Water-weakening presents a promising strategy for the in-situ improvement of rock cuttability.This study unveils the influences of water saturation on the mechanical response and fragmentation characteristics of rock ...Water-weakening presents a promising strategy for the in-situ improvement of rock cuttability.This study unveils the influences of water saturation on the mechanical response and fragmentation characteristics of rock samples.A series of rock-cutting tests using conical pick indentation was conducted on three types of sandstone samples under both dry and water-saturated conditions.The relationships between cutting force and indentation depth,as well as typical cuttability indices are determined and compared for dry and water-saturated samples.The experimental results reveal that the presence of water facilitates shearing failure in rock samples,as well as alleviates the fluctuations in the cutting force-indentation depth curve Furthermore,the peak cutting force(F_(p)),cutting work(W_(p)),and specific energy(SE)undergo apparent decrease after water saturation,whereas the trend in the indentation depth at rock failure(D_(f))varies across different rock types.Additionally,the water-induced percentage reductions in F_(p)and SE correlate positively with the quartz and swelling clay content within the rocks,suggesting that the cuttability improvement due to water saturation is attributed to the combined effects of stress corrosion and frictional reduction.These findings carry significant implications for improving rock cuttability in mechanized excavation of hard rock formations.展开更多
Real-time identification of rock strength and cuttability based on monitoring while cutting during excavation is essential for key procedures such as the precise adjustment of excavation parameters and the in-situ mod...Real-time identification of rock strength and cuttability based on monitoring while cutting during excavation is essential for key procedures such as the precise adjustment of excavation parameters and the in-situ modification of hard rocks.This study proposes an in-telligent approach for predicting rock strength and cuttability.A database comprising 132 data sets is established,containing cutting para-meters(such as cutting depth and pick angle),cutting responses(such as specific energy and instantaneous cutting rate),and rock mech-anical parameters collected from conical pick-cutting experiments.These parameters serve as input features for predicting the uniaxial compressive strength and tensile strength of rocks using regression fitting and machine learning methodologies.In addition,rock cuttabil-ity is classified using a combination of the analytic hierarchy process and fuzzy comprehensive evaluation method,and subsequently iden-tified through machine learning approaches.Various models are compared to determine the optimal predictive and classification models.The results indicate that the optimal model for uniaxial compressive strength and tensile strength prediction is the genetic algorithm-optimized backpropagation neural network model,and the optimal model for rock cuttability classification is the radial basis neural network model.展开更多
The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and med...The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and medical sectors.However,conventional machining of titanium alloys leads to elevated tool wear,development of surface defects,and reduced machining efficiency due to their low heat conductivity,and chemical affinity.These issues can be somewhat counteracted by integrating ultrasonic vibration in the conventional machining of titanium alloys and also enhance sustainability.This review article offers a holistic evaluation of the influence of ultrasonic vibration-assisted milling and turning on cutting forces,temperature,tool wear,and surface integrity,encompassing surface morphology,surface roughness,surface residual stress,surface hardness,and surface tribological properties during titanium alloys machining.Furthermore,it investigates the sustainability aspect that has not been previously examined.Studies on the performance of ultrasonic-assisted cutting revealed several advantages,including decreased cutting forces and cutting temperature,improved tool life,and a better-machined surface during machining.Consequently,the sustainability factor is improved due to minimized energy consumption and residual waste.In conclusion,the key challenges and future prospects in the ultrasonic-assisted cutting of titanium alloys are also discussed.This review article provides beneficial knowledge for manufactur-ers and researchers regarding ultrasonic vibration-assisted cutting of titanium alloy and will play an important role in achieving sustainability in the industry.展开更多
A centrifugal pump with a specific speed ns=67 is considered in this study to investigate the impact of blade cutting(at the outlet edge)on the fluid-induced noise,while keeping all the other geometric parameters unch...A centrifugal pump with a specific speed ns=67 is considered in this study to investigate the impact of blade cutting(at the outlet edge)on the fluid-induced noise,while keeping all the other geometric parameters unchanged.The required unsteady numerical calculations are conducted by applying the RNG k-εturbulence model with the volute dipole being used as the sound source.The results indicate that the internal pressure energy of the centrifugal pump essentially depends on the blade passing frequency and its low-frequency harmonic frequency.Moreover,the pressure pulsation distribution directly affects the noise caused by the centrifugal pump.The sound pressure inside and outside the centrifugal pump and the sound power at the blade passing frequency gradually decrease increasing cutting distance of the impeller blades.When the cutting percentage is 1.21%,that is,the clearance ratio between impeller blade and tongue is 8.57%,the comprehensive performance of the centrifugal pump is the best.展开更多
