期刊文献+
共找到5,860篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanical and microstructural properties of schist exposed to freezethaw cycles,dry-wet cycles,and alternating actions 被引量:2
1
作者 Jiajia Gao Jiajian Jin +5 位作者 Daguo Wang Shaogang Lei Jianguo Lu Huan Xiao Jinhe Li Huadong Li 《International Journal of Mining Science and Technology》 2025年第5期783-800,共18页
In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural prope... In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural properties of schist subjected to four conditions were investigated:freeze-thaw cycles in air(FTA),freeze-thaw cycles in water(FTW),dry-wet cycles(DW),and dry-wet-freeze-thaw cycles(DWFT).Uniaxial compressive strength(UCS),water absorption,ultrasonication,low-field nuclear magnetic resonance,and scanning electron microscopy analyses were conducted.The integrity attenuation characteristics of the longitudinal wave velocity,UCS,and elastic modulus were analyzed.The results showed that liquid water emerged as a critical factor in reducing the brittleness of schist.The attenuation function model accurately described the peak stress and static elastic modulus of schist in various media(R2>0.97).Different media affected the schist deterioration and half-life,with the FTW-immersed samples having a half-life of 28 cycles.Furthermore,the longitudinal wave velocity decreased as the number of cycles increased,with the FTW showing the most significant reduction and having the shortest half-life of 208 cycles.Moreover,the damage variables of compressive strength and elastic modulus increased with the number of cycles.After 40 cycles,the schist exposed to FTW exhibited the highest damage variables and saturated water content. 展开更多
关键词 SCHIST Mechanical property Microstructure Freeze-thaw cycles Dry-wet cycles
在线阅读 下载PDF
Effects of high temperature and thermal cycles on fracture surface's roughness of granite:An insight on 3D morphology 被引量:1
2
作者 Qixiong Gu Zhen Huang +5 位作者 Kui Zhao Wen Zhong Li Liu Xiaozhao Li Yun Wu Ma Dan 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期810-826,共17页
The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle o... The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles. 展开更多
关键词 GRANITE Thermal cycles High temperature Fracture surface roughness ANISOTROPIC Thermal damage
在线阅读 下载PDF
Microstructure deterioration of sandstone under freeze-thaw cycles using CT technology:The effects of different water immersion conditions 被引量:1
3
作者 Bei Qiu Lifeng Fan Xiuli Du 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1599-1611,共13页
In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical... In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical to assess accurately the frost resistance of engineered rock.In this paper,freeze-thaw cycles(temperature range of-20℃-20℃)were performed on the sandstones in different water immersion conditions(fully,partially and non-immersed in water).Then,computed tomography(CT)tests were conducted on the sandstones when the freeze-thaw number reached 0,5,10,15,20 and 30.Next,the effects of water immersion conditions on the microstructure deterioration of sandstone under freezethaw cycles were evaluated using CT spatial imaging,porosity and damage factor.Finally,focusing on the partially immersed condition,the immersion volume rate was defined to understand the effects of immersion degree on the freeze-thaw damage of sandstone and to propose a damage model considering the freeze-thaw number and immersion degree.The results show that with increasing freeze-thaw number,the porosities and damage factors under fully and partially immersed conditions increase continuously,while those under non-immersed condition first increase and then remain approximately constant.The most severe freeze-thaw damage occurs in fully immersed condition,followed by partially immersed condition and finally non-immersed condition.Interestingly,the freeze-thaw number and the immersion volume rate both impact the microstructure deterioration of the partially immersed sandstone.For the same freeze-thaw number,the damage factor increases approximately linearly with increasing immersion volume rate,and the increasing immersion degree exacerbates the microstructure deterioration of sandstone.Moreover,the proposed model can effectively estimate the freeze-thaw damage of partially immersed sandstone with different immersion volume rates. 展开更多
关键词 Freeze-thaw cycles Water immersion condition Computed tomography(CT) Microstructure deterioration SANDSTONE
在线阅读 下载PDF
Performance of stabilized copper mine tailings with freeze-thaw and wet-dry seasonal cycles 被引量:1
4
作者 Uddav Ghimire Tejo V.Bheemasetti Hee-Jeong Kim 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1418-1428,共11页
Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycli... Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycling,and reuse in different industries.Currently,a large portion of tailings are managed through the tailing storage facilities(TSF)where these tailings undergo hydro-thermal-mechanical stresses with seasonal cycles which are not comprehensively understood.This study presents an investigative study to evaluate the performance of control and cement-stabilized copper MT under the influence of seasonal cycles,freeze-thaw(F-T)and wet-dry(W-D)conditions,representing the seasonal variability in the cold and arid regions.The control and cement-stabilized MT samples were subjected to a maximum of 12 F-T and 12 W-D cycles and corresponding micro-and-macro behavior was investigated through scanning electron microscope(SEM),volumetric strain(εvT,wet density(r),moisture content loss,and unconfined compressive strength(UCS)tests.The results indicated the vulnerability of Copper MT to 67%and 75%strength loss reaching residual states with 12 F-T and 8 W-D cycles,respectively.Whereas the stabilized MT retained 39%-55%and 16%-34%strength with F-T and W-D cycles,demonstrating increased durability.This research highlights the impact of seasonal cycles and corresponding strength-deformation characteristics of control and stabilized Copper MT in cold and arid regions. 展开更多
关键词 Copper mine tailings(MT) Stabilization Seasonal cycles Cold and arid region
在线阅读 下载PDF
GeoChip-Based Microbial Functions in Biogeochemical Cycles and Their Responses to Environmental Factors in Tengchong Hot Springs
5
作者 Muhammad Inayat Ullah Khan Liuqin Huang +3 位作者 Geng Wu Jian Yang Xiangyu Guan Hongchen Jiang 《Journal of Earth Science》 2025年第2期382-394,共13页
Microorganisms actively participate in biogeochemical cycling processes and play a crucial role in maintaining the dynamic balance of hot spring ecosystems.However,the distribution of microbial functional genes and th... Microorganisms actively participate in biogeochemical cycling processes and play a crucial role in maintaining the dynamic balance of hot spring ecosystems.However,the distribution of microbial functional genes and their influencing factors in hot springs remain largely unclear.Therefore,this study investigated the microbial functional genes and their potential for controlling biogeochemical cycles(C,N,S,and P) in the hot Springs of Tengchong,China,using the Geochip method,a functional gene microarray technology.The examined hot springs have very different microbial functional genes.A total of 22 736 gene probe signals were identified,belonging to 567 functional genes and associated with 15 ecological functions,mainly involving stress response,carbon cycle,nitrogen cycle,sulfur cycle,phosphorus cycle and energy processes.The amyA,narG,dsrA and ppx genes were most abundant in carbon,nitrogen,sulfur and phosphorus cycles,respectively,and were significantly correlated with pH,temperature and SO_(4)^(2-).The diversity and abundance of detected gene probes were negatively correlated with temperature.The α-diversity(i.e.,Shannon index) was high at low temperature and low pH.Molecular functional interactions revealed by the gene connectivity levels were negatively correlated with temperature,pH and SO_(4)^(2-).These results suggested that the abundance,diversity and interactions of microbial functional genes were significantly influenced by geochemical parameters.-In addition,some genera possessed functional genes related to carbon,nitrogen,sulfur,and phosphorus cycles and can synergistically control the biogeochemical cycles of carbon,nitrogen,sulfur and phosphorus.These findings provide new insights into the functional potentials of microorganisms to participate in biogeochemical cycles and their responses to environmental factors in hot springs. 展开更多
关键词 GeoChip functional genes biogeochemical cycles environmental factors microbial community GEOBIOLOGY environment geology
原文传递
Disintegration behaviors of red clay under wet-dry cycles
6
作者 Yinlei Sun Chuan Yu +4 位作者 Shanshan Jiang Yange Chen Zitang Wang Shuxuan Duan Jianbin Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5875-5892,共18页
Cyclic wetting-drying alternation has a significant influence on the strength and structure of soils.It is prone to causing soil softening and disintegration,highlighting the importance to improve the soil's resis... Cyclic wetting-drying alternation has a significant influence on the strength and structure of soils.It is prone to causing soil softening and disintegration,highlighting the importance to improve the soil's resistance to disintegration.This paper utilizes a self-developed disintegration test apparatus to analyze the disintegration characteristics of improved red soil under wet-dry cycles,focusing on the disintegration amount and ratio.Furthermore,XRD(X-ray diffraction),SEM(scanning electron microscope),tensile test,and contact angle test are employed to investigate the anti-disintegration behaviors of the improved red soil.The results show that the disintegrating amount and ratio of undisturbed and improved red soil are distinctly different under wet-dry cycles.Linear,stepped,constant and concave but perfect"S"shapes of the disintegrating ratio are observed in the cyclic tests.Cement and lime strengthen the red soil primarily through hydration reaction.The drop experiment confirms that cement plays a crucial role in restraining the disintegration.When the ameliorant content is low,the correlation between pore parameters and disintegration duration of red soil follows the order:mean shape coefficient>fractal dimension>probability entropy>area probability distribution index.With a high ameliorant content,the correlation remains similar,with slightly higher correlation for probability entropy.Under wet-dry cycle conditions,sludge and kaolin can improve the soil through the bonding of clay particles.The improved water repellency greatly enhances the resistance to disintegration of the altered red soil.The research provides valuable insights for the practical application of soil. 展开更多
