This review examines human vulnerabilities in cybersecurity within Microfinance Institutions, analyzing their impact on organizational resilience. Focusing on social engineering, inadequate security training, and weak...This review examines human vulnerabilities in cybersecurity within Microfinance Institutions, analyzing their impact on organizational resilience. Focusing on social engineering, inadequate security training, and weak internal protocols, the study identifies key vulnerabilities exacerbating cyber threats to MFIs. A literature review using databases like IEEE Xplore and Google Scholar focused on studies from 2019 to 2023 addressing human factors in cybersecurity specific to MFIs. Analysis of 57 studies reveals that phishing and insider threats are predominant, with a 20% annual increase in phishing attempts. Employee susceptibility to these attacks is heightened by insufficient training, with entry-level employees showing the highest vulnerability rates. Further, only 35% of MFIs offer regular cybersecurity training, significantly impacting incident reduction. This paper recommends enhanced training frequency, robust internal controls, and a cybersecurity-aware culture to mitigate human-induced cyber risks in MFIs.展开更多
This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t...This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].展开更多
This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA f...This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals.展开更多
Cyber Defense is becoming a major issue for every organization to keep business continuity intact.The presented paper explores the effectiveness of a meta-heuristic optimization algorithm-Artificial Bees Colony Algori...Cyber Defense is becoming a major issue for every organization to keep business continuity intact.The presented paper explores the effectiveness of a meta-heuristic optimization algorithm-Artificial Bees Colony Algorithm(ABC)as an Nature Inspired Cyber Security mechanism to achieve adaptive defense.It experiments on the Denial-Of-Service attack scenarios which involves limiting the traffic flow for each node.Businesses today have adapted their service distribution models to include the use of the Internet,allowing them to effectively manage and interact with their customer data.This shift has created an increased reliance on online services to store vast amounts of confidential customer data,meaning any disruption or outage of these services could be disastrous for the business,leaving them without the knowledge to serve their customers.Adversaries can exploit such an event to gain unauthorized access to the confidential data of the customers.The proposed algorithm utilizes an Adaptive Defense approach to continuously select nodes that could present characteristics of a probable malicious entity.For any changes in network parameters,the cluster of nodes is selected in the prepared solution set as a probable malicious node and the traffic rate with the ratio of packet delivery is managed with respect to the properties of normal nodes to deliver a disaster recovery plan for potential businesses.展开更多
The current global cybersecurity landscape, characterized by the increasing scale and sophistication of cyberattacks, underscores the importance of integrating Cyber Threat Intelligence (CTI) into Land Administration ...The current global cybersecurity landscape, characterized by the increasing scale and sophistication of cyberattacks, underscores the importance of integrating Cyber Threat Intelligence (CTI) into Land Administration Systems (LAS). LAS services involve requests and responses concerning public and private cadastral data, including credentials of parties, ownership, and spatial parcels. This study explores the integration of CTI in LAS to enhance cyber resilience, focusing on the unique vulnerabilities of LAS, such as sensitive data management and interconnection with other critical systems related to spatial data uses and changes. The approach employs a case study of a typical country-specific LAS to analyse structured vulnerabilities and their attributes to determine the degree of vulnerability of LAS through a quantitative inductive approach. The analysis results indicate significant improvements in identifying and mitigating potential threats through CTI integration, thus enhancing cyber resilience. These findings are crucial for policymakers and practitioners to develop robust cybersecurity strategies for LAS.展开更多
Cyber-Physical Systems(CPS)represent an integration of computational and physical elements,revolutionizing industries by enabling real-time monitoring,control,and optimization.A complementary technology,Digital Twin(D...Cyber-Physical Systems(CPS)represent an integration of computational and physical elements,revolutionizing industries by enabling real-time monitoring,control,and optimization.A complementary technology,Digital Twin(DT),acts as a virtual replica of physical assets or processes,facilitating better decision making through simulations and predictive analytics.CPS and DT underpin the evolution of Industry 4.0 by bridging the physical and digital domains.This survey explores their synergy,highlighting how DT enriches CPS with dynamic modeling,realtime data integration,and advanced simulation capabilities.The layered architecture of DTs within CPS is examined,showcasing the enabling technologies and tools vital for seamless integration.The study addresses key challenges in CPS modeling,such as concurrency and communication,and underscores the importance of DT in overcoming these obstacles.Applications in various sectors are analyzed,including smart manufacturing,healthcare,and urban planning,emphasizing the transformative potential of CPS-DT integration.In addition,the review identifies gaps in existing methodologies and proposes future research directions to develop comprehensive,scalable,and secure CPSDT systems.By synthesizing insights fromthe current literature and presenting a taxonomy of CPS and DT,this survey serves as a foundational reference for academics and practitioners.The findings stress the need for unified frameworks that align CPS and DT with emerging technologies,fostering innovation and efficiency in the digital transformation era.展开更多