During the excavation process of deep hard rock tunnels,precutting rock with an abrasive water jet can weaken their strength and improve the efficiency of mining machinery.However,owing to the complex geological envir...During the excavation process of deep hard rock tunnels,precutting rock with an abrasive water jet can weaken their strength and improve the efficiency of mining machinery.However,owing to the complex geological environment,abrasive jets cannot fully utilize their rock-cutting performance.To fully exploit the advantages of high-pressure abrasive water jets,five orthogonal experiments were designed for rocks with significant differences in strength.Experimental research has been conducted on the performance of rotating abrasive waterjet-cutting rocks.Moreover,a neural network prediction model for predicting rock-cutting characteristics is established by comprehensively considering rock mechanics parameters and abrasive water jet parameters.The results show that the cutting depth of rocks with different strengths increases nonlinearly with increasing work pressure of the abrasive water jet.The cutting depth decreases exponentially with increasing cutting velocity.The cutting depth first increases and then decreases with increasing target distance,and the best target distance is between 4 mm and 6 mm.The effect of the target distance on the cutting width of rock is the most significant,but the cutting width of high-strength rock is not sensitive to changes in the working parameters of the abrasive water jet.The average relative errors of BP(backpropagation)neural networks optimized by global optimization algorithms in predicting rock cutting depth and width are 13.3%and 5.4%,respectively.This research combines the working characteristics of mining machinery to study the performance of abrasive waterjet rotary cutting of rocks and constructs a predictive model for the performance of abrasive waterjet cutting of rocks that includes rock strength factors.This provides a new solution for quickly adjusting the working parameters of abrasive water jets according to mining conditions.展开更多
The water content of cut flowers is a significant factor in their post-harvest quality.In this study,we examine the efficacy of silver nanoparticles(NS)on the longevity of cut gladiolus,with a focus on water state and...The water content of cut flowers is a significant factor in their post-harvest quality.In this study,we examine the efficacy of silver nanoparticles(NS)on the longevity of cut gladiolus,with a focus on water state and distribution.We used Low-field nuclear magnetic resonance(LF-NMR)technology to identify three water fractions with different transverse relaxation times(T2)values:bound water T21(<10 ms),intermediate immobilized water T22(10-100 ms),and the slowest component free water T23(>10 ms).During the opening process,T23increased at stages 2 and 3 and then decreased,T22 decreased slowly,and T21 remained unchanged.Free water values were consistently higher than bound water and immobilized water and reached their maximum from stage 2 until stage 4,when the petals were extended and began to wilt.The vascular bundles responsible for transporting water had higher water content,as detected by proton density-weighted magnetic resonance imaging(MRI).Bound water and free water with NS pretreatments in bracts were initially lower but then two days later the signal amplitude of each water state exceeded those of the control,indicating that the treatment enhanced the water-holding capacity over time.Furthermore,NS pretreatments reduced the free water mobility of the cut flowers and inhibited stem decay.Additionally,we found that NS can enter the stem and are primarily transported upward along the xylem with water using scanning electron microscopy(SEM)and energy-dispersive X-ray spectroscopy(EDS)technology.Overall,our findings indicate that NS pretreatment reduces free water in gladiolus cut flowers,enhancing their water retention and prolonging their vase life.展开更多
Kirigami,through introducing cuts into a thin sheet,can greatly improve the stretchability of structures and also generate complex patterns,showing potentials in various applications.Interestingly,even with the same c...Kirigami,through introducing cuts into a thin sheet,can greatly improve the stretchability of structures and also generate complex patterns,showing potentials in various applications.Interestingly,even with the same cutting pattern,the mechanical response of kirigami metamaterials can exhibit significant differences depending on the cutting angles in respect to the loading direction.In this work,we investigate the structural deformation of kirigami metamaterials with square domains and varied cutting angles of 0°and 45°.We further introduce a second level of cutting on the basis of the first cutting pattern.By combining experiments and finite element simulations,it is found that,compared to the commonly used 0°cuts,the two-level kirigami metamaterials with 45°cuts exhibit a unique alternating arrangement phenomenon of expanded/unexpanded states in the loading process,which also results in distinct stress–strain response.Through tuning the cutting patterns of metamaterials with 45°cuts,precise control of the rotation of the kirigami unit is realized,leading to kirigami metamaterials with encryption properties.The current work demonstrates the programmability of structural deformation in hierarchical kirigami metamaterials through controlling the local cutting modes.展开更多
The water conductivity of karst collapsed column is affected by multiple factors such as the characteristics of its own column filling,structure and mining disturbance.As a structural water-conducting channel,fault us...The water conductivity of karst collapsed column is affected by multiple factors such as the characteristics of its own column filling,structure and mining disturbance.As a structural water-conducting channel,fault usually plays a controlling role in hydrogeological structure.During the process of mine water hazard prevention and control,it was discovered that the lithology composition,compaction and cementation degree and water physical properties of karst collapsed column fillings were all non-conducting water,but due to the influence of combined development faults,some exploration drill holes showed concentrated water outflow.Based on this,the scientific hypothesis was proposed that fault cutting leads to water conduction in karst collapsed columns.The study comprehensively used methods like chronology,exploration data analysis,and hydrochemical testing to analyze the chronological relationship between faults and karst collapsed columns,their spatial relationship,outlet point distribution and water chemical properties,and the impact of faults on the water-conductivity of karst collapsed columns,which proved the effect of fault cutting on changing water conductivity of karst collapsed column.The research showed that later fault cutting through karst collapsed columns turned the originally non-conductive karst collapsed columns into water-conductive collapsed columns at the fault plane,creating a longitudinally connected water-conducting channel.A new model of fault cutting karst collapsed column to change the original water conductivity of karst collapsed column was proposed.The research results can provide a theoretical basis for the prediction of the water conductivity of the karst collapsed column.According to whether the karst collapsed column was cut by the fault,it was predicted theoretically,so as to determine the key areas of water conductivity detection and prevention and control,and has broad application prospects under the background of source control of mine water disaster.展开更多
