期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于跨主体交互和多尺度时间增强的行为识别方法
1
作者 张君逸 赵培培 +3 位作者 梁松 杨迪 孙奥然 肖涛 《计算机应用研究》 北大核心 2025年第9期2847-2855,共9页
在图像/视频的行为识别算法中,存在骨骼图数据利用不充分、模型忽略运动中的交互语义信息,以及捕获运动中长短时信息不足等问题,导致在双人交互行为和相似动作场景下识别准确率不高。为解决这些问题,提出一种基于跨主体交互和多尺度时... 在图像/视频的行为识别算法中,存在骨骼图数据利用不充分、模型忽略运动中的交互语义信息,以及捕获运动中长短时信息不足等问题,导致在双人交互行为和相似动作场景下识别准确率不高。为解决这些问题,提出一种基于跨主体交互和多尺度时间增强的CTR-GCN(channel-wise topology refinement graph convolution net)网络的行为识别模型。针对输入骨骼图利用不充分的问题,将图数据进行分解来作数据增强,并设计集成网络来处理这些信息。现有算法主要学习单个主体的节点间的关系,忽略了双人交互行为时的交互语义信息的问题,设计了一种跨主体交互的Cformer(Cross-Transformer)深入学习主体间的交互特征。针对图卷积对时序信息中长短帧间信息处理不足的问题,提出了多尺度时间建模来增强模型对长短时特征的提取能力。实验结果表明,模型在NTU-RGBD和NTU-RGBD 120数据集上达到92.7%和89.4%的准确率,尤其在双人交互行为以及相似动作行为的场景下表现优异,验证了模型的有效性。 展开更多
关键词 行为识别 图卷积网络 ctr-gcn 双人交互行为识别 TRANSFORMER 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部