Cu(OH)2 nanowires were prepared and incorporated into poly(vinylidene fluoride)(PVDF) to fabricate Cu(OH)2-PVDF ultrafiltration(UF) membrane via immersion precipitation phase inversion process. The effect of...Cu(OH)2 nanowires were prepared and incorporated into poly(vinylidene fluoride)(PVDF) to fabricate Cu(OH)2-PVDF ultrafiltration(UF) membrane via immersion precipitation phase inversion process. The effect of Cu(OH)2 nanowires on the morphology of membranes was investigated by X-ray photoelectron spectroscopy(XPS), Fourier transform infrared(FTIR) spectroscopy, atomic force microscopy(AFM), scanning electron microscopy(SEM) and X-ray diffraction(XRD) measurements. The results showed that all the Cu(OH)2-PVDF membranes had wider fingerlike pore structure and better hydrophilicity, smoother surface than pristine PVDF membrane due to the incorporation of Cu(OH)2 nanowires. In addition, water flux and bovine serum albumin(BSA) rejection were also measured to investigate the filtration performance of membranes. The results indicated that all the Cu(OH)2-PVDF membranes had high water flux, outstanding BSA rejection and excellent antifouling properties. It is worth mentioning that the optimized performance could be obtained when the Cu(OH)2 nanowires content reached 1.2 wt%. Furthermore, the membrane with 1.2 wt% Cu(OH)2 nanowires showed outstanding oil-water emulsion separation capability.展开更多
The Cu(Ⅱ) separation behaviors with polymer inclusion membranes(PIMs) are explored by modifying 2-aminomethylpyridine derivatives with hydrophobic alkyl chains, including 2-[N-(tert-butyloxycarbonylmethyl)-2-picolyam...The Cu(Ⅱ) separation behaviors with polymer inclusion membranes(PIMs) are explored by modifying 2-aminomethylpyridine derivatives with hydrophobic alkyl chains, including 2-[N-(tert-butyloxycarbonylmethyl)-2-picolyamino]acetate(AMB), N,N-dioctyl-2-aminomethylpyridine(AMD), tert-butyl 2-(N-octyl-2-picolyamino) acetate(AMC), and N,N-didecyl-2-aminomethylpyridine(AME). The transport flux and selectivity of Cu(Ⅱ) are determined by optimizing composition and structure of carriers and plasticizers. The results show that the hydrophobic modification of 2-aminomethylpyridine derivatives can boost the selective transport of copper ions in PIMs and membrane stability. In the optimum composition of 30 wt.% PVC, 30 wt.% AME, and 40 wt.% NPOE, the initial flux of Cu(Ⅱ) is 5.8×10^(−6) mol·m^(−2)·s^(−1). The FT-IR and XPS spectra identify that the alkyl amine functional groups of AME involve in the transport of copper chloride species. The SAXS analysis demonstrates that the generated micro-channels in PIMs induced by the hydrophobic modification of 2-aminomethylpyridine derivatives can contribute to the enhanced Cu(Ⅱ) flux.展开更多
The Parkam exploration district represents an area of approximately 4 km^2 located 50 km north of Shahr-E-Babak(Kerman Province, Iran), and has several traces of old copper mining and smelting activities. This area ...The Parkam exploration district represents an area of approximately 4 km^2 located 50 km north of Shahr-E-Babak(Kerman Province, Iran), and has several traces of old copper mining and smelting activities. This area lies in the Kerman Copper Belt which is part of the larger Sahand-Bazman igneous and metallogenic zone hosting numerous known porphyry copper deposits and systems. The geology of the Parkam exploration district demonstrates that the area contains a diorite-type porphyry copper system hosted by volcanic and pyroclastic rocks of predominantly andesitic composition. Based on field and microscopic investigation, it was determined that the dominant types of alteration were propylitic, phyllic, argillic, and potassic, and the alteration map of the study area was produced. Expect for the propylitic alteration which was observed mainly in the host rocks, the other types of alteration are associated mainly with the dioritic subvolcanic body. Accompanied by subordinate amounts of primary sulfides, fracture-filling malachite is widespread in the potassic and phyllic zones and comprises the dominant style of mineralization at the surface of the porphyry system. Lithogeochemical data resulting from 377 samples were analyzed, and the results of background and anomaly separation by means of conventional and the U-spatial statistic method were compared. The Cu and Mo mineralizations were subsequently delineated using the U-spatial statistic. The delineated Cu mineralization is closely associated with the defined zone of potassic alteration, which is also consistent with the field and microscopic observation of the Cu mineralization in this alteration zone. The Mo mineralization delineated by the U-statistic method is mostly associated with the phyllic alteration and is spatially conformable with the zone defined for it. The source code for a software program, which was developed in the MATLAB programming language in order to perform the calculations of the U-spatial statistic method, is additionally provided. This software is compatible with geochemical variates other than Cu and Mo and can be used in similar exploration projects.展开更多