It is generally believed that cuttings have a significant impact on the forces of tubular string in extended-reach drilling.However,there are few studies attempted to investigate and quantify it.In this paper,a three-...It is generally believed that cuttings have a significant impact on the forces of tubular string in extended-reach drilling.However,there are few studies attempted to investigate and quantify it.In this paper,a three-layer transient model for cuttings transport is established to simulate the characteristics of dynamic cuttings transport over time under various conditions.The simulation results indicate that the change in drilling parameters like ROP(rate of penetration)and flow rate of drilling fluid will lead to the non-uniform distribution of cuttings bed.And the alternation of drilling and circulation will lead to a clear wavy distribution of cuttings bed in the wellbore.Then,the effect of cuttings on tubular string is obtained through a large number of numerical simulations and the nonlinear regression method,and this influence is introduced into the conventional stiff rod model of tubular string.Finally,the transient model for cuttings transport is coupled with the modified tubular mechanic model and applies to a case study of extended-reach drilling.The results show that there is a delay effect for the effect of the changes in drilling parameters on the ground torques because the changes in drilling parameters occur instantaneously,while the changes in cuttings bed distribution are slow due to its low transport velocity.Based on the coupling analysis of transient cuttings transport and tubular mechanical behaviors,the drilling parameters are optimized,including the recommended adjustment period and adjustment range for the ROP,the proper drilling time for the increased flow rate.Furthermore,the circulation and back reaming are optimized.For circulation,the keys are choosing appropriate time interval between the two adjacent circulations and the time for each circulation.To avoid pipe stuck,at least 20 min of circulation is required to remove the cuttings bed near the large-sized BHA((Bottom Hole Assembly))before back reaming,and the maximum back reaming velocity should be smaller than the minimum transport velocity of the uniform bed.展开更多
Vibration cutting has emerged as a promising method for creating surface functional microstructures.However,achieving precise tool setting is a time-consuming process that significantly impacts process efficiency.This...Vibration cutting has emerged as a promising method for creating surface functional microstructures.However,achieving precise tool setting is a time-consuming process that significantly impacts process efficiency.This study proposes an intelligent approach for tool setting in vibration cutting using machine vision and hearing,divided into two steps.In the first step,machine vision is employed to achieve rough precision in tool setting within tens of micrometers.Subsequently,in the second step,machine hearing utilizes sound pickup to capture vibration audio signals,enabling fine tool adjustment within 1μm precision.The relationship between the spectral intensity of vibration audio and cutting depth is analyzed to establish criteria for tool–workpiece contact.Finally,the efficacy of this approach is validated on an ultra-precision platform,demonstrating that the automated tool-setting process takes no more than 74 s.The total cost of the vision and hearing sensors is less than$1500.展开更多
The fatigue resistance of casting polyurethane(CPU)is crucial in various sectors,such as construction,healthcare,and the automotive industry.Despite its importance,no studies have reported on the fatigue threshold of ...The fatigue resistance of casting polyurethane(CPU)is crucial in various sectors,such as construction,healthcare,and the automotive industry.Despite its importance,no studies have reported on the fatigue threshold of CPU.This study employed an advanced Intrinsic Strength Analyzer(ISA)to evaluate the fatigue threshold of CPUs,systematically exploring the effects of three types of isocyanates(PPDI,NDI,TDI)that contribute to hard segment structures based on the cutting method.Employing multiple advanced characterization techniques(XRD,TEM,DSC,AFM),the results indicate that PPDI-based polyurethane exhibits the highest fatigue threshold(182.89 J/m^(2))due to a highest phase separation and a densely packed spherulitic structure,although the hydrogen bonding degree is the lowest(48.3%).Conversely,NDI-based polyurethane,despite having the high hydrogen bonding degree(53.6%),exhibits moderate fatigue performance(122.52 J/m^(2)),likely due to a more scattered microstructure.TDI-based polyurethane,with the highest hydrogen bonding degree(59.1%)but absence of spherulitic structure,shows the lowest fatigue threshold(46.43 J/m^(2)).Compared to common rubbers(NR,NBR,EPDM,BR),the superior fatigue performance of CPU is attributed to its well-organized microstructure,polyurethane possesses a higher fatigue threshold due to its high phase separation degree and orderly and dense spherulitic structure which enhances energy dissipation and reduces crack propagation.展开更多
Have we ever seen such a shocking garment in the fashion industry?A down jacket that claims to be one but uses absolutely no down,yet possesses remarkable heating and insulating properties,all designed with a colorles...Have we ever seen such a shocking garment in the fashion industry?A down jacket that claims to be one but uses absolutely no down,yet possesses remarkable heating and insulating properties,all designed with a colorless aesthetic.It resembles clothing that has come from the future.The secret behind this captivating design lies in"SOLAMENTR■"developed by Sumitomo Metal Mining Co.,Ltd.展开更多