关键词 Red soil Disintegration characteristic Dry-wet cycles Anti-disintegration mechanism Improving mechanism Water repellency
在线阅读 下载PDF
Investigation of crack propagation and acoustic emission characteristics in jointed rock under freeze-thaw cycles based on DEM
7
作者 Yong Zhao Qianbai Zhao +3 位作者 Tianhong Yang Yanlong Chen Penghai Zhang Honglei Liu 《International Journal of Mining Science and Technology》 2025年第7期1171-1195,共25页
In cold-region environments,where complex stresses and mining disturbances occur,rock masses are frequently segmented into discontinuous bodies by fractured structural planes,leading to anisotropic physical and mechan... In cold-region environments,where complex stresses and mining disturbances occur,rock masses are frequently segmented into discontinuous bodies by fractured structural planes,leading to anisotropic physical and mechanical properties.To explore the evolution of microcracks,degradation characteristics,and failure modes of fractured rocks in cold regions under the influence of freeze-thaw cycles,integrating laboratory experiments with the damage mechanics of freeze-thaw cycles.A numerical model for freeze-thaw cycle damage in rocks with various fracture dip angles was developed.The study revealed that the freeze-thaw expansion force generated during the pore water-ice phase transition is the primary driving factor behind freeze-thaw cycle damage.The initiation and propagation of microcracks and micropores,the detachment of matrix particles,and the loosening of clay mineral structures result in the transformation of the rock from a dense to a porous state,causing significant degradation in macroscopic mechanical properties.As freeze-thaw cycles increase,both the uniaxial compressive strength and the deformation modulus of the rock decrease significantly,with the failure mode gradually shifting from brittle instability to brittle-plastic or plastic failure.The findings of this study offer a practical approach to uncovering the mechanical response mechanisms between freeze-thaw damage in fractured rocks and structural planes. 展开更多
关键词 Freeze-thaw cycles Acoustic emission Micro-damage Failure mechanism Fracture dipangle
在线阅读 下载PDF
Mechanical Properties and Damage Model of Transversely Isotropic Rocks Subjected to Freeze-Thaw Cycles
8
作者 YANG Xiurong JIANG Annan WANG Dong 《Journal of Ocean University of China》 2025年第5期1245-1255,共11页
The mechanical properties of bedding rock in cold regions are frequently affected by freeze-thaw(F-T)cycles and ani-sotropy.Research on the mechanical characteristics of rock damage under the combined action of F-T an... The mechanical properties of bedding rock in cold regions are frequently affected by freeze-thaw(F-T)cycles and ani-sotropy.Research on the mechanical characteristics of rock damage under the combined action of F-T and bedding angles is limited,and most traditional rock damage models cannot accurately capture these characteristics.We performed axial compression tests to ex-plore the strength characteristics of bedding slates at the bedding angles ofβ=0°,30°,45°,60°,and 90°under various F-T cycles.The experimental findings suggest that the elastic modulus and uniaxial compressive strength of the slate declined exponentially as the number of F-T cycles increased.Axial compressive strength was characterized by a U-shaped tendency with the bedding angle.This study proposes a damage model for the uniaxial compressive strength of transversely isotropic rock,which integrates the F-T effect,utilizing the enhanced anisotropic Hoek-Brown strength criterion and a statistical damage model.This model was validated using experimental data.This statistical damage model can precisely capture the dual attributes of rock mass strength reduction with F-T cy-cles and variations arising from the loading direction. 展开更多
关键词 transversely isotropic freeze-thaw cycles Hoek-Brown criterion damage parameter constitutive model
在线阅读 下载PDF
Influence of drying-wetting cycles and soaking conditions on the shear creep characteristics of sandstone joints
9
作者 GAO Yingchao WU Qiang +4 位作者 WEI Wei JIANG Qinghui JIANG Shu ZHANG Chunshun DONG Jie 《Journal of Mountain Science》 2025年第4期1462-1481,共20页
