期刊文献+
共找到13,108篇文章
< 1 2 250 >
每页显示 20 50 100
Study on the Hydraulic Performance and Efficiency of a Siphon Sediment Discharge Device with Bottom Hole Opening through Simulation Experiments
1
作者 Henglong Hui Yan Li Zhiying Cui 《Journal of Electronic Research and Application》 2025年第1期169-175,共7页
In this study,the hydraulic behavior and sand transport efficiency of the siphon automatic sand discharge device were studied by software simulation tests.By simulating the actual situation,this study analyzed how fac... In this study,the hydraulic behavior and sand transport efficiency of the siphon automatic sand discharge device were studied by software simulation tests.By simulating the actual situation,this study analyzed how factors such as the difference in water level,sediment concentration,and pipeline layout affected the sediment discharge effect.The results show that the sediment discharge device can effectively discharge sediment under diverse operating conditions and show adaptability to different environmental conditions,which indicates that it is suitable for various types of reservoir environments. 展开更多
关键词 Siphon sand discharge Bottom hole opening Sand transport efficiency simulation experiment
在线阅读 下载PDF
Hybrid CO_(2) thermal system for post-steam heavy oil recovery:Insights from microscopic visualization experiments and molecular dynamics simulations
2
作者 Ning Lu Xiaohu Dong +4 位作者 Haitao Wang Huiqing Liu Zhangxin Chen Yu Li Deshang Zeng 《Energy Geoscience》 2025年第2期233-248,共16页
The hybrid CO_(2) thermal technique has achieved considerable success globally in extracting residual heavy oil from reserves following a long-term steam stimulation process.Using microscopic visualization experiments... The hybrid CO_(2) thermal technique has achieved considerable success globally in extracting residual heavy oil from reserves following a long-term steam stimulation process.Using microscopic visualization experiments and molecular dynamics(MD)simulations,this study investigates the microscopic enhanced oil recovery(EOR)mechanisms underlying residual oil removal using hybrid CO_(2) thermal systems.Based on the experimental models for the occurrence of heavy oil,this study evaluates the performance of hybrid CO_(2) thermal systems under various conditions using MD simulations.The results demonstrate that introducing CO_(2) molecules into heavy oil can effectively penetrate and decompose dense aggregates that are originally formed on hydrophobic surfaces.A stable miscible hybrid CO_(2) thermal system,with a high effective distribution ratio of CO_(2),proficiently reduces the interaction energies between heavy oil and rock surfaces,as well as within heavy oil.A visualization analysis of the interactions reveals that strong van der Waals(vdW)attractions occur between CO_(2) and heavy oil molecules,effectively promoting the decomposition and swelling of heavy oil.This unlocks the residual oil on the hydrophobic surfaces.Considering the impacts of temperature and CO_(2) concentration,an optimal gas-to-steam injection ratio(here,the CO_(2):steam ratio)ranging between 1:6 and 1:9 is recommended.This study examines the microscopic mechanisms underlying the hybrid CO_(2) thermal technique at a molecular scale,providing a significant theoretical guide for its expanded application in EOR. 展开更多
关键词 Heavy oil Hybrid CO_(2)thermal system Microscopic visualization experiment Molecular dynamics simulation Microscopic mechanism
在线阅读 下载PDF
Dynamic evolution mechanism of the fracturing fracture system——Enlightenments from hydraulic fracturing physical experiments and finite element numerical simulation
3
作者 Qi-Qiang Ren Li-Fei Li +3 位作者 Jin Wang Rong-Tao Jiang Meng-Ping Li Jian-Wei Feng 《Petroleum Science》 CSCD 2024年第6期3839-3866,共28页
This study aims to elucidate the dynamic evolution mechanism of the fracturing fracture system during the exploration and development of complex oil and gas reservoirs.By integrating methods of rock mechanical testing... This study aims to elucidate the dynamic evolution mechanism of the fracturing fracture system during the exploration and development of complex oil and gas reservoirs.By integrating methods of rock mechanical testing,logging calculation,and seismic inversion technology,we obtained the current insitu stress characteristics of a single well and rock mechanical parameters.Simultaneously,significant controlling factors of rock mechanical properties were analyzed.Subsequently,by coupling hydraulic fracturing physical experiments with finite element numerical simulation,three different fracturing models were configured:single-cluster,double-cluster,and triple-cluster perforations.Combined with acoustic emission technology,the fracture initiation mode and evolution characteristics during the loading process were determined.The results indicate the following findings:(1)The extension direction and length of the fracture are significantly controlled by the direction of the maximum horizontal principal stress.(2)Areas with poor cementation and compactness exhibit complex fracture morphology,prone to generating network fractures.(3)The interlayer development of fracturing fractures is controlled by the strata occurrence.(4)Increasing the displacement of fracturing fluid enlarges the fracturing fracture length and height.This research provides theoretical support and effective guidance for hydraulic fracturing design in tight oil and gas reservoirs. 展开更多