To study the relationships between rock mass crack propagation and damage and confining pressure under blast impact loading during straight-hole cut blasting,tests were performed under different confining pressures.Th...To study the relationships between rock mass crack propagation and damage and confining pressure under blast impact loading during straight-hole cut blasting,tests were performed under different confining pressures.Then,the characteristics of rock mass crack development were analyzed,and the pressure resistance values of core samples before and after blasting were compared to study the trends of rock mass damage.Moreover,a three-dimensional numerical simulation model was established by LS-DYNA to analyze the stress wave propagation,cavity shape and crack propagation characteristics under different confining pressures.The propagation of rock blasting cracks is negatively correlated with the confining pressure.The greater the confining pressure,the shorter the crack development time.Additionally,the crack width is reduced from 0.4-1.7 to 0.04-1.4 mm,and the length is shortened from 280 to 120 mm.A comparison of the compressive strength revealed that blasting reduces the compressive strength of the rock mass.The greater the distance from the explosion source,the lower the degree of strength attenuation.An increase in the confining pressure can inhibit strength attenuation.Numerical simulations revealed that under the same confining pressure,the stress first peaks at the bottom of the blast hole.The greater the confining pressure,the longer the stress peak duration,the smaller the cavity volume,and the shorter the crack propagation length and depth.Under a confining pressure of 4 MPa,the longest crack was only 154.5 mm in length and 102 mm in depth.The research results provide a scientific basis for controlling rock damage and optimizing design in the excavation of deep rock roadways by blasting.展开更多
A grey-box modelling framework was developed for the estimation of cut point temperature of a crude distillation unit(CDU)under uncertainty in crude composition and process conditions.First principle(FP)model of CDU w...A grey-box modelling framework was developed for the estimation of cut point temperature of a crude distillation unit(CDU)under uncertainty in crude composition and process conditions.First principle(FP)model of CDU was developed for Pakistani crudes from Zamzama and Kunnar fields.A hybrid methodology based on the integration of Taguchi method and genetic algorithm(GA)was employed to estimate the optimal cut point temperature for various sets of process variables.Optimised datasets were utilised to develop an artificial neural networks(ANN)model for the prediction of optimum values of cut points.The ANN model was then used to replace the hybrid framework of the Taguchi method and the GA.The integration of the ANN and FP model makes it a grey-box(GB)model.For the case of Zamama crude,the GB model helped in the decrease of up to 38.93%in energy required per kilo barrel of diesel and an 8.2%increase in diesel production compared to the stand-alone FP model under uncertainty.Similarly,for Kunnar crude,up to 18.87%decrease in energy required per kilo barrel of diesel and a 33.96%increase in diesel production was observed in comparison to the stand-alone FP model.展开更多
The 3rd China International Supply Chain Expo(hereinafter referred to as the CISCE)is approaching,and NEXWISE Intelligence China Limited(hereinaf ter refer red to as NEXWISE Intelligence),a repeat exhibitor at the eve...The 3rd China International Supply Chain Expo(hereinafter referred to as the CISCE)is approaching,and NEXWISE Intelligence China Limited(hereinaf ter refer red to as NEXWISE Intelligence),a repeat exhibitor at the event,is ready for the show.In the E4 Hall’s Digital Technology Exhibition Zone,this AI-focused company will showcase its two flagship products and technology systems:“Zhang An Xing”Smart Security and“KuberAI(Producer Platform)”Computing Power Foundation,demonstrating China’s innovative AIdriven efforts in empowering industrial chain security.展开更多
This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is establish...This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises.展开更多
High-speed milling(HSM)is advantageous for machining high-quality complex-structure surface components with various materials.Identifying and estimating cutting force signals for characterizing HSM is of high signific...High-speed milling(HSM)is advantageous for machining high-quality complex-structure surface components with various materials.Identifying and estimating cutting force signals for characterizing HSM is of high significance.However,considering the tool runout and size effects,many proposed models focus on the material and mechanical characteristics.This study presents a novel approach for predicting micromilling cutting forces using a semianalytical multidimensional model that integrates experimental empirical data and a mechanical theoretical force model.A novel analytical optimization approach is provided to identify the cutting forces,classify the cutting states,and determine the tool runout using an adaptive algorithm that simplifies modeling and calculation.The instantaneous un-deformed chip thickness(IUCT)is determined from the trochoidal trajectories of each tool flute and optimized using the bisection method.Herein,the computational efficiency is improved,and the errors are clarified.The tool runout parameters are identified from the processed displacement signals and determined from the preprocessed vibration signals using an adaptive signal processing method.It is reliable and stable for determining tool runout and is an effective foundation for the force model.This approach is verified using HSM tests.Herein,the determination coefficients are stable above 0.9.It is convenient and efficient for achieving the key intermediate parameters(IUCT and tool runout),which can be generalized to various machining conditions and operations.展开更多
基金supported by financial grants from the National Natural Science Foundation of China(Grant Nos.52334003 and 52104111)the National Key R&D Program of China(Grant No.2022YFC2905600)。
文摘Water-weakening presents a promising strategy for the in-situ improvement of rock cuttability.This study unveils the influences of water saturation on the mechanical response and fragmentation characteristics of rock samples.A series of rock-cutting tests using conical pick indentation was conducted on three types of sandstone samples under both dry and water-saturated conditions.The relationships between cutting force and indentation depth,as well as typical cuttability indices are determined and compared for dry and water-saturated samples.The experimental results reveal that the presence of water facilitates shearing failure in rock samples,as well as alleviates the fluctuations in the cutting force-indentation depth curve Furthermore,the peak cutting force(F_(p)),cutting work(W_(p)),and specific energy(SE)undergo apparent decrease after water saturation,whereas the trend in the indentation depth at rock failure(D_(f))varies across different rock types.Additionally,the water-induced percentage reductions in F_(p)and SE correlate positively with the quartz and swelling clay content within the rocks,suggesting that the cuttability improvement due to water saturation is attributed to the combined effects of stress corrosion and frictional reduction.These findings carry significant implications for improving rock cuttability in mechanized excavation of hard rock formations.