Numerous slope failures have been reported during periods of water level fluctuations.Understanding the influence of water on the creep behavior of joints is essential for evaluating the long-term stability of slopes.... Numerous slope failures have been reported during periods of water level fluctuations.Understanding the influence of water on the creep behavior of joints is essential for evaluating the long-term stability of slopes.This study focuses on the effects of drying-wetting cycles and soaking conditions on the long-term behavior of sandstone joints.A total of 12 multi-stage shear creep tests are carried out on sandstone joints subjected to varying drying-wetting cycles under both soaking and un-soaking conditions.Based on the experimental results,the influences of drying-wetting cycles as well as soaking conditions on the microstructure,shear creep displacement,strength,and failure morphologies of sandstone joints are investigated comprehensively.Results indicate that increasing drying-wetting cycles not only yields larger shear creep displacements but also leads to a negative exponential decrease in the strength of sandstone joints.Besides,soaking conditions strongly influence the creep behavior of sandstone joints.The failure strength and long-term strength of sandstone joints for soaked samples decrease by 13.6%–29.0%and 19.4%–37.5%,respectively,as compared to unsoaked samples.Furthermore,four distinct stages in the shear creep process were identified according to the results obtained from multi-stage shear creep tests and computerized tomography scans,and three creep failure modes of sandstone joints are thus determined.Finally,the influence mechanism of drying-wetting cycles and soaking conditions on the creep failure modes of sandstone joints is revealed.Drying-wetting cycles and soaking conditions diminish the influence of asperities on the shear creep behavior of joints,thereby reducing the resistance of joints to long-term deformation. 展开更多
关键词 Drying-wetting cycles Soaking conditions Shear creep Sandstone joints Computerized tomography
原文传递
Surface weathering process of earthen heritage under dry-wet cycles:A case study of Suoyang City,China
10
作者 Qi Zhang Qingling Guo +4 位作者 Huihui Zhang Yanwu Wang Ping Li Bo Zhang Chun'an Tang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期5224-5239,共16页
Dry-wet cycle is a key factor in surface weathering of earthen heritage,which remains insufficiently explained.It involves the interaction of humidity,stress,and damage.Using the RFPA(realistic failure process analysi... Dry-wet cycle is a key factor in surface weathering of earthen heritage,which remains insufficiently explained.It involves the interaction of humidity,stress,and damage.Using the RFPA(realistic failure process analysis)numerical method,this study reproduced the processes of humidity diffusion,deformation,stress,and damage evolution under dry-wet cycles in the soil site of Suoyang City,China.The numerical results indicate that the drying phase following rainfall has the most significant deteriorative impact on the earthen heritage.The evaporation of surface moisture during this phase causes volume shrinkage,which in turn generates tensile stress and leads to the formation of numerous desiccation cracks.Desiccation cracks provide channels for moisture diffusion,which further exacerbates generation of the cracks,leading to a mutual promotion between the two phenomena.Furthermore,during the wetting phase,the model elements undergo hygroscopic expansion,resulting in a slight increase in strain and displacement.Previously formed cracks may exhibit temporary narrowing or closure,but will revert during the subsequent drying phase.Ultimately,the overall displacement increases with the number of dry-wet cycles.The findings provide a theoretical foundation for protection against surface weathering and other damage in earthen heritage in arid regions. 展开更多
关键词 Earthen heritage Dry-wet cycles Numerical simulation Surface weathering Desiccation cracks
在线阅读 下载PDF
Static compressive mechanical properties and disturbed state concept-based theoretical model of gypsum rocks with coupled influences of wet-dry cycles and flow rates
11
作者 JIANG Song HUANG Ming +2 位作者 WANG Gang XU Chao-shui XIONG Jun 《Journal of Central South University》 2025年第7期2638-2660,共23页
Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive r... Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive research on the effects of W-D cycles,the coupling influence of flow rates and W-D cycles on gypsum rocks remains poorly understood.This study investigates the mechanical behavior and deterioration mechanisms of gypsum rocks subjected to varying W-D cycles and flow rate conditions.Axial compression tests,along with nuclear magnetic resonance(NMR)techniques,were employed to analyze the stress-strain response and microstructural changes.Based on the disturbed state concept(DSC)theory,a W-D deterioration model and a DSC-based constitutive model were developed to describe the degradation trends and mechanical responses of gypsum rocks under different conditions.The results demonstrate that key mechanical indices,elastic modulus,cohesion,uniaxial compressive strength(UCS),and internal friction angle,exhibit logarithmic declines with increasing W-D cycles,with higher flow rates accelerating the deterioration process.The theoretical models accurately capture the nonlinear compaction behavior,peak stress,and post-peak response of gypsum specimens.This study provides valuable insights for predicting the mechanical behavior of gypsum rocks and improving the stability assessments of underground structures under complex environmental conditions. 展开更多