Given the unique challenges facing the railway industry, cybersecurity is a crucial issue that must be addressed proactively. This paper aims to provide a systematic review of cybersecurity threats that could impact t...Given the unique challenges facing the railway industry, cybersecurity is a crucial issue that must be addressed proactively. This paper aims to provide a systematic review of cybersecurity threats that could impact the safety and operations of rolling stock, the privacy and security of passengers and employees, and the public in general. The systematic literature review revealed that cyber threats to the railway industry can take many forms, including attacks on operational technology systems, data breaches, theft of sensitive information, and disruptions to train services. The consequences of these threats can be severe, leading to operational disruptions, financial losses, and loss of public trust in the railway system. To address these threats, railway organizations must adopt a proactive approach to security and implement robust cybersecurity measures tailored to the industry’s specific needs and challenges. This includes regular testing of systems for vulnerabilities, incident response plans, and employee training to identify and respond to cyber threats. Ensuring the system remains available, reliable, and maintainable is fundamental given the importance of railways as critical infrastructure and the potential harm that can be caused by cyber threats.展开更多
With the integration of informatization and intelligence into the Communication-Based Train Control(CBTC)systems,the system is facing an increasing number of information security threats.As an important method of char...With the integration of informatization and intelligence into the Communication-Based Train Control(CBTC)systems,the system is facing an increasing number of information security threats.As an important method of characterizing the system security status,the security situation assessment is used to analyze the system security situation.However,existing situation assessment methods fail to integrate the coupling relationship between the physical layer and the information layer of the CBTC systems,and cannot dynamically characterize the real-time security situation changes under cyber attacks.In this paper,a hierarchical security situation assessment approach is proposed to address the security challenges of CBTC systems,which can perceive cyber attacks,quantify the security situation,and characterize the security situation changes under cyber attacks.Specifically,for the physical layer ofCBTC systems,the impact of cyber attacks is evaluated with the train punctuality rate and train departure interval indicators.For the information layer of CBTC systems,the system vulnerabilities and system threats are selected as static level indicators,and the critical network characteristics are selected as dynamic level indicators to quantify the real-time security situation.Finally,the comprehensive security situation assessment value of the CBTC systems is obtained by integrating the physical and information layer indicators.Simulation results illustrate that the proposed approach can dynamically characterize the real-time security situation of CBTC systems,enhancing the ability to perceive and assess information security risks.展开更多
Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded...Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded computing, communication and related hardware technologies, CPSs have attracted extensive attention and have been widely used in power system, traffic network, refrigeration system and other fields.展开更多
This paper provides a systematic review on the resilience analysis of active distribution networks(ADNs)against hazardous weather events,considering the underlying cyber-physical interdependencies.As cyber-physical sy...This paper provides a systematic review on the resilience analysis of active distribution networks(ADNs)against hazardous weather events,considering the underlying cyber-physical interdependencies.As cyber-physical systems,ADNs are characterized by widespread structural and functional interdependen-cies between cyber(communication,computing,and control)and physical(electric power)subsystems and thus present complex hazardous-weather-related resilience issues.To bridge current research gaps,this paper first classifies diverse hazardous weather events for ADNs according to different time spans and degrees of hazard,with model-based and data-driven methods being utilized to characterize weather evolutions.Then,the adverse impacts of hazardous weather on all aspects of ADNs’sources,physical/cyber networks,and loads are analyzed.This paper further emphasizes the importance of situational awareness and cyber-physical collaboration throughout hazardous weather events,as these enhance the implementation of preventive dispatches,corrective actions,and coordinated restorations.In addition,a generalized quantitative resilience evaluation process is proposed regarding additional considerations about cyber subsystems and cyber-physical connections.Finally,potential hazardous-weather-related resilience challenges for both physical and cyber subsystems are discussed.展开更多