关键词 Rockmechanical parameters Petrophysical experiments Hydraulic fracturing physical experiment Finite element numerical simulation Dynamic evolution mechanism Fracturing fracture
原文传递
Teaching Experiment in Engineering Mechanics Based on Simulation Technology:A Case Study
4
作者 Jinru Ma 《Journal of Contemporary Educational Research》 2024年第7期277-282,共6页
This paper explores the integration of simulation technology in Engineering Mechanics(EM)teaching in vocational colleges.A case study was conducted using the tensile test as an example,and digital resources,such as co... This paper explores the integration of simulation technology in Engineering Mechanics(EM)teaching in vocational colleges.A case study was conducted using the tensile test as an example,and digital resources,such as colored Mises stress nephograms,were obtained.These resources were integrated into the original curriculum to conduct teaching experiments.The results show that the use of digital resources significantly improved the quality of teaching in EM.The integration of simulation technology in EM teaching provides a promising direction for the improvement of vocational education and the cultivation of high-quality skilled talents.The development and application of more simulation-based teaching cases should be studied by scholars. 展开更多
关键词 Engineering mechanics simulation technology Teaching experiment TEACHING Vocational education
在线阅读 下载PDF
Construction and Practice of First-Class Courses on Virtual Simulation Experimental Teaching of Urban Overpasses
5
作者 Jun Lin Dingyuan Luo Taotao Gao 《Journal of Contemporary Educational Research》 2024年第5期289-296,共8页
Virtual simulation experiment,as a new way to promote the digital transformation of education,has a broad development prospect and application value.The civil engineering experimental volume and space are huge,it has ... Virtual simulation experiment,as a new way to promote the digital transformation of education,has a broad development prospect and application value.The civil engineering experimental volume and space are huge,it has a long construction period,is highly dangerous,and is difficult to experiment with.In order to solve the contradiction between the traditional theory teaching of civil engineering and the engineering training of students,the construction of virtual simulation experimental teaching courses with a high degree of realism,intuition,and accuracy can be used as a useful supplement and innovation of experimental and practical teaching.This paper takes the virtual simulation experimental teaching course of urban overpasses as an example,introduces the necessity and practicability of the course construction,and describes the experimental principle structure of the course,the simulation scene design,the experimental teaching process,the experimental method,etc.The course has achieved good application results,and it has been recognized as the first-class virtual simulation teaching course of the Chongqing Municipal Government,which provides certain references to the construction of the same type of courses in the civil engineering profession. 展开更多
关键词 Digital transformation of education Virtual simulation experiment Civil engineering First-class course construction
在线阅读 下载PDF
Model experiments and numerical analysis of the influence of tunnel diameter on tunnel rockburst
6
作者 YAN Yaofeng XIA Yuanyou +5 位作者 ZHANG Lan HUANG Jian ZHANG Yuanhang YAN Minjia YUAN Zhouhao LIN Manqing 《Journal of Mountain Science》 2025年第10期3805-3817,共13页
With the increasing development of deepburied engineering projects,rockburst disasters have become a frequent concern.Studies have indicated that tunnel diameter is a critical factor influencing the occurrence of rock... With the increasing development of deepburied engineering projects,rockburst disasters have become a frequent concern.Studies have indicated that tunnel diameter is a critical factor influencing the occurrence of rockbursts.To investigate the influence of tunnel diameter on the deformation and failure characteristics of surrounding rock,large-sized rocklike gypsum specimens were tested using a selfdeveloped true triaxial rockburst loading system containing circular tunnels with three different diameters(D=0.07 m,0.11 m,and 0.15 m).Acoustic emission monitoring,together with a miniature intelligent camera,was employed to analyze the entire process,focusing on macroscopic failure patterns,fragment characteristics,and underlying failure mechanisms.In addition,theoretical analyses were carried out and combined with numerical simulations to investigate the differences in energy evolution associated with rockburst physical models.The results indicate that:(1)The rockburst process with different tunnel diameters consistently evolved through three distinct stages—initial particle ejection,crack propagation accompanied by flake spalling,and,finally,fragment ejection leading to the formation of a‘V'-shaped notch.