关键词 gypsum rocks wet-dry cycles flow rates mechanical properties disturbed state concept
在线阅读 下载PDF
Multi-directional deformation and hydraulic conductivity of expansive soils subjected to freeze-thaw cycles from three distinct initial saturation levels
12
作者 Farimah Arabchobdar Hamed Sadeghi +1 位作者 Mostafa Gholami Pouya AliPanahi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5939-5953,共15页
Infrastructure construction in seasonally frozen regions,covering 23%of total land,faces challenges from freeze-thaw(F-T)induced damages.Expansive soils,as an important problematic soil undergo major hydromechanical p... Infrastructure construction in seasonally frozen regions,covering 23%of total land,faces challenges from freeze-thaw(F-T)induced damages.Expansive soils,as an important problematic soil undergo major hydromechanical properties changes influenced by F-T cycles.Sand-bentonite mixtures are extensively used for constructing earthen hydraulic barriers in cold regions.This study investigates the influence of F-T cycles on multi-directional strains and anisotropic hydraulic conductivity of different sand-bentonite mixtures prepared at optimum water content and experienced three distinct saturation levels.Results indicate that saturation level and bentonite content significantly influence volumetric strain under F-T cycles.The simultaneous effect of ice lens formation,expanding micro-voids,and suction generated by freezing processes cause different volumetric behaviors at varying saturation degrees.The dry specimen exhibits no strain under F-T cycles,while optimum and saturated specimens experienced final volumetric strains of 1.02%and 3.03%,respectively.Notably,during freezing,the specimen at optimumwater content shrank,while the saturated specimen expanded.Increasing bentonite content from 40%to 70%developed freezing-induced shrinkage,from 1.73%to 4.72%,with higher thaw strain attributed to increased specimen plasticity.Also,dimensional variations revealed the cross-anisotropic nature of specimens,highlighting direct influence of water content on the shrinkage ratio.F-T cycles also increased hydraulic conductivity along both orthogonal directions by two orders of magnitude,while the anisotropy ratio decreased by about 3 after 9 F-T cycles,indicating altered pore structures.F-T cycles induce reduced swelling potential and compressibility over subsequent cycles.Microstructural observations also confirmed the F-T effects on the enhancement of porosity. 展开更多
关键词 Freeze-thaw cycles Sand-bentonite mixtures Initial water content Cube triaxial permeameter ANISOTROPY
在线阅读 下载PDF
Degradation of natural red mudstone subjected to long-term relative humidity cycles
13
作者 Kang Chen Rui Zhang +2 位作者 Shengyang Yuan Jie Ma Huan Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5800-5815,共16页
This paper presents a multi-scale experimental investigation of the weathering degradation of red mudstone.Natural rocks were extracted from the surface ground to 120 m,inwhich three sets of samples were selected to c... This paper presents a multi-scale experimental investigation of the weathering degradation of red mudstone.Natural rocks were extracted from the surface ground to 120 m,inwhich three sets of samples were selected to consider the different initial rock fabrics.The long-term relative humidity(RH)cycles under two amplitudes were imposed on red mudstone to simulate the weathering process.After RH cycles,a series of uniaxial compression tests,Brazilian splitting tests and bender-extender element tests were carried out to examine the reduction in strength and stiffness.The objective of this study is to develop an extended stress-volume framework characterizing the degradation of natural red mudstone both at microscale and macroscale.Accompanied by the irreversible swelling of the rock specimen is the progressive degradation of strength,stiffness and Poisson's ratio.A unified exponential degradation model in terms of the irreversible volumetric strain was thus proposed to capture such a degradation pattern.The effect of the initial rock fabric was evident.The highest degradation rate and potential were identified in slightly weathered specimens.Significant slaking of aggregates and crack propagation were confirmed by scanning electron microscope(SEM)micrographs,which were considered as the main consequence of structure damage leading to degradation of mechanical properties.The structure damage during RH cycles denoted the hysteresis nature in the response to the cycling hydraulic reaction,in turn causing the increase in volumetric strain.Thus,the stress-volume relation rather than the suction relation was found in more reasonable agreement with the experimental results. 展开更多