A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on ...A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.展开更多
Dear Editor,This letter presents a new secure hierarchical control strategy for steering tracking of in-wheel motor driven(IWMD)electric vehicle(EV)subject to limited network resources,hybrid cyber-attacks,model nonli...Dear Editor,This letter presents a new secure hierarchical control strategy for steering tracking of in-wheel motor driven(IWMD)electric vehicle(EV)subject to limited network resources,hybrid cyber-attacks,model nonlinearities,actuator redundancy and airflow disturbance.A hierarchical control architecture is proposed specifically for solving the problems of nonlinear system modeling and actuator redundancy.By utilizing the advantages of fully actuated system(FAS)approach,a nonlinear virtual controller against airflow disturbance is constructed in upper layer system and an event-triggered nonlinear distributed controller is proposed in lower layer system under stochastic hybrid cyber-attacks.A case study of overtaking task is carried out to validate the FAS-based hierarchical control strategy.展开更多
The proliferation of cloud computing and internet of things has led to the connectivity of states and nations(developed and developing countries)worldwide in which global network provide platform for the connection.Di...The proliferation of cloud computing and internet of things has led to the connectivity of states and nations(developed and developing countries)worldwide in which global network provide platform for the connection.Digital forensics is a field of computer security that uses software applications and standard guidelines which support the extraction of evidences from any computer appliances which is perfectly enough for the court of law to use and make a judgment based on the comprehensiveness,authenticity and objectivity of the information obtained.Cybersecurity is of major concerned to the internet users worldwide due to the recent form of attacks,threat,viruses,intrusion among others going on every day among internet of things.However,it is noted that cybersecurity is based on confidentiality,integrity and validity of data.The aim of this work is make a systematic review on the application of machine learning algorithms to cybersecurity and cyber forensics and pave away for further research directions on the application of deep learning,computational intelligence,soft computing to cybersecurity and cyber forensics.展开更多
Join CEN as the lead rapporteur of this initiative takes you inside the development of the European harmonized standards for smartcards,similar devices,and secure elements.This session will provide exclusive insights ...Join CEN as the lead rapporteur of this initiative takes you inside the development of the European harmonized standards for smartcards,similar devices,and secure elements.This session will provide exclusive insights into the current content and approach shaping the compliance criteria needed to meet the essential requirements of the Cyber Resilience Act(EU 2024/2847).展开更多
文摘This review examines human vulnerabilities in cybersecurity within Microfinance Institutions, analyzing their impact on organizational resilience. Focusing on social engineering, inadequate security training, and weak internal protocols, the study identifies key vulnerabilities exacerbating cyber threats to MFIs. A literature review using databases like IEEE Xplore and Google Scholar focused on studies from 2019 to 2023 addressing human factors in cybersecurity specific to MFIs. Analysis of 57 studies reveals that phishing and insider threats are predominant, with a 20% annual increase in phishing attempts. Employee susceptibility to these attacks is heightened by insufficient training, with entry-level employees showing the highest vulnerability rates. Further, only 35% of MFIs offer regular cybersecurity training, significantly impacting incident reduction. This paper recommends enhanced training frequency, robust internal controls, and a cybersecurity-aware culture to mitigate human-induced cyber risks in MFIs.
文摘This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].
基金funded by the Office of Gas and Electricity Markets(Ofgem)and supported by De Montfort University(DMU)and Nottingham Trent University(NTU),UK.
文摘This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals.
文摘Cyber Defense is becoming a major issue for every organization to keep business continuity intact.The presented paper explores the effectiveness of a meta-heuristic optimization algorithm-Artificial Bees Colony Algorithm(ABC)as an Nature Inspired Cyber Security mechanism to achieve adaptive defense.It experiments on the Denial-Of-Service attack scenarios which involves limiting the traffic flow for each node.Businesses today have adapted their service distribution models to include the use of the Internet,allowing them to effectively manage and interact with their customer data.This shift has created an increased reliance on online services to store vast amounts of confidential customer data,meaning any disruption or outage of these services could be disastrous for the business,leaving them without the knowledge to serve their customers.Adversaries can exploit such an event to gain unauthorized access to the confidential data of the customers.The proposed algorithm utilizes an Adaptive Defense approach to continuously select nodes that could present characteristics of a probable malicious entity.For any changes in network parameters,the cluster of nodes is selected in the prepared solution set as a probable malicious node and the traffic rate with the ratio of packet delivery is managed with respect to the properties of normal nodes to deliver a disaster recovery plan for potential businesses.
