated to optimize cultures multiplication and elongation. Moreover, the effect of three auxins (IAA, IBA and NAA) at 0.57 μM, combined to 4 cytokinins (Kin, BAP, DPU and Ad.) at 0.46 μM, on shoot rooting has been studied. Thereby, MS medium has been proved the most favorable for plantlets growing. Also, we found that the addition of certain cytokinins, specifically 0.46 Kin, 0.46 and 0.93 BAP, 0.46 2iP, 0.46 DPU, 0.46 Ad. and 0.46 Zeat., ensures better multiplication and growth of vitroplants. In addition, multiplication and rooting of cultures were well optimized after addition 0.46 Kin + 0.57 IAA or NAA, 0.46 DPU + 0.57 IBA and 0.46 Ad. + 0.57 IBA combinations to the culture medium. Lastly, plantlets with roots were successfully acclimatized to ex-vitro conditions and these latter served as a source to establish in vitro culture again.展开更多
Cytokinins and Ca 2+ singly retarded senescence of detached rice leaves.When Ca 2+ was applied together with cytokinins,the effectiveness of cytokinins was significantly reduced.Ca 2+ and cytokinins did ...Cytokinins and Ca 2+ singly retarded senescence of detached rice leaves.When Ca 2+ was applied together with cytokinins,the effectiveness of cytokinins was significantly reduced.Ca 2+ and cytokinins did not stimulate ethylene production synergistically,ruling out the possibility that ethylene was involved in the inhibition of cytokinin induced senescence retarding effect by Ca 2+ .The experiment with specific compounds known to increase (Ca ionophore A23187),or decrease (EGTA,LaCl 3,Verapamil,chlorpromazine) cytosolic Ca 2+ level indicated that the elevated cytosolic Ca 2+ retards senescence.展开更多
In order to determine the most suitable cytokinin for the micropropagation of carob (Ceratonia siliqua L.), the effect of four cytokinins: BAP, zeatin, kinetin and 2-iP, was tested on explants derived from young seedl...In order to determine the most suitable cytokinin for the micropropagation of carob (Ceratonia siliqua L.), the effect of four cytokinins: BAP, zeatin, kinetin and 2-iP, was tested on explants derived from young seedlings of seven days. Organogenesis is better in the presence of BAP (0.5 mg/l), while buds growth is favored by zeatin (0.5 mg/l). The combination of the most suitable cytokinin (BAP at 0.5 mg/l) with IBA improves the caulogenesis when the concentration of this latter is low (0.1 mg/l);high concentrations of IBA have an inhibitory effect on elongation and neoformation of shoots and leaves. The multiplication and growth of shoots are more favorable on WPM medium in the presence of BAP (0.5 and 1 mg/l) alone or combined with 0.5 mg/l with GA3, while rooting is mainly favored by IBA, especially at 2 mg/l.展开更多
Polyamines are small nitrogen-containing organic molecules, which are widely distributed in plants. They are involved in the regulation of normal plant growth and developmental processes. In this study we examined the...Polyamines are small nitrogen-containing organic molecules, which are widely distributed in plants. They are involved in the regulation of normal plant growth and developmental processes. In this study we examined the role of polyamines on the growth of Cucurbita pepo L.(zucchini) cotyledons incubated on solutions of different types of cytokinins (BA—N6-benzylaminopurine or 4PU-30—N1-(2-chloro-4-pyridyl)-N2-phenylurea) and copper in excess. We found that endogenous polyamines, and mainly the conjugated fraction, are involved in the cell division processes of isolated zucchini cotyledons and their changes are related to the specific action of the used growth regulating factors.展开更多
Cytokinins(CKs)function in plant development and during stress responses,but their role in drought tolerance in wheat is unknown.In the present study,24 isopentenyltransferase(IPT)genes,encoding ratelimiting enzymes i...Cytokinins(CKs)function in plant development and during stress responses,but their role in drought tolerance in wheat is unknown.In the present study,24 isopentenyltransferase(IPT)genes,encoding ratelimiting enzymes in CK biosynthesis were identified in the wheat genome.The chromosomal locations and structures of the genes,protein properties,and phylogenetic relationships were characterized.ATP/ADP TaIPT genes showed tissue-specific expression.TaIPT2,TaIPT7,and TaIPT8 expression was rapidly induced by 0.5–1 h drought treatments,which decreased to low levels after 2 h drought treatment,as did most other TaIPT genes.TaIPT8-5a/5b/5d triple mutants showed decreased levels of tZtype CK under normal and drought conditions and reduced drought tolerance,which,however,did not manifest as phenotype alterations.By contrast,transgenic wheat plants with drought-induced TaIPT8showed increased drought tolerance.Our study provides a foundation for further investigation of TaIPT genes and novel insights into the role of CKs in the drought response of wheat.展开更多
1AA 3-Indolylacetic acid, NAA a-Naphthylacetic acid and cytokinins in PESI culture medium were used in a study on the effects of plant hormones on the growth of free-living conchocelis of Porphyra yezoensis which show...1AA 3-Indolylacetic acid, NAA a-Naphthylacetic acid and cytokinins in PESI culture medium were used in a study on the effects of plant hormones on the growth of free-living conchocelis of Porphyra yezoensis which showed that its growth in medium with cytokinins, 1AA and NAA was more rapid than that in medium with non-phytohormones; that the optimal concentrations for promoting growth were 10μg/L for IAA and ZA (Zeatin), and 0.1 μg/L for BA 6-Benzyl amino purine and KIN 6-Furfurylamino- purine. Mix use of NAA, 1AA and cytokinins, NAA/ZA 1-1000/1μg/L, NAA/BA 10/1-1000 μg/L, NAA/KIN 1/1-1000 μg/L promoted growth. 1AA/ZA 0.1-1/0.1-1μg/L; 1AA/BA 0.1-1/0.1-10 μg/L IAA/KIN 1/0.1-1000μg/L also promoted growth.展开更多
Cytokinins are mobile phytohormones that regulate plant growth,development,and environmental adaptability.The major cytokinin species include isopentenyl adenine(iP),trans-zeatin(tZ),cis-zeatin(cZ),and dihydrozeatin(D...Cytokinins are mobile phytohormones that regulate plant growth,development,and environmental adaptability.The major cytokinin species include isopentenyl adenine(iP),trans-zeatin(tZ),cis-zeatin(cZ),and dihydrozeatin(DZ).The spatial distributions of different cytokinin species in different organelles,cells,tissues,and organs are primarily shaped by biosynthesis via isopentenyltransferases(IPT),cytochrome P450 monooxygenase,and 50-ribonucleotide phosphohydrolase and by conjugation or catabolism via glycosyltransferase or cytokinin oxidase/dehydrogenase.Cytokinins bind to histidine receptor kinases in the endoplasmic reticulum or plasma membrane and relay signals to response regulators in the nucleus via shuttle proteins known as histidine phosphotransfer proteins.The movements of cytokinins from sites of biosynthesis to sites of signal perception usually require long-distance,intercellular,and intracellular transport.In the past decade,ATP-binding cassette(ABC)transporters,purine permeases(PUP),AZA-GUANINE RESISTANT(AZG)transporters,equilibrative nucleoside transporters(ENT),and Sugars Will Eventually Be Exported transporters(SWEET)have been characterized as involved in cytokinin transport processes.This review begins by introducing the spatial distributions of various cytokinins and the subcellular localizations of the proteins involved in their metabolism and signaling.Highlights focus on an inventory of the characterized transporters involved in cytokinin compartmentalization,including long-distance,intercellular,and intracellular transport,and the regulation of the spatial distributions of cytokinins by environmental cues.Future directions for cytokinin research are also discussed.展开更多