(2)Increasing tunnel diameter reduces rockburst failure load while increasing surrounding rock damage extent,total mass and average size of ejected fragments.Additionally,shear failure proportion decreases with tensile failure becoming increasingly dominant.(3)Larger tunnel diameters reduce the attenuation rate of elastic strain energy,thereby expanding the zone of elastic strain energy accumulation and disturbance and creating conditions for larger volume rockburst.(4)Larger tunnel diameters result in a smaller principal stress ratio at equivalent distances in the surrounding rock,indicating a higher likelihood of tensile failure.(5)Numerical analyses further reveal that larger tunnel diameters reduce the maximum elastic strain energy density around the tunnel,lowering the energy released per unit volume of rockburst fragments and their ejection velocities.However,both the total failure volume and overall energy release from rockburst increase.Model experiments with different tunnel diameters are of great significance for optimizing engineering design and parameter selection,as well as guiding tunnel construction under complex geological conditions. 展开更多
关键词 ROCKBURST Tunnel diameter Model experiment Numerical simulation Energy evolution
原文传递
Flow field design and experiment of high-efficiency electrochemical milling with large machining area
7
作者 Shili WANG Jia LIU +1 位作者 Chuangye BAO Di ZHU 《Chinese Journal of Aeronautics》 2025年第2期617-630,共14页
Materials that are difficult to cut,such as titanium alloys,are widely used in large load-bearing integral components of aircraft,leading to great challenges for manufacturing.Electrochemical milling is a way for mach... Materials that are difficult to cut,such as titanium alloys,are widely used in large load-bearing integral components of aircraft,leading to great challenges for manufacturing.Electrochemical milling is a way for machining difficult-to-cut materials through Computer Numerical Control(CNC)trajectory motion.Using a tilted large cathode machining surface and the cut-in feed mode,an efficient and low-cost method is obtained for machining the large integral components.A novel crossed and inclined structure of the flow mode is designed to realize electrochemical milling with a large tilted cathode surface.Compared to the vertical flow mode with one inlet,the proposed flow mode has two inlets that independently supply electrolytes,and the inclined channels make the flow field more stable.Flow field simulations are performed for both the vertical and proposed flow modes.The results show that the proposed flow mode avoids the random diversion of electrolytes and the ultralow flow velocity at both ends of the nozzle area,improving the velocity,uniformity,and stability of the electrolytes.The inclination angle of the crossed and inclined flow field is optimized.Finally,limit feed rate experiments are conducted in two modes,and the limit feed rate is 70 mm/min in the proposed mode.A sector workpiece of a large circular surface with approximately 8.77 mm thickness is machined 9 times by the cut-in electrochemical milling,the material removal rate is 4872 mm^(3)/min,and the surface roughness is superior to 1.15μm. 展开更多
关键词 Titanium alloy Electrochemical milling Flow mode design Flow field simulation experiment
原文传递
Experimental and numerical study on external explosions of cylindrical versus spherical charges at tunnel entrance
8
作者 Dan Luo Jinsheng Hu +4 位作者 Anbao Wang Xiao Yu Mengmeng Zhang Meili Yao Chun Li 《Defence Technology(防务技术)》 2025年第4期227-243,共17页
Most of the existing studies on tunnel blast wave are based on spherical or grouped charges, however,conventional weapons are mostly cylindrical rather than spherical. In order to analyze the impact of cylindrical cha... Most of the existing studies on tunnel blast wave are based on spherical or grouped charges, however,conventional weapons are mostly cylindrical rather than spherical. In order to analyze the impact of cylindrical charges on the tunnel blast wave loads and to develop a quantitative calculation method, this study carried out experimental and numerical research. Initially, external explosion experiments were conducted using both 35 kg spherical charges and cylindrical charges with aspect ratio of 4.8 at two different distances from the tunnel entrance. Comparative analysis of the blast wave parameters in the tunnel revealed that the explosive equivalent of the cylindrical charges was significantly higher than that of the spherical charges. To address this, an equivalent coefficient κ based on the spherical charges was proposed for the cylindrical charges. Subsequently, numerical simulations were conducted for the experimental conditions, and the numerical simulation results match the