基金supported by the National Natural Science Foundation of China(Nos.52174099 and 52474168)the Science and Technology Innovation Program of Hunan Province,China(No.2023RC3050)+1 种基金the Natural Science Foundation of Hunan,China(No.2024JJ4064)the Open Fund of the State Key Laboratory of Safety Technology of Metal Mines(No.kfkt2023-01).
文摘Real-time identification of rock strength and cuttability based on monitoring while cutting during excavation is essential for key procedures such as the precise adjustment of excavation parameters and the in-situ modification of hard rocks.This study proposes an in-telligent approach for predicting rock strength and cuttability.A database comprising 132 data sets is established,containing cutting para-meters(such as cutting depth and pick angle),cutting responses(such as specific energy and instantaneous cutting rate),and rock mech-anical parameters collected from conical pick-cutting experiments.These parameters serve as input features for predicting the uniaxial compressive strength and tensile strength of rocks using regression fitting and machine learning methodologies.In addition,rock cuttabil-ity is classified using a combination of the analytic hierarchy process and fuzzy comprehensive evaluation method,and subsequently iden-tified through machine learning approaches.Various models are compared to determine the optimal predictive and classification models.The results indicate that the optimal model for uniaxial compressive strength and tensile strength prediction is the genetic algorithm-optimized backpropagation neural network model,and the optimal model for rock cuttability classification is the radial basis neural network model.
基金financially supported by the National Natural Science Foundation of China(Nos.92160301,92060203,52175415 and 52205475)the Science Center for Gas Turbine Project(No.P2023-B-IV-003-001)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210295)the Huaqiao University Engineering Research Center of Brittle Materials Machining(MOE,2023IME-001)。
文摘The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and medical sectors.However,conventional machining of titanium alloys leads to elevated tool wear,development of surface defects,and reduced machining efficiency due to their low heat conductivity,and chemical affinity.These issues can be somewhat counteracted by integrating ultrasonic vibration in the conventional machining of titanium alloys and also enhance sustainability.This review article offers a holistic evaluation of the influence of ultrasonic vibration-assisted milling and turning on cutting forces,temperature,tool wear,and surface integrity,encompassing surface morphology,surface roughness,surface residual stress,surface hardness,and surface tribological properties during titanium alloys machining.Furthermore,it investigates the sustainability aspect that has not been previously examined.Studies on the performance of ultrasonic-assisted cutting revealed several advantages,including decreased cutting forces and cutting temperature,improved tool life,and a better-machined surface during machining.Consequently,the sustainability factor is improved due to minimized energy consumption and residual waste.In conclusion,the key challenges and future prospects in the ultrasonic-assisted cutting of titanium alloys are also discussed.This review article provides beneficial knowledge for manufactur-ers and researchers regarding ultrasonic vibration-assisted cutting of titanium alloy and will play an important role in achieving sustainability in the industry.
文摘A centrifugal pump with a specific speed ns=67 is considered in this study to investigate the impact of blade cutting(at the outlet edge)on the fluid-induced noise,while keeping all the other geometric parameters unchanged.The required unsteady numerical calculations are conducted by applying the RNG k-εturbulence model with the volute dipole being used as the sound source.The results indicate that the internal pressure energy of the centrifugal pump essentially depends on the blade passing frequency and its low-frequency harmonic frequency.Moreover,the pressure pulsation distribution directly affects the noise caused by the centrifugal pump.The sound pressure inside and outside the centrifugal pump and the sound power at the blade passing frequency gradually decrease increasing cutting distance of the impeller blades.When the cutting percentage is 1.21%,that is,the clearance ratio between impeller blade and tongue is 8.57%,the comprehensive performance of the centrifugal pump is the best.
基金Supported by Jiangsu Provincial Natural Science Foundation(Grant No.BK20231497)Jiangsu Provincial Post Graduate Research&Practice Innovation Program(Grant No.KYCX25_2982)+2 种基金China University of Mining and Technology Graduate Innovation Program(Grant No.2025WLKXJ094)National Natural Science Foundation of China(Grant No.51975573),National Key R&D Program of China(Grant No.2022YFC2905600)Priority Academic Program Development of Jiangsu Higher Education Institute of China.