Two principal growth regulators,cytokinins and ethylene,are known to interact in the regulation of plant growth.However,information about the underlying molecular mechanism and positional specificity of cytokinin/ethy...Two principal growth regulators,cytokinins and ethylene,are known to interact in the regulation of plant growth.However,information about the underlying molecular mechanism and positional specificity of cytokinin/ethylene crosstalk in the control of root growth is scarce.We have identified the spatial specificity of cytokinin-regulated root elongation and root apical meristem(RAM)size,both of which we demonstrate to be dependent on ethylene biosynthesis.Upregulation of the cytokinin biosynthetic gene ISOPENTENYLTRANSFERASE(IPT)in proximal and peripheral tissues leads to both root and RAM shortening.By contrast,IPT activation in distal and inner tissues reduces RAM size while leaving the root length comparable to that of mock-treated controls.We show that cytokinins regulate two steps specific to ethylene biosynthesis:production of the ethylene precursor 1-aminocyclopropane-1-carboxylate(ACC)by ACC SYNTHASEs(ACSs)and its conversion to ethylene by ACC OXIDASEs(ACOs).We describe cytokinin-and ethylene-specific regulation controlling the activity of ACSs and ACOs that are spatially discrete along both proximo/distal and radial root axes.Using direct ethylene measurements,we identify ACO2,ACO3,and ACO4 as being responsible for ethylene biosynthesis and ethylene-regulated root and RAM shortening in cytokinin-treated Arabidopsis.Direct interaction between ARABIDOPSIS RESPONSE REGULATOR 2(ARR2),a member of the multistep phosphorelay cascade,and the C-terminal portion of ETHYLENE INSENSITIVE 2(EIN2-C),a key regulator of canonical ethylene signaling,is involved in the cytokinin-induced,ethylene-mediated control of ACO4.We propose tight cooperation between cytokinin and ethylene signaling in the spatially specific regulation of ethylene biosynthesis as a key aspect of the hormonal control of root growth.展开更多
Background Mepiquat chloride(MC)is a widely used plant growth regulator in cotton(Gossypium hirsutum L.).It regulates endogenous hormone content and crosstalk to control plant height and promote lateral root(LR)develo...Background Mepiquat chloride(MC)is a widely used plant growth regulator in cotton(Gossypium hirsutum L.).It regulates endogenous hormone content and crosstalk to control plant height and promote lateral root(LR)development.However,the roles of cytokinins(CTKs)in the MC-induced increase in LR number in cotton seedlings remain unclear.Therefore,in this study,whole-genome transcriptome analysis was performed to elucidate the molecular mechanisms,CTK transformation,and CTK signaling pathway response to MC in cotton roots.Results In the present study,MC reduced the contents of the active CTK trans-zeatin(tZ)and N^(6)-isopentenyladenine(iP)but increased the levels of the nucleoside CTK trans-zeatin riboside(tZR)and N^(6)-isopentenyladenine riboside(iPR).RNA-seq data showed that the CTK biosynthesis genes GhIPTs and active CTK catabolism genes GhCKXs were obviously upregulated after MC treatment.The CTK-activating enzyme gene GhLOGs was repressed compared with the control.Furthermore,MC inhibited the expression of GhAHK4 and GhARR2/12,which are involved in the CTK signaling pathway,and activated the IAA-IAA14-ARF7/19 signaling module.Meanwhile,MC increased the expression levels of genes involved in sucrose synthesis,the cell cycle,cell division,and cell wall biosynthesis pathways.Silencing the GhCKX family separately decreased the LR number and active indole-3-acetic acid(IAA)level.The expression levels of GhPIN1,GhARF7,GhARF19,GhLBD16,GhLBD18,GhLBD29,and GhLBD33 were downregulated,but GhARR2/12 and GhIAA14 were upregulated.The total content of active CTKs was noticeably increased.The results of silencing the GhLOGs family were opposite to those of silencing GhCKXs.Silencing GhARR12 could upregulate GhPIN1 expression and increase LR number.In addition,the silenced GhCKXs,GhLOGs,and GhARR12 were less responsive to MCinduced LR growth than the control.Conclusion These results suggested that MC treatment could upregulate CTK-nucleoside biosynthesis and CTK metabolism genes to decrease active CTK levels,promoting crosstalk between CTKs and auxin signaling pathways to enhance LR initiation.展开更多
During plant development, distantly-located organs must communicate in order to adapt morphological and physiological features in response to environmental inputs. Among the recognized signaling molecules, a class of ...During plant development, distantly-located organs must communicate in order to adapt morphological and physiological features in response to environmental inputs. Among the recognized signaling molecules, a class of phytohormones known as the cytokinins functions as both local and long-distance regulatory signals for the coordination of plant development. This cytokinin-dependent communication system consists of orchestrated regulation of the metabolism, translocation, and signal transduction of this phytohormone class. Here, to gain insight into this elaborate signaling system, we summarize current models of biosynthesis, transmembrane transport, and long-distance translocation of cytokinins in higher plants.展开更多