文摘The current global cybersecurity landscape, characterized by the increasing scale and sophistication of cyberattacks, underscores the importance of integrating Cyber Threat Intelligence (CTI) into Land Administration Systems (LAS). LAS services involve requests and responses concerning public and private cadastral data, including credentials of parties, ownership, and spatial parcels. This study explores the integration of CTI in LAS to enhance cyber resilience, focusing on the unique vulnerabilities of LAS, such as sensitive data management and interconnection with other critical systems related to spatial data uses and changes. The approach employs a case study of a typical country-specific LAS to analyse structured vulnerabilities and their attributes to determine the degree of vulnerability of LAS through a quantitative inductive approach. The analysis results indicate significant improvements in identifying and mitigating potential threats through CTI integration, thus enhancing cyber resilience. These findings are crucial for policymakers and practitioners to develop robust cybersecurity strategies for LAS.
文摘Cyber-Physical Systems(CPS)represent an integration of computational and physical elements,revolutionizing industries by enabling real-time monitoring,control,and optimization.A complementary technology,Digital Twin(DT),acts as a virtual replica of physical assets or processes,facilitating better decision making through simulations and predictive analytics.CPS and DT underpin the evolution of Industry 4.0 by bridging the physical and digital domains.This survey explores their synergy,highlighting how DT enriches CPS with dynamic modeling,realtime data integration,and advanced simulation capabilities.The layered architecture of DTs within CPS is examined,showcasing the enabling technologies and tools vital for seamless integration.The study addresses key challenges in CPS modeling,such as concurrency and communication,and underscores the importance of DT in overcoming these obstacles.Applications in various sectors are analyzed,including smart manufacturing,healthcare,and urban planning,emphasizing the transformative potential of CPS-DT integration.In addition,the review identifies gaps in existing methodologies and proposes future research directions to develop comprehensive,scalable,and secure CPSDT systems.By synthesizing insights fromthe current literature and presenting a taxonomy of CPS and DT,this survey serves as a foundational reference for academics and practitioners.The findings stress the need for unified frameworks that align CPS and DT with emerging technologies,fostering innovation and efficiency in the digital transformation era.
文摘Given the unique challenges facing the railway industry, cybersecurity is a crucial issue that must be addressed proactively. This paper aims to provide a systematic review of cybersecurity threats that could impact the safety and operations of rolling stock, the privacy and security of passengers and employees, and the public in general. The systematic literature review revealed that cyber threats to the railway industry can take many forms, including attacks on operational technology systems, data breaches, theft of sensitive information, and disruptions to train services. The consequences of these threats can be severe, leading to operational disruptions, financial losses, and loss of public trust in the railway system. To address these threats, railway organizations must adopt a proactive approach to security and implement robust cybersecurity measures tailored to the industry’s specific needs and challenges. This includes regular testing of systems for vulnerabilities, incident response plans, and employee training to identify and respond to cyber threats. Ensuring the system remains available, reliable, and maintainable is fundamental given the importance of railways as critical infrastructure and the potential harm that can be caused by cyber threats.
基金supported in part by the project of the State Key Laboratory of Advanced Rail Autonomous Operation(RAO2023ZZ004)in part by the Beijing Natural Science Foundation-Fengtai Rail Transit Frontier Research Joint Fund(L211002)+2 种基金in part by the Foundation of China State Railway Group Corporation Limited under Grant L2021G003in part by the Scientific and Technical Research Fund of China Academy of Railway Sciences Corporation Limited under Grant 2021YJ094in part by the Project I23L00200 and Project I24F00010.