文摘During the excavation process of deep hard rock tunnels,precutting rock with an abrasive water jet can weaken their strength and improve the efficiency of mining machinery.However,owing to the complex geological environment,abrasive jets cannot fully utilize their rock-cutting performance.To fully exploit the advantages of high-pressure abrasive water jets,five orthogonal experiments were designed for rocks with significant differences in strength.Experimental research has been conducted on the performance of rotating abrasive waterjet-cutting rocks.Moreover,a neural network prediction model for predicting rock-cutting characteristics is established by comprehensively considering rock mechanics parameters and abrasive water jet parameters.The results show that the cutting depth of rocks with different strengths increases nonlinearly with increasing work pressure of the abrasive water jet.The cutting depth decreases exponentially with increasing cutting velocity.The cutting depth first increases and then decreases with increasing target distance,and the best target distance is between 4 mm and 6 mm.The effect of the target distance on the cutting width of rock is the most significant,but the cutting width of high-strength rock is not sensitive to changes in the working parameters of the abrasive water jet.The average relative errors of BP(backpropagation)neural networks optimized by global optimization algorithms in predicting rock cutting depth and width are 13.3%and 5.4%,respectively.This research combines the working characteristics of mining machinery to study the performance of abrasive waterjet rotary cutting of rocks and constructs a predictive model for the performance of abrasive waterjet cutting of rocks that includes rock strength factors.This provides a new solution for quickly adjusting the working parameters of abrasive water jets according to mining conditions.
基金financially supported by the Natural Science Foundation of Guangdong Province(Grant Nos.2023A1515030023,2022B0202110003,2021TQ06N115,2020B121201008)the Special Fund for Scientific Innovation Strategy-Construction of High Level Academy of Agriculture Science(R2023PY-JG025)。
文摘The water content of cut flowers is a significant factor in their post-harvest quality.In this study,we examine the efficacy of silver nanoparticles(NS)on the longevity of cut gladiolus,with a focus on water state and distribution.We used Low-field nuclear magnetic resonance(LF-NMR)technology to identify three water fractions with different transverse relaxation times(T2)values:bound water T21(<10 ms),intermediate immobilized water T22(10-100 ms),and the slowest component free water T23(>10 ms).During the opening process,T23increased at stages 2 and 3 and then decreased,T22 decreased slowly,and T21 remained unchanged.Free water values were consistently higher than bound water and immobilized water and reached their maximum from stage 2 until stage 4,when the petals were extended and began to wilt.The vascular bundles responsible for transporting water had higher water content,as detected by proton density-weighted magnetic resonance imaging(MRI).Bound water and free water with NS pretreatments in bracts were initially lower but then two days later the signal amplitude of each water state exceeded those of the control,indicating that the treatment enhanced the water-holding capacity over time.Furthermore,NS pretreatments reduced the free water mobility of the cut flowers and inhibited stem decay.Additionally,we found that NS can enter the stem and are primarily transported upward along the xylem with water using scanning electron microscopy(SEM)and energy-dispersive X-ray spectroscopy(EDS)technology.Overall,our findings indicate that NS pretreatment reduces free water in gladiolus cut flowers,enhancing their water retention and prolonging their vase life.
基金supported by the National Natural Science Foundation of China(Grant Nos.12102392 and 12272341)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ21A020008).
文摘Kirigami,through introducing cuts into a thin sheet,can greatly improve the stretchability of structures and also generate complex patterns,showing potentials in various applications.Interestingly,even with the same cutting pattern,the mechanical response of kirigami metamaterials can exhibit significant differences depending on the cutting angles in respect to the loading direction.In this work,we investigate the structural deformation of kirigami metamaterials with square domains and varied cutting angles of 0°and 45°.We further introduce a second level of cutting on the basis of the first cutting pattern.By combining experiments and finite element simulations,it is found that,compared to the commonly used 0°cuts,the two-level kirigami metamaterials with 45°cuts exhibit a unique alternating arrangement phenomenon of expanded/unexpanded states in the loading process,which also results in distinct stress–strain response.Through tuning the cutting patterns of metamaterials with 45°cuts,precise control of the rotation of the kirigami unit is realized,leading to kirigami metamaterials with encryption properties.The current work demonstrates the programmability of structural deformation in hierarchical kirigami metamaterials through controlling the local cutting modes.