We report here on a comparative developmental profile of plant hormone cytokinins in relation to cell size, cell number and endoreduplicaUon in developing maize caryopsis of a cell wall invertase-deficient miniature1 ...We report here on a comparative developmental profile of plant hormone cytokinins in relation to cell size, cell number and endoreduplicaUon in developing maize caryopsis of a cell wall invertase-deficient miniature1 (mn1) seed mutant and its wild type, Mn1, genotype. Both genotypes showed extremely high levels of total cytokinins during the very early stages of development, followed by a marked and genotype specific reduction. While the decrease of cytokinins in Mn1 was associated with their deactivation by 9-glucosylation, the absolute and the relative part of active cytokinin forms was higher in the mutant. During the exponential growth phase of endosperm between 6 d after pollination and 9 d after pollination, the mean cell doubling time, the absolute growth rate and the level of endoreduplication were similar in the two genotypes. However, the entire duration of growth was longer in Mnl compared with mnl, resulting in a significantly higher cell number in the Mnl endosperm. These data correlate with the previously reported peak levels of the Mn1-encoded cell wall invertase-2 (INCW2) at 12 d after pollination in the Mn1 endosperm. A model showing possible crosstalk among cytokinins, cell cycle and cell wall invertase as causal to increased cell number and sink strength of the Mn1 developing endosperm is discussed.展开更多
Cytokinins(CKs),primarily trans-zeatin(tZ)and isopentenyladenine(iP)types,play critical roles in plant growth,development,and various stress responses.Long-distance transport of tZ-type CKs meidated by Arabidopsis ATP...Cytokinins(CKs),primarily trans-zeatin(tZ)and isopentenyladenine(iP)types,play critical roles in plant growth,development,and various stress responses.Long-distance transport of tZ-type CKs meidated by Arabidopsis ATP-binding cassette transporter subfamily G14(AtABCG14)has been well studied;however,less is known about the biochemical properties of AtABCG14 and its transporter activity toward iP-type CKs.Here we reveal the biochemical properties of AtABCG14 and provide evidence that it is also required for long-distance transport of iP-type CKs.AtABCG14 formed homodimers in human(Homo sapiens)HEK293T,tobacco(Nicotiana tabacum),and Arabidopsis cells.Transporter activity assays of AtABCG14 in Arabidopsis,tobacco,and yeast(Saccharomyces cerevisiae)showed that AtABCG14 may directly transport multiple CKs,including iP-and tZ-type species.AtABCG14 expression was induced by iP in a tZ-type CKdeficient double mutant(cypDM)of CYP735A1 and CYP735A2.The atabcg14 cypDM triple mutant exhibited stronger CK-deficiency phenotypes than cypDM.Hormone profiling,reciprocal grafting,and 2H6-iP isotope tracer experiments showed that root-to-shoot and shoot-to-root long-distance transport of iP-type CKs were suppressed in atabcg14 cypDM and atabcg14.These results suggest that AtABCG14 participates in three steps of the circular long-distance transport of iP-type CKs:xylem loading in the root for shootward transport,phloem unloading in the shoot for shoot distribution,and phloemunloading in the root for root distribution.We found that AtABCG14 displays transporter activity toward multiple CK species and revealed its versatile roles in circular long-distance transport of iP-type CKs.These findings provide newinsights into the transport mechanisms of CKs and other plant hormones.展开更多
Several herbivorous insects and plant-associated microorganisms control the phytohormonal balance, thus enabling them to successfully exploit the plant by inhibiting plant defenses and withdrawing plant resources for ...Several herbivorous insects and plant-associated microorganisms control the phytohormonal balance, thus enabling them to successfully exploit the plant by inhibiting plant defenses and withdrawing plant resources for their own benefit. The leaf-mining moth Phyllonorycter blancardella modifies the cytokinin (CK) profile of mined leaf-tissues, and the insect symbiotic bacteria Wolbachia is involved in the plant manipulation to the benefit of the insect host. To gain a deeper understanding into the possible origin and dynamics of CKs, we conducted an extensive characterization of CKs in larvae and in infected apple leaves. Our results show the enhanced CK levels in mines, both on green and yellow leaves, allowing insects to control their nutritional supply under fluctuating environmental conditions. The spatial distribution of CKs within the mined leaves shows that hormone manipulation is strictly limited to the mine suggesting the absence of CK translocation from distant leaf areas toward the insect feeding site. Mass spectrometry analyses reveal that major CK types accumulating in mines and larvae are similar to what is observed for most gall-inducers, suggesting that strategies underlying the plant manipulation may be shared between herbivorous insects with distinct life histories. Results further show that CKs are detected in the highest levels in larvae, reinforcing our hypothesis that CKs accumulating in the mines originate from the insect itself. Presence of bacteria- specific methylthio-CKs is consistent with previous results suggesting that insect bacterial symbionts contribute to the observed phenotype. Our study provides key findings toward the understanding of molecular mechanisms underlying this intricate plant-insect-microbe interaction.展开更多
Cytokinins are ancient hormones present across all kingdoms of life except archaea,although functional biosynthesis pathways have yet to be identified in animalia.Known for their roles in cell division and proliferati...Cytokinins are ancient hormones present across all kingdoms of life except archaea,although functional biosynthesis pathways have yet to be identified in animalia.Known for their roles in cell division and proliferation,cytokinins are critical to plant life,as they regulate various aspects of vegetative growth,stress response,and reproduction.In this review,we summarize literature from 2020 to 2025 pertaining to the cytokinin functions in plant reproduction.While general aspects of cytokinin’s role in plant reproduction have been addressed,we particularly focus on the role of cytokinin in reproductive systems due to recent work identifying their role as sex-determining factors in dioecious species in Salicaceae and other families,their role in determining flower sex in monoecious species,and their involvement in self-incompatibility response and asexual reproduction.展开更多
Plant height and grain size are the most important factors determining rice yield.Here,in the rice mutant small plant and organ size1(spos1)with reduced plant height and small grain,T-DNA insertion revealed that the m...Plant height and grain size are the most important factors determining rice yield.Here,in the rice mutant small plant and organ size1(spos1)with reduced plant height and small grain,T-DNA insertion revealed that the mutant phenotype was caused by increased expression of of OsSAUR23 and OsRR9,which participate in auxin and cytokinin signal transduction,respectively.Knock out of OsSAUR23 increased rice grain size but did not change plant height.Double knock out of OsRR9 and its replicated gene OsRR10 also brought similar effects on rice as that of OsSAUR23 knock-out.Genetic analysis suggested that OsSAUR23 was a major recessive gene and OsRR9 was a minor dominant gene,which co-regulated the phenotype of spos1.Compared with wild type,auxin synthesis and signaling,cytokinin homeostasis and signaling,as well as GA,ABA and BR metabolism and signaling were regulated in seedlings of spos1.The increased concentrations of IAA and cytokinins in the mutant suggest hormonal co-regulation of rice organ size.展开更多