experiments well. Through numerical calculations, the reliability of the equivalent coefficient κ under the experimental conditions was verified, and comparison analysis indicated that the explosion energy of cylindrical charges spreads more radially, resulting in more explosion energy entering the tunnel, which is the fundamental reason for the increase in tunnel blast wave loads. Additionally, analyzing the explosion energy ratio entering the tunnel is an effective method for calculating the equivalent coefficient κ. Finally, through more than one hundred sets of numerical calculation results, the impact of the proportional distance λ and the ratio of charge mass to the tunnel cross-section dimension φ on the equivalence coefficients κ was investigated. An empirical formula for the equivalence coefficient κ was derived through fitting, and the accuracy of the formula was validated through literature experimental results. The research findings of this paper will provide valuable guidance for the calculation of blast wave loads in tunnel. 展开更多
关键词 Cylindrical charges Tunnel blast wave Equivalent coefficient Empirical formula experiment and numerical simulation
在线阅读 下载PDF
Evolution and generation mechanism of retained oil in lacustrine shales:A combined ReaxFF-MD and pyrolysis simulation perspective
9
作者 Biao Sun Xiao-Ping Liu +3 位作者 Jie Liu Tian Liu Zu-Xian Hua Wen-Di Peng 《Petroleum Science》 2025年第1期29-41,共13页
To accurately investigate the evolution characteristics and generation mechanism of retained oil,the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay... To accurately investigate the evolution characteristics and generation mechanism of retained oil,the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay Basin.This analysis involves Rock-Eval pyrolysis,pyrolysis simulation experiments,Gas Chromatograph Mass Spectrometer(GC-MS),and reactive molecular dynamics simulations(ReaxFF).The results revealed the retained oil primarily consisted of n-alkanes with carbon numbers ranging from C14 to C36.The generation of retained oil occurred through three stages.A slow growth stage of production rate was observed before reaching the peak of oil production in Stage Ⅰ.Stage Ⅱ involved a rapid increase in oil retention,with C12-C17 and C24-C32 serving as the primary components,increasing continuously during the pyrolysis process.The generation process involved the cleavage of weak bonds,including bridging bonds(hydroxyl,oxy,peroxy,imino,amino,and nitro),ether bonds,and acid amides in the first stage(Ro=0.50%-0.75%).The carbon chains in aromatic ring structures with heteroatomic functional groups breaks in the second stage(R_(o)=0.75%-1.20%).In the third stage(R_(o)=1.20%-2.50%),the ring structures underwent ring-opening reactions to synthesize iso-short-chain olefins and radicals,while further breakdown of aliphatic chains occurred.By coupling pyrolysis simu-lation experiments and molecular simulation technology,the evolution characteristics and bond breaking mechanism of retained oil in three stages were revealed,providing a reference for the for-mation and evolution mechanism of retained oil. 展开更多
关键词 Lacustrine shale Retained oiliness evolution Pyrolysis simulation experiments ReaxFF molecular dynamics Hydrocarbon generation evolution
原文传递
Experiments and numerical simulations on transport of dissolved pollutants around spur dike 被引量:9
10
作者 Li-ping CHEN Jun-cheng JIANG 《Water Science and Engineering》 EI CAS 2010年第3期341-353,共13页
The flow field around a spur dike has three-dimensional characteristics. In order to analyze the influence of the flow field on pollutant transport, based on a compressive volume of fluid (VOF) scheme, the three-dim... The flow field around a spur dike has three-dimensional characteristics. In order to analyze the influence of the flow field on pollutant transport, based on a compressive volume of fluid (VOF) scheme, the three-dimensional transient compressive pollutant transport model (CPTM) and the cubic equation (CE) bounded differencing scheme were developed. For the calibration and validation of CPTM, laboratory experiments were carried out in a flume with a non-submerged spur dike. The spur dike was angled at 60°, 90°, and 120° from the upstream direction. The simulation results agreed with the experimental results. The simulations and experiments showed that the distribution of pollutant concentration was determined by circumfluence and the main flow. Concentration decay in the circumfluenee zone was slower than that in the main flow. Downstream of the spur dike, the concentration fluctuation became intensive with the increase of spur dike angle. 展开更多
关键词 VOF spur dike dissolved pollutant numerical simulation experiment
在线阅读 下载PDF
A laboratory acoustic emission experiment and numerical simulation of rock fracture driven by a high-pressure fluid source 被引量:6
11
作者 Xinglin Lei Takahiro Funatsu +1 位作者 Shengli Ma Liqiang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第1期27-34,共8页