基金supported by the Postdoctoral Fellowship Program of CPSF(No.GZC20233005)the Fundamental Research Funds for the Central Universities(No.2024QN11025)+1 种基金the General Program of National Natural Science Foundation of China(No.52274243)the Hebei Province Natural Science Foundation Ecological Wisdom Mine Joint Fund Project(Nos.D2020402013 and D2022402040)。
文摘The water conductivity of karst collapsed column is affected by multiple factors such as the characteristics of its own column filling,structure and mining disturbance.As a structural water-conducting channel,fault usually plays a controlling role in hydrogeological structure.During the process of mine water hazard prevention and control,it was discovered that the lithology composition,compaction and cementation degree and water physical properties of karst collapsed column fillings were all non-conducting water,but due to the influence of combined development faults,some exploration drill holes showed concentrated water outflow.Based on this,the scientific hypothesis was proposed that fault cutting leads to water conduction in karst collapsed columns.The study comprehensively used methods like chronology,exploration data analysis,and hydrochemical testing to analyze the chronological relationship between faults and karst collapsed columns,their spatial relationship,outlet point distribution and water chemical properties,and the impact of faults on the water-conductivity of karst collapsed columns,which proved the effect of fault cutting on changing water conductivity of karst collapsed column.The research showed that later fault cutting through karst collapsed columns turned the originally non-conductive karst collapsed columns into water-conductive collapsed columns at the fault plane,creating a longitudinally connected water-conducting channel.A new model of fault cutting karst collapsed column to change the original water conductivity of karst collapsed column was proposed.The research results can provide a theoretical basis for the prediction of the water conductivity of the karst collapsed column.According to whether the karst collapsed column was cut by the fault,it was predicted theoretically,so as to determine the key areas of water conductivity detection and prevention and control,and has broad application prospects under the background of source control of mine water disaster.
基金support from the Natural Science Foundation of China(Grant Nos.52222401,52234002,52394255)National Key Research and Development Program of China(Grant No.2023YFC2810901)Science Foundation of China University of Petroleum,Beijing(Grant No.ZXZX20230083).
文摘It is generally believed that cuttings have a significant impact on the forces of tubular string in extended-reach drilling.However,there are few studies attempted to investigate and quantify it.In this paper,a three-layer transient model for cuttings transport is established to simulate the characteristics of dynamic cuttings transport over time under various conditions.The simulation results indicate that the change in drilling parameters like ROP(rate of penetration)and flow rate of drilling fluid will lead to the non-uniform distribution of cuttings bed.And the alternation of drilling and circulation will lead to a clear wavy distribution of cuttings bed in the wellbore.Then,the effect of cuttings on tubular string is obtained through a large number of numerical simulations and the nonlinear regression method,and this influence is introduced into the conventional stiff rod model of tubular string.Finally,the transient model for cuttings transport is coupled with the modified tubular mechanic model and applies to a case study of extended-reach drilling.The results show that there is a delay effect for the effect of the changes in drilling parameters on the ground torques because the changes in drilling parameters occur instantaneously,while the changes in cuttings bed distribution are slow due to its low transport velocity.Based on the coupling analysis of transient cuttings transport and tubular mechanical behaviors,the drilling parameters are optimized,including the recommended adjustment period and adjustment range for the ROP,the proper drilling time for the increased flow rate.Furthermore,the circulation and back reaming are optimized.For circulation,the keys are choosing appropriate time interval between the two adjacent circulations and the time for each circulation.To avoid pipe stuck,at least 20 min of circulation is required to remove the cuttings bed near the large-sized BHA((Bottom Hole Assembly))before back reaming,and the maximum back reaming velocity should be smaller than the minimum transport velocity of the uniform bed.
基金the financial support for this research provided by the National Natural Science Foundation of China(Grant Nos.52275470,124115301,and 52105458)the Natural Science Foundation of Beijing(Grant No.3222009).
文摘Vibration cutting has emerged as a promising method for creating surface functional microstructures.However,achieving precise tool setting is a time-consuming process that significantly impacts process efficiency.This study proposes an intelligent approach for tool setting in vibration cutting using machine vision and hearing,divided into two steps.In the first step,machine vision is employed to achieve rough precision in tool setting within tens of micrometers.Subsequently,in the second step,machine hearing utilizes sound pickup to capture vibration audio signals,enabling fine tool adjustment within 1μm precision.The relationship between the spectral intensity of vibration audio and cutting depth is analyzed to establish criteria for tool–workpiece contact.Finally,the efficacy of this approach is validated on an ultra-precision platform,demonstrating that the automated tool-setting process takes no more than 74 s.The total cost of the vision and hearing sensors is less than$1500.
基金financially supported by the National Natural Science Foundation of China(No.52473228).
文摘The fatigue resistance of casting polyurethane(CPU)is crucial in various sectors,such as construction,healthcare,and the automotive industry.Despite its importance,no studies have reported on the fatigue threshold of CPU.This study employed an advanced Intrinsic Strength Analyzer(ISA)to evaluate the fatigue threshold of CPUs,systematically exploring the effects of three types of isocyanates(PPDI,NDI,TDI)that contribute to hard segment structures based on the cutting method.Employing multiple advanced characterization techniques(XRD,TEM,DSC,AFM),the results indicate that PPDI-based polyurethane exhibits the highest fatigue threshold(182.89 J/m^(2))due to a highest phase separation and a densely packed spherulitic structure,although the hydrogen bonding degree is the lowest(48.3%).Conversely,NDI-based polyurethane,despite having the high hydrogen bonding degree(53.6%),exhibits moderate fatigue performance(122.52 J/m^(2)),likely due to a more scattered microstructure.TDI-based polyurethane,with the highest hydrogen bonding degree(59.1%)but absence of spherulitic structure,shows the lowest fatigue threshold(46.43 J/m^(2)).Compared to common rubbers(NR,NBR,EPDM,BR),the superior fatigue performance of CPU is attributed to its well-organized microstructure,polyurethane possesses a higher fatigue threshold due to its high phase separation degree and orderly and dense spherulitic structure which enhances energy dissipation and reduces crack propagation.