基金financially supported by the Postdoctoral Science Foundation of China (No.2014M560802)the Natural Science Foundation of Education Department of Shaanxi Provincial Government (No.16JK1755)the State Key Laboratory of Chemical Engineering (No.SKL-ChE-16A04)
文摘Cu(OH)2 nanowires were prepared and incorporated into poly(vinylidene fluoride)(PVDF) to fabricate Cu(OH)2-PVDF ultrafiltration(UF) membrane via immersion precipitation phase inversion process. The effect of Cu(OH)2 nanowires on the morphology of membranes was investigated by X-ray photoelectron spectroscopy(XPS), Fourier transform infrared(FTIR) spectroscopy, atomic force microscopy(AFM), scanning electron microscopy(SEM) and X-ray diffraction(XRD) measurements. The results showed that all the Cu(OH)2-PVDF membranes had wider fingerlike pore structure and better hydrophilicity, smoother surface than pristine PVDF membrane due to the incorporation of Cu(OH)2 nanowires. In addition, water flux and bovine serum albumin(BSA) rejection were also measured to investigate the filtration performance of membranes. The results indicated that all the Cu(OH)2-PVDF membranes had high water flux, outstanding BSA rejection and excellent antifouling properties. It is worth mentioning that the optimized performance could be obtained when the Cu(OH)2 nanowires content reached 1.2 wt%. Furthermore, the membrane with 1.2 wt% Cu(OH)2 nanowires showed outstanding oil-water emulsion separation capability.
基金financial supports from the National Key R&D Program of China(No.2019YFC1907801)National Natural Science Foundation of China(No.52174286)+1 种基金Hunan Provincial Science and Technology Plan Project,China(No.2019JJ30031)InnovationDriven of Central South University,China(No.2020CX007)。
文摘The Cu(Ⅱ) separation behaviors with polymer inclusion membranes(PIMs) are explored by modifying 2-aminomethylpyridine derivatives with hydrophobic alkyl chains, including 2-[N-(tert-butyloxycarbonylmethyl)-2-picolyamino]acetate(AMB), N,N-dioctyl-2-aminomethylpyridine(AMD), tert-butyl 2-(N-octyl-2-picolyamino) acetate(AMC), and N,N-didecyl-2-aminomethylpyridine(AME). The transport flux and selectivity of Cu(Ⅱ) are determined by optimizing composition and structure of carriers and plasticizers. The results show that the hydrophobic modification of 2-aminomethylpyridine derivatives can boost the selective transport of copper ions in PIMs and membrane stability. In the optimum composition of 30 wt.% PVC, 30 wt.% AME, and 40 wt.% NPOE, the initial flux of Cu(Ⅱ) is 5.8×10^(−6) mol·m^(−2)·s^(−1). The FT-IR and XPS spectra identify that the alkyl amine functional groups of AME involve in the transport of copper chloride species. The SAXS analysis demonstrates that the generated micro-channels in PIMs induced by the hydrophobic modification of 2-aminomethylpyridine derivatives can contribute to the enhanced Cu(Ⅱ) flux.
文摘The Parkam exploration district represents an area of approximately 4 km^2 located 50 km north of Shahr-E-Babak(Kerman Province, Iran), and has several traces of old copper mining and smelting activities. This area lies in the Kerman Copper Belt which is part of the larger Sahand-Bazman igneous and metallogenic zone hosting numerous known porphyry copper deposits and systems. The geology of the Parkam exploration district demonstrates that the area contains a diorite-type porphyry copper system hosted by volcanic and pyroclastic rocks of predominantly andesitic composition. Based on field and microscopic investigation, it was determined that the dominant types of alteration were propylitic, phyllic, argillic, and potassic, and the alteration map of the study area was produced. Expect for the propylitic alteration which was observed mainly in the host rocks, the other types of alteration are associated mainly with the dioritic subvolcanic body. Accompanied by subordinate amounts of primary sulfides, fracture-filling malachite is widespread in the potassic and phyllic zones and comprises the dominant style of mineralization at the surface of the porphyry system. Lithogeochemical data resulting from 377 samples were analyzed, and the results of background and anomaly separation by means of conventional and the U-spatial statistic method were compared. The Cu and Mo mineralizations were subsequently delineated using the U-spatial statistic. The delineated Cu mineralization is closely associated with the defined zone of potassic alteration, which is also consistent with the field and microscopic observation of the Cu mineralization in this alteration zone. The Mo mineralization delineated by the U-statistic method is mostly associated with the phyllic alteration and is spatially conformable with the zone defined for it. The source code for a software program, which was developed in the MATLAB programming language in order to perform the calculations of the U-spatial statistic method, is additionally provided. This software is compatible with geochemical variates other than Cu and Mo and can be used in similar exploration projects.