In order to improve our understanding of rock fracture and fault instability driven by high-pressure fluid sources, the authors carried out rock fracture tests using granite under a confining pressure of 80 MPa with f... In order to improve our understanding of rock fracture and fault instability driven by high-pressure fluid sources, the authors carried out rock fracture tests using granite under a confining pressure of 80 MPa with fluid injection in the laboratory. Furthermore, we tested a number of numerical models using the FLAC;modeling software to find the best model to represent the experimental results. The high-speed multichannel acoustic emission(AE) waveform recording system used in this study made it possible to examine the total fracture process through detailed monitoring of AE hypocenters and seismic velocity.The experimental results show that injecting high-pressure oil into the rock sample can induce AE activity at very low stress levels and can dramatically reduce the strength of the rock. The results of the numerical simulations show that major experimental results, including the strength, the temporal and spatial patterns of the AE events, and the role of the fluid can be represented fairly well by a model involving(1) randomly distributed defect elements to model pre-existing cracks,(2) random modification of rock properties to represent inhomogeneity introduced by different mineral grains, and(3)macroscopic inhomogeneity. Our study, which incorporates laboratory experiments and numerical simulations, indicates that such an approach is helpful in finding a better model not only for simulating experimental results but also for upscaling purposes. 展开更多
关键词 Laboratory experiment Acoustic emission(AE) FRACTURE Numerical simulation Fluid injection
在线阅读 下载PDF
Dynamic experiment and numerical simulation of frozen soil under confining pressure 被引量:13
12
作者 W.R.Tang Z.W.Zhu +2 位作者 T.T.Fu Z.W.Zhou Z.H.Shanggua 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第6期1302-1318,I0004,共18页
With the development of cold region engineering,it is crucial to study the mechanical properties of frozen soil.In practice,frozen soil is inevitably subject to impact loading,making the study of frozen soil under imp... With the development of cold region engineering,it is crucial to study the mechanical properties of frozen soil.In practice,frozen soil is inevitably subject to impact loading,making the study of frozen soil under impact loading necessary for engineering in cold regions.The split–Hopkinson pressure bar(SHPB)is an important experimental means for obtaining the dynamic performance of materials.In this study,an SHPB experiment was conducted on frozen soil under confining pressure.The frozen soil exhibited an evident strain rate effect and temperature effect under confining pressure.The SHPB experiment on frozen soil under confining pressure was simulated numerically using LS-DYNA software and the Holmquist–Johnson–Cook(HJC)material model.A loading simulation with passive confining pressure and active confining pressure was completed by adding an aluminum sleeve and applying a constant load.The simulation results obtained using the above methods were in good agreement with the experimental results.The strength of the frozen soil under confining pressure was greater than that of the uniaxial impact,and there was an evident confining pressure effect.Furthermore,the confining pressure provided by passive confinement was larger than that provided by active confinement.The passive confining pressure energy absorption efficiency was higher than for the active confining pressure due to the need to absorb more energy under the same damage conditions.The frozen soil exhibited viscoplastic failure characteristics under confining pressure. 展开更多
关键词 Frozen soil-Dynamic experiment Confining pressure Split-Hopkinson pressure bar Numerical simulation
原文传递
Passive walker that can walk down steps:simulations and experiments 被引量:6
13
作者 Ning Liu Junfeng Li Tianshu Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第5期569-573,共5页
A planar passive walking model with straight legs and round feet was discussed. This model can walk down steps, both on stairs with even steps and with random steps. Simulations showed that models with small moments o... A planar passive walking model with straight legs and round feet was discussed. This model can walk down steps, both on stairs with even steps and with random steps. Simulations showed that models with small moments of inertia can navigate large height steps. Period-doubling has been observed when the space between steps grows. This period-doubling has been validated by experiments, and the results of experiments were coincident with the simulation. 展开更多
关键词 Passive walking Period-doubling simulation - experiments Poincaré map Nonlinear dynamics
在线阅读 下载PDF
Evolution and organic geochemical significance of bicyclic sesquiterpanes in pyrolysis simulation experiments on immature organic-rich mudstone 被引量:3
14
作者 Gang Yan Yao-Hui Xu +2 位作者 Yan Liu Peng-Hai Tang Wei-Bin Liu 《Petroleum Science》 SCIE CAS CSCD 2019年第3期502-512,共11页