文摘Have we ever seen such a shocking garment in the fashion industry?A down jacket that claims to be one but uses absolutely no down,yet possesses remarkable heating and insulating properties,all designed with a colorless aesthetic.It resembles clothing that has come from the future.The secret behind this captivating design lies in"SOLAMENTR■"developed by Sumitomo Metal Mining Co.,Ltd.
基金The National Natural Science Foundation of China(No.51874189)the Shandong Provincial Natural Science Foundation(Nos.ZR2023ME106 and ZR2023ME055)the Open Fund Project of the Engineering Research Center of the Ministry of Education for Mining Underground Engineering(No.JYBGCZX2021102).
文摘To study the relationships between rock mass crack propagation and damage and confining pressure under blast impact loading during straight-hole cut blasting,tests were performed under different confining pressures.Then,the characteristics of rock mass crack development were analyzed,and the pressure resistance values of core samples before and after blasting were compared to study the trends of rock mass damage.Moreover,a three-dimensional numerical simulation model was established by LS-DYNA to analyze the stress wave propagation,cavity shape and crack propagation characteristics under different confining pressures.The propagation of rock blasting cracks is negatively correlated with the confining pressure.The greater the confining pressure,the shorter the crack development time.Additionally,the crack width is reduced from 0.4-1.7 to 0.04-1.4 mm,and the length is shortened from 280 to 120 mm.A comparison of the compressive strength revealed that blasting reduces the compressive strength of the rock mass.The greater the distance from the explosion source,the lower the degree of strength attenuation.An increase in the confining pressure can inhibit strength attenuation.Numerical simulations revealed that under the same confining pressure,the stress first peaks at the bottom of the blast hole.The greater the confining pressure,the longer the stress peak duration,the smaller the cavity volume,and the shorter the crack propagation length and depth.Under a confining pressure of 4 MPa,the longest crack was only 154.5 mm in length and 102 mm in depth.The research results provide a scientific basis for controlling rock damage and optimizing design in the excavation of deep rock roadways by blasting.
基金Higher Education Commission,Pakistan,under the National Research Program for Universities Project,Grant/Award Number:NBU-FPEJ-2024-1243-02。
文摘A grey-box modelling framework was developed for the estimation of cut point temperature of a crude distillation unit(CDU)under uncertainty in crude composition and process conditions.First principle(FP)model of CDU was developed for Pakistani crudes from Zamzama and Kunnar fields.A hybrid methodology based on the integration of Taguchi method and genetic algorithm(GA)was employed to estimate the optimal cut point temperature for various sets of process variables.Optimised datasets were utilised to develop an artificial neural networks(ANN)model for the prediction of optimum values of cut points.The ANN model was then used to replace the hybrid framework of the Taguchi method and the GA.The integration of the ANN and FP model makes it a grey-box(GB)model.For the case of Zamama crude,the GB model helped in the decrease of up to 38.93%in energy required per kilo barrel of diesel and an 8.2%increase in diesel production compared to the stand-alone FP model under uncertainty.Similarly,for Kunnar crude,up to 18.87%decrease in energy required per kilo barrel of diesel and a 33.96%increase in diesel production was observed in comparison to the stand-alone FP model.
文摘The 3rd China International Supply Chain Expo(hereinafter referred to as the CISCE)is approaching,and NEXWISE Intelligence China Limited(hereinaf ter refer red to as NEXWISE Intelligence),a repeat exhibitor at the event,is ready for the show.In the E4 Hall’s Digital Technology Exhibition Zone,this AI-focused company will showcase its two flagship products and technology systems:“Zhang An Xing”Smart Security and“KuberAI(Producer Platform)”Computing Power Foundation,demonstrating China’s innovative AIdriven efforts in empowering industrial chain security.
基金Supported by the Natural Science Foundation of Zhejiang Province(No.LQ22F030015).
文摘This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises.
基金Supported by National Natural Science Foundation of China(Grant No.52175528).
文摘High-speed milling(HSM)is advantageous for machining high-quality complex-structure surface components with various materials.Identifying and estimating cutting force signals for characterizing HSM is of high significance.However,considering the tool runout and size effects,many proposed models focus on the material and mechanical characteristics.This study presents a novel approach for predicting micromilling cutting forces using a semianalytical multidimensional model that integrates experimental empirical data and a mechanical theoretical force model.A novel analytical optimization approach is provided to identify the cutting forces,classify the cutting states,and determine the tool runout using an adaptive algorithm that simplifies modeling and calculation.The instantaneous un-deformed chip thickness(IUCT)is determined from the trochoidal trajectories of each tool flute and optimized using the bisection method.Herein,the computational efficiency is improved,and the errors are clarified.The tool runout parameters are identified from the processed displacement signals and determined from the preprocessed vibration signals using an adaptive signal processing method.It is reliable and stable for determining tool runout and is an effective foundation for the force model.This approach is verified using HSM tests.Herein,the determination coefficients are stable above 0.9.It is convenient and efficient for achieving the key intermediate parameters(IUCT and tool runout),which can be generalized to various machining conditions and operations.