文摘With the integration of informatization and intelligence into the Communication-Based Train Control(CBTC)systems,the system is facing an increasing number of information security threats.As an important method of characterizing the system security status,the security situation assessment is used to analyze the system security situation.However,existing situation assessment methods fail to integrate the coupling relationship between the physical layer and the information layer of the CBTC systems,and cannot dynamically characterize the real-time security situation changes under cyber attacks.In this paper,a hierarchical security situation assessment approach is proposed to address the security challenges of CBTC systems,which can perceive cyber attacks,quantify the security situation,and characterize the security situation changes under cyber attacks.Specifically,for the physical layer ofCBTC systems,the impact of cyber attacks is evaluated with the train punctuality rate and train departure interval indicators.For the information layer of CBTC systems,the system vulnerabilities and system threats are selected as static level indicators,and the critical network characteristics are selected as dynamic level indicators to quantify the real-time security situation.Finally,the comprehensive security situation assessment value of the CBTC systems is obtained by integrating the physical and information layer indicators.Simulation results illustrate that the proposed approach can dynamically characterize the real-time security situation of CBTC systems,enhancing the ability to perceive and assess information security risks.
基金supported by the National Natural Science Foundation of China(62303273,62373226)the National Research Foundation,Singapore through the Medium Sized Center for Advanced Robotics Technology Innovation(WP2.7)
文摘Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded computing, communication and related hardware technologies, CPSs have attracted extensive attention and have been widely used in power system, traffic network, refrigeration system and other fields.
基金supported by the National Natural Science Foundation of China(52477132 and U2066601).
文摘This paper provides a systematic review on the resilience analysis of active distribution networks(ADNs)against hazardous weather events,considering the underlying cyber-physical interdependencies.As cyber-physical systems,ADNs are characterized by widespread structural and functional interdependen-cies between cyber(communication,computing,and control)and physical(electric power)subsystems and thus present complex hazardous-weather-related resilience issues.To bridge current research gaps,this paper first classifies diverse hazardous weather events for ADNs according to different time spans and degrees of hazard,with model-based and data-driven methods being utilized to characterize weather evolutions.Then,the adverse impacts of hazardous weather on all aspects of ADNs’sources,physical/cyber networks,and loads are analyzed.This paper further emphasizes the importance of situational awareness and cyber-physical collaboration throughout hazardous weather events,as these enhance the implementation of preventive dispatches,corrective actions,and coordinated restorations.In addition,a generalized quantitative resilience evaluation process is proposed regarding additional considerations about cyber subsystems and cyber-physical connections.Finally,potential hazardous-weather-related resilience challenges for both physical and cyber subsystems are discussed.
文摘A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.
基金supported by the National Natural Science Foundation of China(62173209,61773238)the Science Center Program of National Natural Science Foundation of China(62188101).
文摘Dear Editor,This letter presents a new secure hierarchical control strategy for steering tracking of in-wheel motor driven(IWMD)electric vehicle(EV)subject to limited network resources,hybrid cyber-attacks,model nonlinearities,actuator redundancy and airflow disturbance.A hierarchical control architecture is proposed specifically for solving the problems of nonlinear system modeling and actuator redundancy.By utilizing the advantages of fully actuated system(FAS)approach,a nonlinear virtual controller against airflow disturbance is constructed in upper layer system and an event-triggered nonlinear distributed controller is proposed in lower layer system under stochastic hybrid cyber-attacks.A case study of overtaking task is carried out to validate the FAS-based hierarchical control strategy.
文摘The proliferation of cloud computing and internet of things has led to the connectivity of states and nations(developed and developing countries)worldwide in which global network provide platform for the connection.Digital forensics is a field of computer security that uses software applications and standard guidelines which support the extraction of evidences from any computer appliances which is perfectly enough for the court of law to use and make a judgment based on the comprehensiveness,authenticity and objectivity of the information obtained.Cybersecurity is of major concerned to the internet users worldwide due to the recent form of attacks,threat,viruses,intrusion among others going on every day among internet of things.However,it is noted that cybersecurity is based on confidentiality,integrity and validity of data.The aim of this work is make a systematic review on the application of machine learning algorithms to cybersecurity and cyber forensics and pave away for further research directions on the application of deep learning,computational intelligence,soft computing to cybersecurity and cyber forensics.
文摘Join CEN as the lead rapporteur of this initiative takes you inside the development of the European harmonized standards for smartcards,similar devices,and secure elements.This session will provide exclusive insights into the current content and approach shaping the compliance criteria needed to meet the essential requirements of the Cyber Resilience Act(EU 2024/2847).