Sesquiterpanes are ubiquitous components of crude oils and ancient sediments.Liquid saturated hydrocarbons from simulated pyrolysis experiments on immature organic-rich mudstone collected from the Lower Cretaceous Hes... Sesquiterpanes are ubiquitous components of crude oils and ancient sediments.Liquid saturated hydrocarbons from simulated pyrolysis experiments on immature organic-rich mudstone collected from the Lower Cretaceous Hesigewula Sag were analyzed by gas chromatography-mass spectrometry(GC-MS).C14 bicyclic sesquiterpanes,namely,8β(H)-drimane,8β(H)-homodrimane,and 8 a(H)-homodrimane were detected and identified on basis of their diagnostic fragment ions(m/z123,179,193,and 207),and previously published mass spectra data,and these bicyclic sesquiterpanes presented relatively regular characteristics in their thermal evolution.The ratios 8β(H)-drimane/8β(H)-homodrimane,8β(H)-homodrimane/8 a(H)-homodrimane,and 8β(H)-drimane/8 a(H)-homodrimane all show a clear upward trend with increasing temperature below the temperature turning point.Thus,all these ratios can be used as evolution indexes of source rocks in the immature-lowmaturity stage.However,the last two ratios may be more suitable than the first ratio as valid parameters for measuring the extent of thermal evolution of organic matter in the immature-low-maturity stage because their change amplitude with increasing temperature is more obvious. 展开更多
关键词 Immature-low-maturity stage Simulated PYROLYSIS experiment BICYCLIC sesquiterpanes Thermal EVOLUTION MATURITY indicators
原文传递
Experiment and Simulation of Metal Flow in Multi-stage Forming Process of Railway Wheel 被引量:3
15
作者 Xiao-hui SHEN Wei CHEN +2 位作者 Jun YAN Lei ZHANG Jing ZHANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第1期21-29,共9页
To investigate the metal flow during the railway wheel forming process, experiments and finite element method (FEM) simulation were carried out. An axisymmetric modeling for the wheel rolling process was proposed to... To investigate the metal flow during the railway wheel forming process, experiments and finite element method (FEM) simulation were carried out. An axisymmetric modeling for the wheel rolling process was proposed to predict the metal flow in radial direction, by which the whole multi-stage forming process could be simulated in axisymmetric and integral way. The result shows that the axisymmetric simulation method was an effective method to explore the metal flow in radial direction and to analyze the relationships of tools motion during the wheel rolling. The detail information about metal flow in railway wheel forming process was obtained. The metal in the wheel web was from the area near the half radius of the original billet; the chill zone of the billet became an envelope of the rim and part of the web with a maximum thickness of about 6 mm below the tread. At the wheel rolling stage, the metal in the rim flowed towards the web; the metal near the surfaces of the conjunction region between the web and rim suffered severe shear deformation. 展开更多
关键词 railway wheel metal flow multi-stage forming experiment simulation
原文传递
Simulation and Experiment on Workability for Cold Pressure Forming of Sheet Metal Part with Step Cross-section 被引量:3
16
作者 LU Xianfeng LI Hufeng +1 位作者 ZHANG Yuerong ZHOU Yong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期161-165,共5页
In modem manufacturing, a new type of sheet metal part with step cross-section in both inner hole and outer edge is proposed. The traditional stamping separating processes can only produce sheet metal part with vertic... In modem manufacturing, a new type of sheet metal part with step cross-section in both inner hole and outer edge is proposed. The traditional stamping separating processes can only produce sheet metal part with vertical cross-section. According to the latest developing theory and potential of cold pressure forming: combination of pressure and cold forging, a new flow control forming of sheet metal(FCF) is excogitated based on blanking process of general stamping and combined with cold forging processes such as extrusion and coining, etc, which is aiming at the above-mentioned new type of sheet metal part. With utilization of this new process, the new type of sheet metal parts can be manufactured. In order to shorten the testing period, the numerical simulation was carried out by using DEFORM-3D software, and both deformation and mechanics rules were analyzed. Based on the simulation, both punching part and blanked parts of this new type were successfully developed. Then a new conception of optimal distance between the step walls of inner hole and outside edge was proposed and the design principle for its numerical value was inferred. Furthermore, a mold set for combination of stamping & cold forging was designed and manufactured, by which the technologic experiments were taken for validation with Aluminum plate of thickness 2.35 mm for power battery cover board, which verified the principle of the distance between the step walls. The research of cold pressure forming of thin sheet metal with step cross-section is significant, not only to the development of modem mechanical manufacture, but also to metal plastic forming science. 展开更多