Peanut seedlings develop from seeds by hypocotyl elongation and differentiation.However,the intricate gene regulatory networks and molecular crosstalk underlying hypocotyl growth in peanuts remain largely unknown.In t...Peanut seedlings develop from seeds by hypocotyl elongation and differentiation.However,the intricate gene regulatory networks and molecular crosstalk underlying hypocotyl growth in peanuts remain largely unknown.In this study,a single-nucleus gene expression landscape in peanut seedlings was initially developed from diverse tissues,including stems,roots,leaves,and hypocotyls.Core transcription factor interaction networks driving developmental trajectories were identified to decipher hypocotyl cell heterogeneity.Jasmonic acid and cytokinin regulate peanut hypocotyl expansion and differentiation based on the number and size of cortex cells and hormone levels between the hypocotyl at 3 and 7 d after germination.We further demonstrated that AhBHLH143 potentially represses hypocotyl elongation by promoting the JA pathway and inhibiting the cytokinin pathway.The single-nucleus transcriptomic atlas of peanut seedlings reveals new insights into hypocotyl development and provides a valuable resource for future investigations of seedling development.展开更多
Maize(Zea mays L.)is one of the world's most important staple crops,and is used for manufacturing food,feed,and industrial products.A key factor in maize yield is the grain weight,which directly influences product...Maize(Zea mays L.)is one of the world's most important staple crops,and is used for manufacturing food,feed,and industrial products.A key factor in maize yield is the grain weight,which directly influences productivity.In this study,we revealed the role of smk23 in maize kernel development.The ethyl methanesulfonate mutant smk23 is characterized by substantially reduced kernel weight.Through map-based cloning,smk23 was found to be located on Chr5 and encode a putative B-type response regulator,Zm RR5.A change from G to A occurs in the coding sequence of Zm RR5,resulting in the early termination of smk23.In Arabidopsis,B-type response regulators are involved in cytokinin signaling.Histological analysis and in situ hybridization of the mutant revealed abnormal endosperm development,particularly in the basal endosperm transfer layer(BETL),a specialized tissue critical for nutrient transport from the maternal tissues to the developing kernel.Zm RR5 positively regulates key genes involved in BETL development and function,including MRP1 and TCRR1.Furthermore,RNA sequencing revealed that several genes closely linked to BETL development,including BETL2,MEG1,and MN1,were significantly downregulated in smk23.These genes are essential for nutrient transport,tissue development and signal transduction.In addition,haploid analysis of Zm RR5 revealed natural variations(Hap 2)that may contribute to the increased kernel yield.Disruption of Zm RR5 function in smk23 leads to defects in BETL development,impairing its ability to transport nutrients,and ultimately resulting in a smaller kernel size.This study provides new insights into the molecular mechanisms through which Zm RR5 regulates maize kernel development and offers potential strategies for improving grain yield.展开更多
基金supported by the National Natural Science Foundation of China (32301930, 32071943, 32272198, and 32372214)the Major Program of the Ministry of Agriculture and Rural Affairs of China (FSNK202218080316)+3 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD-2020-01)the Jiangsu Funding Program for Excellent Postdoctoral Talent, China (2022ZB618)the Government Funding to the Chinese University of Hong Kong State Key Laboratory of Agrobiotechnology via Innovation and Technology Commission, China (2022/23–2023/24)the National Key Research and Development Program of China (2022YFD2300304)。
文摘Aligning leaf nitrogen(N) distribution to match the light gradient is crucial for maximizing canopy dry matter production(DMP) and improving N utilization efficiency. However, the relationship between the gradient of root-derived cytokinins and N distribution in rice leaves and its impact on DMP and the underlying mechanisms remains poorly understood. A two-year field experiment was conducted using two japonica N-efficient varieties(NEVs) and two japonica N-inefficient varieties(NIVs) under four different N rates(0, 90, 180, and 360 kg N ha^(-1)). These selected varieties exhibited similar values in the coefficient of light extinction(K_(L)). Results showed that at lower N rates(0–180 kg N ha^(-1)), the NEVs exhibited greater dry matter weight at maturity, higher grain yield, and improved internal N use efficiency(IE_(N)) compared to the NIVs, despite possessing comparable total N uptake. Compared with the NIVs, the NEVs exhibited a more pronounced nitrogen distribution gradient in leaves, as indicated by the coefficient of nitrogen extinction(K_(N)) values during the middle and early grain-filling stages. This enhanced gradient led to improved coordination between light and nitrogen, resulting in greater photosynthetic production, particularly at lower N rates. Furthermore, the NEVs demonstrated a larger gradient of zeatin(Z)+zeatin riboside(ZR) in leaves(i.e., higher ratios of Z+ZR levels between upper and lower leaves), enhanced expression levels of genes related to N export in lower leaves and Z+ZR loading in the root, respectively, elevated enzymes activities related to N assimilation in upper leaves, in relative to the NIVs. Correlation and random forest analyses demonstrated a strong positive correlation between the Z+ZR gradient, K_(N), and DMP, and the gradient facilitated the export of N from lower leaves and its assimilation in upper leaves, contributing significantly to both K_(N) and DMP. This process was closely linked to root activity, including root oxidation activity, root Z+ZR content, and Z+ZR loading capacity, as confirmed by applying an inhibitor or a promoter of cytokinins biosynthesis to roots. Interestingly, at the N rate of 360 kg N ha^(-1), both NEVs and NIVs showed indistinguishable plant traits, achieving a super high-yielding level(over 10.5 t ha^(-1)) but with remarkably low IE_(N). The results suggest that increasing the Z+ZR gradient can improve K_(N) and DMP, where it needs to maintain higher root activity, thus leading to high yield and high IE_(N). Further research is needed to explore and develop cultivation practices with reduced N to unlock the super-high-yielding potential of the NEVs.