关键词 Red mudstone Weathering degradation Relative humidity cycles Unified degradation model Microstructure tests
在线阅读 下载PDF
Natural Drivers of Global Warming:Ocean Cycles,Anthropogenic Greenhouse Gases and the Question of Percentages
14
作者 Peter J.Taylor 《Journal of Environmental & Earth Sciences》 2025年第2期262-290,共29页
There is a widespread policy assumption that anthropogenic greenhouse gases are the main driver of the observed 1°C rise in global surface air temperatures since‘pre-industrial’times.This paper demonstrates tha... There is a widespread policy assumption that anthropogenic greenhouse gases are the main driver of the observed 1°C rise in global surface air temperatures since‘pre-industrial’times.This paper demonstrates that the onset of the current warming trend began in the mid-19th century and is consistent with the rising phase of variable global warming and cooling cycles in both the Northern and Southern Hemispheres.Hemispheres.The last trough of the millennial cycle,the Little Ice Age,coincides approximately with the baseline of pre-industrial times used to calculate the impact of Anthropogenic Global Warming.Yet,half of the observed 20th century temperature rise occurred before 1950 when carbon dioxide levels remained low,with the remaining half happening at a similar rate of warming despite the much higher concentrations of greenhouse gases in the atmosphere.This study shows that when the amplitudes and rates of change of the long-term global cycles are considered,the anthropogenic component of warming can be reduced to 38%(using factors derived from the latest IPCC Working Group reports)to as little as 25%(using observational flux data of dominant Short Wave Absorbed Surface Radiation).These global climate cycles can be extrapolated into the future and the implications for policy of a large natural component to climate change are explored—in particular,the potential for mitigation strategies to have minimal impact and for the climate to cool consequent upon a cyclic down-phase. 展开更多
关键词 Global Warming Ocean Oscillations Natural cycles Environmental Policy
在线阅读 下载PDF
Macro and micro mechanical behaviors and micro damage theory of rock at low temperature freeze-thaw cycles
15
作者 XIAO Peng CHEN Youliang +1 位作者 FERNÁNDEZ-STEEGER Tomás Manuel RAFIG Azzam 《Journal of Mountain Science》 2025年第6期2227-2240,共14页
Aiming at challenges posed by rock freezethaw(FT)in cold regions rock mass engineering,it is of great significance to analyze its macro-and micromechanical properties and damage laws for the smooth progress of constru... Aiming at challenges posed by rock freezethaw(FT)in cold regions rock mass engineering,it is of great significance to analyze its macro-and micromechanical properties and damage laws for the smooth progress of construction.In this study,indoor freezethaw cycle(FTC)tests on sandstone were conducted to analyze the mass change rate,density change rate,longitudinal wave velocity change rate,microstructure change and mechanical properties of sandstone after FTC.A microscopic FT damage variable reflecting the FT damage was defined based on the changes of rock porosity before and after the FTC,enabling the derivation of the total damage variable under the coupled action of FTC and mechanical loading.A damage evolution equation and a microscopic damage constitutive model for rock under coupled FTC and confining pressure were established by using Lemaitre’s strain equivalence principle,the theory of continuous damage mechanics,and the assumption that the failure of rock micro-units follows the SMP criterion.The rationality and accuracy of the model were verified using triaxial compression test data for FT-damaged rock.The results show that both macroand micro-mechanical properties of sandstone are degraded under the action of FTC,resulting in significant damage.The developed microscopic damage constitutive model can reflect the stress-strain characteristics of the whole process of FT rock triaxial compression,with excellent agreement observed between experimental and theoretical curves.This validates the reliability of the model and the methodology for determining its parameters.Additionally,defining the microscopic FT damage variable based on rock porosity changes is demonstrated to be a feasible and highly accurate approach to reflect rock FT damage degree.This model expands the damage model for rock under the coupling effect of FTC and confining pressure,further illuminating the damage mechanism and failure law in such environments.The findings provide references for the construction of rock mass engineering in cold regions. 展开更多
关键词 Freeze-thaw cycles Mechanical properties Microscopic freeze-thaw damage variable Damage evolution Constitutive model
原文传递
Strength Deterioration Characteristics of Soft and Hard Interbedded Rock Masses in Three Gorges Reservoir Area Induced by Wetting-Drying Cycles
16