关键词 sheet metal step cross-section numerical simulation distance between walls technologic experiment
在线阅读 下载PDF
Experimental study and simulation of a three-phase flow stirred bioreactor 被引量:2
17
作者 Chenghui Zheng Jiashun Guo +4 位作者 Chengkai Wang Yuanfeng Chen Huidong Zheng Zuoyi Yan Qinggen Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第3期649-659,共11页
In order to obtain the reasonable operating conditions and minimize the power consumption in the stirred bioreactor, the hydrodynamic experiments in the stirred bioreactor have been taken to obtain the basic data. Sub... In order to obtain the reasonable operating conditions and minimize the power consumption in the stirred bioreactor, the hydrodynamic experiments in the stirred bioreactor have been taken to obtain the basic data. Subsequently, an Eulerian model for the gas–liquid–solid three phase flow in the stirred bioreactor has been proposed and the CFD simulation has been conducted. By comparing the results of experiment and simulation, it can be concluded that the simulation results were consistent with the experimental data. The inner relationship between operating variables and indicators could be obtained by comparing the results of just suspension speed, gas holdup, power consumption and operational maps, further the reasonable operating conditions could be also determined under the minimum power consumption. The operational maps could provide the theoretical foundation for industrial application of the gas–liquid–solid stirred bioreactors under the low solid concentration(no more than 20 wt%). 展开更多
关键词 Stirred BIOREACTOR HYDRODYNAMICS experiment simulations OPERATIONAL MAPS
在线阅读 下载PDF
A MONTE CARLO SIMULATION OF THE CVD DIAMOND FILM 被引量:2
18
作者 Y.Zhang,X.G.Qin and G.Q.Liu Materials Modeling, Simulation and Design Group, School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China. 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第5期1029-1032,共4页
A Monte Carlo algorithm has been developed by the authors to simulate the chemical vapor deposition (CVD) processes of diamond films. The method considers both the diffusion and the incorporation of the growth radical... A Monte Carlo algorithm has been developed by the authors to simulate the chemical vapor deposition (CVD) processes of diamond films. The method considers both the diffusion and the incorporation of the growth radicals on the growing surface in simulating the evolution of the morphology and microstructure. The calculation of configuration energy is used to determine the orientation of adsorbed growth radicals. The effect of processing variables such as nucleation density and substrate temperature on the morphology and microstructure is discussed. It is found that competitive characteristic and coarsening effect exist in the simulation results, which agree with the experimental observations. 展开更多
关键词 cvd diamond film computer simulation Monte Carlo method
在线阅读 下载PDF
Dynamic simulation and experimental study of inspection robot for high-voltage transmission-line 被引量:6
19
作者 肖晓晖 吴功平 +1 位作者 杜娥 史铁林 《Journal of Central South University of Technology》 EI 2005年第6期726-731,共6页
A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- ... A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- obstaclestraight-line segment and surmounting straight-line segment obstacles as well as transferring between two spans automatically. Lagrange’s equations were utilized to derive dynamic equations of all the links, including items of inertia, coupling inertia, Coriolis acceleration, centripetal acceleration and gravity. And a dynamic response experiment on elemental motions of robot prototype’s travelling along non-obstacle straight-line segment and surmounting obstacles was performed on 220 kV 1∶1 simulative overhanging transmission-line in laboratory. In addition, dynamic numerical simulation was conducted in the corresponding condition. Comparison and analysis on results of experiment and numerical simulation have validated theoretical model and simulation resolution. Therefore, the dynamic model formed hereunder can be used for the study of robot control. 展开更多
关键词 inspection robot TRANSMISSION-LINE dynamic modeling numerical simulation dynamic experiment
在线阅读 下载PDF
Numerical simulation analysis for deformation deviation and experimental verification for an antenna thin-wall parts considering riveting assembly with finite element method 被引量:8
20
作者 PAN Ming-hui TANG Wen-cheng +1 位作者 XING Yan NI Jun 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期60-77,共18页
In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed thr... In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future. 展开更多
关键词 thin-wall parts assembly assembly deformation deviation theoretical deformation model finite element simulation measuring experiment
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部