文摘This review chronicles the development of the cytokinin research during the last 30 years. Cytokinin and auxin are the two major plant growth hormones that control virtually all aspects of growth and development in higher plants. The pathways for cytokinin biosynthesis and metabolism have been characterized by the identification of isopentenyl pyrophosphate transferase, cytokinin oxidases, cytokinin hydroxylase, zeatin cis-/trans-isomerase, cytokinin phosphoribosyl hydrolases, cytokinin-specific riboside phosphorylase, and others enzymes. Loss-of function mutant phenotypes of cytokinin degradation/activating enzymes indicate the regulation of concentration and spatial distribution of bio-active cytokinin plays a pivotal role in the increase in panicle size, in the numbers of floral organs, and eventually in seed yield. One of the most fundamental questions in the cytokinin field is one concerning the prevalence of cis-zeatin in monocotyledonous crops (rice and maize) and in dicotyledonous legumes (pea, chickpea) and potato/sweet potato. A hypothesis is that cis-zeatin is synthesized by the cis-specific hydroxylation of the terminal methyl group of N6-isopentenyl side chain of N6-isopentenyl adenosine (i6Ado) or of their mono-, di-, or tri-phosphates catalyzed by the cis-specific hydroxylase. A second potential pathway is the isomerization of trans-zeatin to cis-zeatin by zeatin cis-/trans-isomerase. A second fundamental question to be addressed is the physiological role of cis-zeatin. Some have argued for a special function of cis-zeatin to account for the prevalence of the cis-zeatin in the plant kingdom from algae to higher plants.
文摘The present study reports an efficient protocol for in vitro propagation of Thymus vulgaris L., an aromatic and medicinal plant in Morocco. Initially, we performed in vitro multiplication of Thymus vulgaris explants existing in the laboratory and obtained from micropropagation by shoot tip culture. Afterwards, we have evaluated the effect of six macronutrients. After that, seven cytokinins (Kin, BAP, 2iP, DPU, Adenine, Zeatine and TDZ) in three different concentrations (0.46, 0.93, 2.32 μM) have been evaluated to optimize cultures multiplication and elongation. Moreover, the effect of three auxins (IAA, IBA and NAA) at 0.57 μM, combined to 4 cytokinins (Kin, BAP, DPU and Ad.) at 0.46 μM, on shoot rooting has been studied. Thereby, MS medium has been proved the most favorable for plantlets growing. Also, we found that the addition of certain cytokinins, specifically 0.46 Kin, 0.46 and 0.93 BAP, 0.46 2iP, 0.46 DPU, 0.46 Ad. and 0.46 Zeat., ensures better multiplication and growth of vitroplants. In addition, multiplication and rooting of cultures were well optimized after addition 0.46 Kin + 0.57 IAA or NAA, 0.46 DPU + 0.57 IBA and 0.46 Ad. + 0.57 IBA combinations to the culture medium. Lastly, plantlets with roots were successfully acclimatized to ex-vitro conditions and these latter served as a source to establish in vitro culture again.
基金Supported by the N tional Natural Science Foundation of China
文摘Cytokinins and Ca 2+ singly retarded senescence of detached rice leaves.When Ca 2+ was applied together with cytokinins,the effectiveness of cytokinins was significantly reduced.Ca 2+ and cytokinins did not stimulate ethylene production synergistically,ruling out the possibility that ethylene was involved in the inhibition of cytokinin induced senescence retarding effect by Ca 2+ .The experiment with specific compounds known to increase (Ca ionophore A23187),or decrease (EGTA,LaCl 3,Verapamil,chlorpromazine) cytosolic Ca 2+ level indicated that the elevated cytosolic Ca 2+ retards senescence.
基金part of the project in the priority areas of scientific research and technological development(PPR2/2016/35)financed by the Ministry of National Education,Vocational Training,Higher Education and Scientific Research,as well as the National Center for Scientific and Technical Research(CNRST,Morocco).
文摘In order to determine the most suitable cytokinin for the micropropagation of carob (Ceratonia siliqua L.), the effect of four cytokinins: BAP, zeatin, kinetin and 2-iP, was tested on explants derived from young seedlings of seven days. Organogenesis is better in the presence of BAP (0.5 mg/l), while buds growth is favored by zeatin (0.5 mg/l). The combination of the most suitable cytokinin (BAP at 0.5 mg/l) with IBA improves the caulogenesis when the concentration of this latter is low (0.1 mg/l);high concentrations of IBA have an inhibitory effect on elongation and neoformation of shoots and leaves. The multiplication and growth of shoots are more favorable on WPM medium in the presence of BAP (0.5 and 1 mg/l) alone or combined with 0.5 mg/l with GA3, while rooting is mainly favored by IBA, especially at 2 mg/l.
文摘Polyamines are small nitrogen-containing organic molecules, which are widely distributed in plants. They are involved in the regulation of normal plant growth and developmental processes. In this study we examined the role of polyamines on the growth of Cucurbita pepo L.(zucchini) cotyledons incubated on solutions of different types of cytokinins (BA—N6-benzylaminopurine or 4PU-30—N1-(2-chloro-4-pyridyl)-N2-phenylurea) and copper in excess. We found that endogenous polyamines, and mainly the conjugated fraction, are involved in the cell division processes of isolated zucchini cotyledons and their changes are related to the specific action of the used growth regulating factors.