作者 Qiong Wu Di Wang +7 位作者 Huiming Tang Jintao Kang Hongming Luo Yuxin Liu Shiyu Li Bo Zhang Zhiqi Liu Zhiwei Lin 《Journal of Earth Science》 2025年第5期1948-1962,共15页
The rock masses in the hydro-fluctuation zone of reservoir banks sustain wettingdrying cycles(WDC),thereby affecting the stability of the reservoir bank slope.In this paper,rock masses with argillaceous siltstone and ... The rock masses in the hydro-fluctuation zone of reservoir banks sustain wettingdrying cycles(WDC),thereby affecting the stability of the reservoir bank slope.In this paper,rock masses with argillaceous siltstone and silty mudstone interbedded in Badong Formation were taken as the research object to investigate the variation of strength parameters of soft and hard interbedded rock masses with WDC and dip angle through laboratory experiments and numerical experiments.Some attempts were made to reveal the mechanical properties deterioration mechanism of interbedded rock masses by quantitatively analyzing the contribution of strength parameters deterioration of hard rocks,soft rocks,and bedding planes to the strength parameters deterioration of rock masses.The results indicate that the logarithmic function could be used to describe the deterioration of each strength parameter of both argillaceous siltstone and silty mudstone and bedding plane with the number of WDC.The strength parameters of interbedded rock masses decrease as the number of WDC increases,with the largest decrease after the first cycle and then slowing down in the later cycles.The strength parameters initially decrease and then increase as the dip angles increase.The impact of deteriorated strength parameters of bedding planes and rocks on the deterioration of strength parameters of interbedded rock masses differs significantly with the dip angle,which can be divided into four typical ranges of different controlling factors. 展开更多
关键词 strength deterioration wetting-drying cycles soft and hard interbedded rock mass numerical simulations contribution degree engineering geology
原文传递
Cracking of silty mudstone subjected to wetting-drying cycles
17
作者 Xiaowei Yu Hongyuan Fu +3 位作者 Ling Zeng Guijin Zhang Hongri Zhang Jie Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4195-4210,共16页
Cracking affected by wetting-drying cycles is a major cause of shallow failure of soft rock slopes.Knowledge of rock tensile properties and cracking behaviors helps better assess the stability of soft rock slopes.This... Cracking affected by wetting-drying cycles is a major cause of shallow failure of soft rock slopes.Knowledge of rock tensile properties and cracking behaviors helps better assess the stability of soft rock slopes.This study aims to examine the cracking behaviors and tensile strength of silty mudstone under wetting-drying cycles.The wetting-drying cycle and Brazilian splitting tests were performed on silty mudstone considering various cycle number and amplitude.The cracking behaviors of wetting-drying cycles were analyzed by digital image correlation,three-dimensional(3D)scanning technology,and scanning electron microscopy.The results reveal a spiral-like pattern of crack ratio escalation in silty mudstone,with a higher crack ratio observed during drying than wetting.Tensile strength and fracture energy correlate negatively with cycle number or amplitude,with cycle number exerting a more pronounced effect.The variance of the maximum principal strain reflects stages of initial deformation,linear deformation,strain localization,and stable deformation.The formation of strain localization zones reveals the physical process of crack propagation.Crack tip opening displacement progresses through stages of slow growth,exponential growth,and linear growth,delineating the process from crack initiation to stable extension.Failure modes of silty mudstone primarily involve tensile and tensile-shear failure,influenced by the geometric parameters of cracks induced by wetting-drying cycles.Fracture surface roughness and fractal dimension increase with cycle number due to mineral dissolution,physical erosion,and nondirectional crack propagation.Hydration-swelling and dehydration-shrinkage of clay minerals,along with absorption-drying cracking,initiate and merge cracks,leading to degradation of the rock mechanical properties.The findings could provide insights for mitigating shallow cracking of soft rock slopes under wetting-drying cycles. 展开更多
关键词 Silty mudstone Wetting-drying cycles Brazilian test DIC(digital image correlation)method Crack evolution Cracking behaviors
在线阅读 下载PDF
Effects of freeze-thaw cycles on granite failure using acoustic emission test
18
作者 Chundong Shi Wen Nie +2 位作者 Guowei Ma Manchao He Yun Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4512-4526,共15页
