γ-Fe nano-particles with size of 20-40 nm were produced by SF6-sensitized CW CO2 laser-induced gaseous pyrolysis of Fe(Co) 5, The γ-Fe stabte in reaction zone at above 910℃ was formed.The rapid quenching prevents f...γ-Fe nano-particles with size of 20-40 nm were produced by SF6-sensitized CW CO2 laser-induced gaseous pyrolysis of Fe(Co) 5, The γ-Fe stabte in reaction zone at above 910℃ was formed.The rapid quenching prevents from the γ-Fe transforming to α-Fe as rapidly cooling from high temperature to room temperature, The characteristics of the particles were examined at room temperature by TEM. electron diffraction and XRD. It was proved that about 70% of γ-Fe phase in the particles was present. In addition. the lattice constant of the γ-Fe was 0.364 nm in place of 0.360 nm展开更多
To increase the photoelectronic conversion efficiency of the single discharge tube and to meet the requirements of the laser cutting system, optimization of the discharge tube structure and gas flow field is necessary...To increase the photoelectronic conversion efficiency of the single discharge tube and to meet the requirements of the laser cutting system, optimization of the discharge tube structure and gas flow field is necessary. We present a computational fluid dynamic model to predict the gas flow characteristics of high-power fast-axial flow CO2 laser. A set of differential equations is used to describe the operation of the laser. Gas flow characteristics, are calculated. The effects of gas velocity and turbulence intensity on discharge stability are studied. Computational results are compared with experimental values, and a good agreement is observed. The method presented and the results obtained can make the design process more efficient.展开更多
文摘γ-Fe nano-particles with size of 20-40 nm were produced by SF6-sensitized CW CO2 laser-induced gaseous pyrolysis of Fe(Co) 5, The γ-Fe stabte in reaction zone at above 910℃ was formed.The rapid quenching prevents from the γ-Fe transforming to α-Fe as rapidly cooling from high temperature to room temperature, The characteristics of the particles were examined at room temperature by TEM. electron diffraction and XRD. It was proved that about 70% of γ-Fe phase in the particles was present. In addition. the lattice constant of the γ-Fe was 0.364 nm in place of 0.360 nm
基金supported by the National Key Technology Research and Development Program under Grant No.2007BAF11B01
文摘To increase the photoelectronic conversion efficiency of the single discharge tube and to meet the requirements of the laser cutting system, optimization of the discharge tube structure and gas flow field is necessary. We present a computational fluid dynamic model to predict the gas flow characteristics of high-power fast-axial flow CO2 laser. A set of differential equations is used to describe the operation of the laser. Gas flow characteristics, are calculated. The effects of gas velocity and turbulence intensity on discharge stability are studied. Computational results are compared with experimental values, and a good agreement is observed. The method presented and the results obtained can make the design process more efficient.