基金financially supported by the National Key Research and Development Program of China(2020YFE0202300)the Agricultural Science and Technology Innovation Program(CAASZDRW202109 and CAAS-ZDRW202002)。
文摘Cytokinins(CKs)function in plant development and during stress responses,but their role in drought tolerance in wheat is unknown.In the present study,24 isopentenyltransferase(IPT)genes,encoding ratelimiting enzymes in CK biosynthesis were identified in the wheat genome.The chromosomal locations and structures of the genes,protein properties,and phylogenetic relationships were characterized.ATP/ADP TaIPT genes showed tissue-specific expression.TaIPT2,TaIPT7,and TaIPT8 expression was rapidly induced by 0.5–1 h drought treatments,which decreased to low levels after 2 h drought treatment,as did most other TaIPT genes.TaIPT8-5a/5b/5d triple mutants showed decreased levels of tZtype CK under normal and drought conditions and reduced drought tolerance,which,however,did not manifest as phenotype alterations.By contrast,transgenic wheat plants with drought-induced TaIPT8showed increased drought tolerance.Our study provides a foundation for further investigation of TaIPT genes and novel insights into the role of CKs in the drought response of wheat.
基金The research was supported by a grant from the Chinese Aeademy of Scicnes
文摘1AA 3-Indolylacetic acid, NAA a-Naphthylacetic acid and cytokinins in PESI culture medium were used in a study on the effects of plant hormones on the growth of free-living conchocelis of Porphyra yezoensis which showed that its growth in medium with cytokinins, 1AA and NAA was more rapid than that in medium with non-phytohormones; that the optimal concentrations for promoting growth were 10μg/L for IAA and ZA (Zeatin), and 0.1 μg/L for BA 6-Benzyl amino purine and KIN 6-Furfurylamino- purine. Mix use of NAA, 1AA and cytokinins, NAA/ZA 1-1000/1μg/L, NAA/BA 10/1-1000 μg/L, NAA/KIN 1/1-1000 μg/L promoted growth. 1AA/ZA 0.1-1/0.1-1μg/L; 1AA/BA 0.1-1/0.1-10 μg/L IAA/KIN 1/0.1-1000μg/L also promoted growth.
基金supported by the National Natural Science Foundation of China(32370334,32100270 to J.Z.31470370 to K.Z.)the Zhejiang Provincial Natural Science Foundation of China(grants LZ23C020001 to K.Z.and LY22C020003 to J.Z.).
文摘Cytokinins are mobile phytohormones that regulate plant growth,development,and environmental adaptability.The major cytokinin species include isopentenyl adenine(iP),trans-zeatin(tZ),cis-zeatin(cZ),and dihydrozeatin(DZ).The spatial distributions of different cytokinin species in different organelles,cells,tissues,and organs are primarily shaped by biosynthesis via isopentenyltransferases(IPT),cytochrome P450 monooxygenase,and 50-ribonucleotide phosphohydrolase and by conjugation or catabolism via glycosyltransferase or cytokinin oxidase/dehydrogenase.Cytokinins bind to histidine receptor kinases in the endoplasmic reticulum or plasma membrane and relay signals to response regulators in the nucleus via shuttle proteins known as histidine phosphotransfer proteins.The movements of cytokinins from sites of biosynthesis to sites of signal perception usually require long-distance,intercellular,and intracellular transport.In the past decade,ATP-binding cassette(ABC)transporters,purine permeases(PUP),AZA-GUANINE RESISTANT(AZG)transporters,equilibrative nucleoside transporters(ENT),and Sugars Will Eventually Be Exported transporters(SWEET)have been characterized as involved in cytokinin transport processes.This review begins by introducing the spatial distributions of various cytokinins and the subcellular localizations of the proteins involved in their metabolism and signaling.Highlights focus on an inventory of the characterized transporters involved in cytokinin compartmentalization,including long-distance,intercellular,and intracellular transport,and the regulation of the spatial distributions of cytokinins by environmental cues.Future directions for cytokinin research are also discussed.
基金Ministry of Education,Youth and Sports of the Czech Republic under the projects TANGENC(CZ.02.01.01/00/22_008/0004581)and LUAUS24277German Research Foundation(CRC 1101 project D02)+1 种基金Howard Hughes Medical Institute(to E.M.M.)Russian Science Foundation(20-14-00140).
文摘Two principal growth regulators,cytokinins and ethylene,are known to interact in the regulation of plant growth.However,information about the underlying molecular mechanism and positional specificity of cytokinin/ethylene crosstalk in the control of root growth is scarce.We have identified the spatial specificity of cytokinin-regulated root elongation and root apical meristem(RAM)size,both of which we demonstrate to be dependent on ethylene biosynthesis.Upregulation of the cytokinin biosynthetic gene ISOPENTENYLTRANSFERASE(IPT)in proximal and peripheral tissues leads to both root and RAM shortening.By contrast,IPT activation in distal and inner tissues reduces RAM size while leaving the root length comparable to that of mock-treated controls.We show that cytokinins regulate two steps specific to ethylene biosynthesis:production of the ethylene precursor 1-aminocyclopropane-1-carboxylate(ACC)by ACC SYNTHASEs(ACSs)and its conversion to ethylene by ACC OXIDASEs(ACOs).We describe cytokinin-and ethylene-specific regulation controlling the activity of ACSs and ACOs that are spatially discrete along both proximo/distal and radial root axes.Using direct ethylene measurements,we identify ACO2,ACO3,and ACO4 as being responsible for ethylene biosynthesis and ethylene-regulated root and RAM shortening in cytokinin-treated Arabidopsis.Direct interaction between ARABIDOPSIS RESPONSE REGULATOR 2(ARR2),a member of the multistep phosphorelay cascade,and the C-terminal portion of ETHYLENE INSENSITIVE 2(EIN2-C),a key regulator of canonical ethylene signaling,is involved in the cytokinin-induced,ethylene-mediated control of ACO4.We propose tight cooperation between cytokinin and ethylene signaling in the spatially specific regulation of ethylene biosynthesis as a key aspect of the hormonal control of root growth.