Rock subjected to freeze-thaw(F-T)cycles may experience alterations in structural integrity and potentially impact its strength.This study investigates the effects of F-T cycles on granite by analyzing the acoustic em... Rock subjected to freeze-thaw(F-T)cycles may experience alterations in structural integrity and potentially impact its strength.This study investigates the effects of F-T cycles on granite by analyzing the acoustic emission(AE)signals recorded during uniaxial compression tests,characterizing the damage responses of the granite influenced by repeated F-T cycles.The results indicate significant reductions in uniaxial compression strength(UCS)and P-wave velocity as the number of F-T cycles increases.AE analysis reveals progressive damage accumulation,characterized by distinct stages of microcrack development.A parameter,AE energy intensity,is introduced to describe the failure process,showing that the typical AE quiet period in the failure stage is absent in granite pretreated with F-T cycles.Using the superlet transform method,AE frequency and amplitude are analyzed,revealing amplitude evolutions across three frequency domains.The results show that decreasing portions of signals in the highfrequency domain for granite are influenced by F-T cycles.These findings enhance understanding of rock degradation under F-T cycles,offering valuable implications for rock engineering in cold regions. 展开更多
关键词 Freeze-thaw cycles Acoustic emission(AE) AE quiet period Energy intensity Frequency domains
在线阅读 下载PDF
Prediction of small-strain elastic stiffness of natural and artificial soft rocks subjected to freeze-thaw cycles
19
作者 Muhammad Ali Ayesha Zubair +2 位作者 Zainab Farooq Khalid Farooq Zubair Masoud 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3546-3562,共17页
The deterioration of soft rocks caused by freeze-thaw(F-T)climatic cycles results in huge structural and financial loss for foundation systems placed on soft rocks prone to F-T actions.In this study,cementtreated sand... The deterioration of soft rocks caused by freeze-thaw(F-T)climatic cycles results in huge structural and financial loss for foundation systems placed on soft rocks prone to F-T actions.In this study,cementtreated sand(CTS)and natural soft shale were subjected to unconfined compression and splitting tensile strength tests for evaluation of unconfined compressive strength(UCS,qu),initial small-strain Young’s modulus(Eo)using linear displacement transducers(LDT)up to a small strain of 0.001%,and secant elastic modulus(E_(50))using linear variable differential transducers(LVDTs)up to a large strain of 6%before and after reproduced laboratory weathering(RLW)cycles(-20℃e-110℃).The results showed that eight F-T cycles caused a reduction in q_(u),E_(50) and E_(o),which was 8.6,15.1,and 14.5 times for the CTS,and 2.2,3.5,and 5.3 times for the natural shale,respectively.The tensile strength of the CTS and natural rock samples exhibited a degradation of 5.4 times(after the 8th RLW cycle)and 2.7 times(after the 15th RLW cycle),respectively.Novel correlations have been developed to predict Eo(response)from the parameters qu and E_(50)(predictors)using MATLAB software's curve fitter.The findings of this study will assist in the design of foundations in soft rocks subjected to freezing and thawing.The analysis of variance(ANOVA)indicated 95%confidence in data health for the design of retaining walls,building foundations,excavation in soft rock,large-diameter borehole stability,and transportation tunnels in rocks for an operational strain range of 0.1%e0.01%(using LVDT)and a reference strain of less than 0.001%(using LDT). 展开更多
关键词 Artificial soft rock STIFFNESS WEATHERING Freeze-thaw(F-T)cycles Small-strain elastic stiffness
在线阅读 下载PDF
Fracture characteristics and process zone evolution in sandstone under freeze-thaw cycles
20
作者 MeiLu Yu ZhongWen Wang +5 位作者 Ding Ma JinJin Ge YaTing Wang HaoTian Xie GenShui Wu YaoYao Meng 《Research in Cold and Arid Regions》 2025年第4期217-228,共12页
This study investigates the fracture characteristics and the fracture process zone(FPZ)of mode I fracture in sandstone,aiming to analyze the propagation behaviors of mode I crack under different freeze-thaw cycles.Sem... This study investigates the fracture characteristics and the fracture process zone(FPZ)of mode I fracture in sandstone,aiming to analyze the propagation behaviors of mode I crack under different freeze-thaw cycles.Semicircular bending tests(SCB)were conducted using different freeze-thaw cycles to evaluate mode I fracture toughness,FPZ dynamics,and macroscopic microscopic features.Digital image correlation(DIC)and scanning electron microscopy(SEM)techniques were employed for detailed analysis.Experimental results reveal that freeze-thaw cycling leads to the widening of both preexisting and newly formed microcracks between internal particles.Under external loading,crack propagation deviates from prefabricated paths,forming serrated crack patterns.The FPZ initiates at the prefabricated crack tip and extends toward the loading end,exhibiting an arcshaped tip shape.The FPZ length increases with loading but decreases after reaching a peak value.With additional freeze-thaw cycles,the maximum FPZ length first increases and then diminishes. 展开更多
关键词 Freeze-thaw cycles Fracture toughness Semi-circular bending tests Fracture process zone
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部