基金supported by the National Natural Science Foundation of China(Grant No.31471434)。
文摘Background Mepiquat chloride(MC)is a widely used plant growth regulator in cotton(Gossypium hirsutum L.).It regulates endogenous hormone content and crosstalk to control plant height and promote lateral root(LR)development.However,the roles of cytokinins(CTKs)in the MC-induced increase in LR number in cotton seedlings remain unclear.Therefore,in this study,whole-genome transcriptome analysis was performed to elucidate the molecular mechanisms,CTK transformation,and CTK signaling pathway response to MC in cotton roots.Results In the present study,MC reduced the contents of the active CTK trans-zeatin(tZ)and N^(6)-isopentenyladenine(iP)but increased the levels of the nucleoside CTK trans-zeatin riboside(tZR)and N^(6)-isopentenyladenine riboside(iPR).RNA-seq data showed that the CTK biosynthesis genes GhIPTs and active CTK catabolism genes GhCKXs were obviously upregulated after MC treatment.The CTK-activating enzyme gene GhLOGs was repressed compared with the control.Furthermore,MC inhibited the expression of GhAHK4 and GhARR2/12,which are involved in the CTK signaling pathway,and activated the IAA-IAA14-ARF7/19 signaling module.Meanwhile,MC increased the expression levels of genes involved in sucrose synthesis,the cell cycle,cell division,and cell wall biosynthesis pathways.Silencing the GhCKX family separately decreased the LR number and active indole-3-acetic acid(IAA)level.The expression levels of GhPIN1,GhARF7,GhARF19,GhLBD16,GhLBD18,GhLBD29,and GhLBD33 were downregulated,but GhARR2/12 and GhIAA14 were upregulated.The total content of active CTKs was noticeably increased.The results of silencing the GhLOGs family were opposite to those of silencing GhCKXs.Silencing GhARR12 could upregulate GhPIN1 expression and increase LR number.In addition,the silenced GhCKXs,GhLOGs,and GhARR12 were less responsive to MCinduced LR growth than the control.Conclusion These results suggested that MC treatment could upregulate CTK-nucleoside biosynthesis and CTK metabolism genes to decrease active CTK levels,promoting crosstalk between CTKs and auxin signaling pathways to enhance LR initiation.
文摘During plant development, distantly-located organs must communicate in order to adapt morphological and physiological features in response to environmental inputs. Among the recognized signaling molecules, a class of phytohormones known as the cytokinins functions as both local and long-distance regulatory signals for the coordination of plant development. This cytokinin-dependent communication system consists of orchestrated regulation of the metabolism, translocation, and signal transduction of this phytohormone class. Here, to gain insight into this elaborate signaling system, we summarize current models of biosynthesis, transmembrane transport, and long-distance translocation of cytokinins in higher plants.
基金supported by the Slovenian Research Agency (P1-0212)by the USA-Slovenia Cooperation in Science and Technology (BI-US/06-07-031)
文摘We report here on a comparative developmental profile of plant hormone cytokinins in relation to cell size, cell number and endoreduplicaUon in developing maize caryopsis of a cell wall invertase-deficient miniature1 (mn1) seed mutant and its wild type, Mn1, genotype. Both genotypes showed extremely high levels of total cytokinins during the very early stages of development, followed by a marked and genotype specific reduction. While the decrease of cytokinins in Mn1 was associated with their deactivation by 9-glucosylation, the absolute and the relative part of active cytokinin forms was higher in the mutant. During the exponential growth phase of endosperm between 6 d after pollination and 9 d after pollination, the mean cell doubling time, the absolute growth rate and the level of endoreduplication were similar in the two genotypes. However, the entire duration of growth was longer in Mnl compared with mnl, resulting in a significantly higher cell number in the Mnl endosperm. These data correlate with the previously reported peak levels of the Mn1-encoded cell wall invertase-2 (INCW2) at 12 d after pollination in the Mn1 endosperm. A model showing possible crosstalk among cytokinins, cell cycle and cell wall invertase as causal to increased cell number and sink strength of the Mn1 developing endosperm is discussed.
基金the National Natural Science Foundation of China(31470370 to K.Z.and 32100270 to J.Z.)the Natural Science Foundation of Zhejiang Province(LY22C020003 to J.Z.)C.-J.L.was supported by the DOE Office of Basic Energy Sciences,specifically through the Physical Biosciences Program of the Chemical Sciences,Geosciences and Biosciences Division,under contract DESC0012704.
文摘Cytokinins(CKs),primarily trans-zeatin(tZ)and isopentenyladenine(iP)types,play critical roles in plant growth,development,and various stress responses.Long-distance transport of tZ-type CKs meidated by Arabidopsis ATP-binding cassette transporter subfamily G14(AtABCG14)has been well studied;however,less is known about the biochemical properties of AtABCG14 and its transporter activity toward iP-type CKs.Here we reveal the biochemical properties of AtABCG14 and provide evidence that it is also required for long-distance transport of iP-type CKs.AtABCG14 formed homodimers in human(Homo sapiens)HEK293T,tobacco(Nicotiana tabacum),and Arabidopsis cells.Transporter activity assays of AtABCG14 in Arabidopsis,tobacco,and yeast(Saccharomyces cerevisiae)showed that AtABCG14 may directly transport multiple CKs,including iP-and tZ-type species.AtABCG14 expression was induced by iP in a tZ-type CKdeficient double mutant(cypDM)of CYP735A1 and CYP735A2.The atabcg14 cypDM triple mutant exhibited stronger CK-deficiency phenotypes than cypDM.Hormone profiling,reciprocal grafting,and 2H6-iP isotope tracer experiments showed that root-to-shoot and shoot-to-root long-distance transport of iP-type CKs were suppressed in atabcg14 cypDM and atabcg14.These results suggest that AtABCG14 participates in three steps of the circular long-distance transport of iP-type CKs:xylem loading in the root for shootward transport,phloem unloading in the shoot for shoot distribution,and phloemunloading in the root for root distribution.We found that AtABCG14 displays transporter activity toward multiple CK species and revealed its versatile roles in circular long-distance transport of iP-type CKs.These findings provide newinsights into the transport mechanisms of CKs and other plant hormones.
文摘Several herbivorous insects and plant-associated microorganisms control the phytohormonal balance, thus enabling them to successfully exploit the plant by inhibiting plant defenses and withdrawing plant resources for their own benefit. The leaf-mining moth Phyllonorycter blancardella modifies the cytokinin (CK) profile of mined leaf-tissues, and the insect symbiotic bacteria Wolbachia is involved in the plant manipulation to the benefit of the insect host. To gain a deeper understanding into the possible origin and dynamics of CKs, we conducted an extensive characterization of CKs in larvae and in infected apple leaves. Our results show the enhanced CK levels in mines, both on green and yellow leaves, allowing insects to control their nutritional supply under fluctuating environmental conditions. The spatial distribution of CKs within the mined leaves shows that hormone manipulation is strictly limited to the mine suggesting the absence of CK translocation from distant leaf areas toward the insect feeding site. Mass spectrometry analyses reveal that major CK types accumulating in mines and larvae are similar to what is observed for most gall-inducers, suggesting that strategies underlying the plant manipulation may be shared between herbivorous insects with distinct life histories. Results further show that CKs are detected in the highest levels in larvae, reinforcing our hypothesis that CKs accumulating in the mines originate from the insect itself. Presence of bacteria- specific methylthio-CKs is consistent with previous results suggesting that insect bacterial symbionts contribute to the observed phenotype. Our study provides key findings toward the understanding of molecular mechanisms underlying this intricate plant-insect-microbe interaction.
基金funded by a National Science Foundation award to Henning PM(no.2208975).
文摘Cytokinins are ancient hormones present across all kingdoms of life except archaea,although functional biosynthesis pathways have yet to be identified in animalia.Known for their roles in cell division and proliferation,cytokinins are critical to plant life,as they regulate various aspects of vegetative growth,stress response,and reproduction.In this review,we summarize literature from 2020 to 2025 pertaining to the cytokinin functions in plant reproduction.While general aspects of cytokinin’s role in plant reproduction have been addressed,we particularly focus on the role of cytokinin in reproductive systems due to recent work identifying their role as sex-determining factors in dioecious species in Salicaceae and other families,their role in determining flower sex in monoecious species,and their involvement in self-incompatibility response and asexual reproduction.
基金supported by the CAAS Science and Technology Innovation Program(2060302-2).
文摘Plant height and grain size are the most important factors determining rice yield.Here,in the rice mutant small plant and organ size1(spos1)with reduced plant height and small grain,T-DNA insertion revealed that the mutant phenotype was caused by increased expression of of OsSAUR23 and OsRR9,which participate in auxin and cytokinin signal transduction,respectively.Knock out of OsSAUR23 increased rice grain size but did not change plant height.Double knock out of OsRR9 and its replicated gene OsRR10 also brought similar effects on rice as that of OsSAUR23 knock-out.Genetic analysis suggested that OsSAUR23 was a major recessive gene and OsRR9 was a minor dominant gene,which co-regulated the phenotype of spos1.Compared with wild type,auxin synthesis and signaling,cytokinin homeostasis and signaling,as well as GA,ABA and BR metabolism and signaling were regulated in seedlings of spos1.The increased concentrations of IAA and cytokinins in the mutant suggest hormonal co-regulation of rice organ size.
基金supported by the Guangdong Provincial Key Research and Development Program-Modern Seed Industry(2022B0202060004)National Key Research and Development Project(2023YFD1202800)+9 种基金National Natural Science Foundation of China(32272121,32172051,32301869,32000471)Guangdong Science and Technology Plan Project(2023B1212060038)Guangdong Basic and Applied Basic Research Foundation(2021A1515010811,2023A1515010098,2023A1515010569)China Agriculture Research System of MOF and MARA(CARS-13)Guangzhou Basic and Applied Basic Research Foundation(2023A04J0776)Special Fund for Scientific Innovation Strategy-Construction of High Level Academy of Agriculture Science(R2020PY-JX004,R2020PY-JG005,R2021PY-QY003,R2022YJYB3025)the Foundation of the Director of Crop Research Institute of Guangdong Academy of Agriculture Sciences(202201,202306)Special Funds for the Revitalization of Agriculture through Seed Industry under the Provincial Rural Revitalization Strategy(2022-NPY-00-022)the Project of Collaborative Innovation Center of GDAAS(XTXM202203)Science and Technology Planning Project of Heyuan City(Heyuan She Nong Da Zhuan Xiang 2022002).
文摘Peanut seedlings develop from seeds by hypocotyl elongation and differentiation.However,the intricate gene regulatory networks and molecular crosstalk underlying hypocotyl growth in peanuts remain largely unknown.In this study,a single-nucleus gene expression landscape in peanut seedlings was initially developed from diverse tissues,including stems,roots,leaves,and hypocotyls.Core transcription factor interaction networks driving developmental trajectories were identified to decipher hypocotyl cell heterogeneity.Jasmonic acid and cytokinin regulate peanut hypocotyl expansion and differentiation based on the number and size of cortex cells and hormone levels between the hypocotyl at 3 and 7 d after germination.We further demonstrated that AhBHLH143 potentially represses hypocotyl elongation by promoting the JA pathway and inhibiting the cytokinin pathway.The single-nucleus transcriptomic atlas of peanut seedlings reveals new insights into hypocotyl development and provides a valuable resource for future investigations of seedling development.
基金supported by National Key Research and Development Program of China(2023YFD1200500,2022YFD1201700)the National Natural Science Foundation of China(32071921)+1 种基金Key Research and Development Program of Shandong Province,China(2021LZGC022)the Taishan Scholars Project。
文摘Maize(Zea mays L.)is one of the world's most important staple crops,and is used for manufacturing food,feed,and industrial products.A key factor in maize yield is the grain weight,which directly influences productivity.In this study,we revealed the role of smk23 in maize kernel development.The ethyl methanesulfonate mutant smk23 is characterized by substantially reduced kernel weight.Through map-based cloning,smk23 was found to be located on Chr5 and encode a putative B-type response regulator,Zm RR5.A change from G to A occurs in the coding sequence of Zm RR5,resulting in the early termination of smk23.In Arabidopsis,B-type response regulators are involved in cytokinin signaling.Histological analysis and in situ hybridization of the mutant revealed abnormal endosperm development,particularly in the basal endosperm transfer layer(BETL),a specialized tissue critical for nutrient transport from the maternal tissues to the developing kernel.Zm RR5 positively regulates key genes involved in BETL development and function,including MRP1 and TCRR1.Furthermore,RNA sequencing revealed that several genes closely linked to BETL development,including BETL2,MEG1,and MN1,were significantly downregulated in smk23.These genes are essential for nutrient transport,tissue development and signal transduction.In addition,haploid analysis of Zm RR5 revealed natural variations(Hap 2)that may contribute to the increased kernel yield.Disruption of Zm RR5 function in smk23 leads to defects in BETL development,impairing its ability to transport nutrients,and ultimately resulting in a smaller kernel size.This study provides new insights into the molecular mechanisms through which Zm RR5 regulates maize kernel development and offers potential strategies for improving grain yield.