The earthquake early warning(EEW)system provides advance notice of potentially damaging ground shaking.In EEW,early estimation of magnitude is crucial for timely rescue operations.A set of thirty-four features is extr...The earthquake early warning(EEW)system provides advance notice of potentially damaging ground shaking.In EEW,early estimation of magnitude is crucial for timely rescue operations.A set of thirty-four features is extracted using the primary wave earthquake precursor signal and site-specific information.In Japan's earthquake magnitude dataset,there is a chance of a high imbalance concerning the earthquakes above strong impact.This imbalance causes a high prediction error while training advanced machine learning or deep learning models.In this work,Conditional Tabular Generative Adversarial Networks(CTGAN),a deep machine learning tool,is utilized to learn the characteristics of the first arrival of earthquake P-waves and generate a synthetic dataset based on this information.The result obtained using actual and mixed(synthetic and actual)datasets will be used for training the stacked ensemble magnitude prediction model,MagPred,designed specifically for this study.There are 13295,3989,and1710 records designated for training,testing,and validation.The mean absolute error of the test dataset for single station magnitude detection using early three,four,and five seconds of P wave are 0.41,0.40,and 0.38 MJMA.The study demonstrates that the Generative Adversarial Networks(GANs)can provide a good result for single-station magnitude prediction.The study can be effective where less seismic data is available.The study shows that the machine learning method yields better magnitude detection results compared with the several regression models.The multi-station magnitude prediction study has been conducted on prominent Osaka,Off Fukushima,and Kumamoto earthquakes.Furthermore,to validate the performance of the model,an inter-region study has been performed on the earthquakes of the India or Nepal region.The study demonstrates that GANs can discover effective magnitude estimation compared with non-GAN-based methods.This has a high potential for wide application in earthquake early warning systems.展开更多
基金related to grant PM-31-22-626-414 from the Prime Minister's Research Fellows(PMRF)of the Indian Institute of Technology Roorkee。
文摘The earthquake early warning(EEW)system provides advance notice of potentially damaging ground shaking.In EEW,early estimation of magnitude is crucial for timely rescue operations.A set of thirty-four features is extracted using the primary wave earthquake precursor signal and site-specific information.In Japan's earthquake magnitude dataset,there is a chance of a high imbalance concerning the earthquakes above strong impact.This imbalance causes a high prediction error while training advanced machine learning or deep learning models.In this work,Conditional Tabular Generative Adversarial Networks(CTGAN),a deep machine learning tool,is utilized to learn the characteristics of the first arrival of earthquake P-waves and generate a synthetic dataset based on this information.The result obtained using actual and mixed(synthetic and actual)datasets will be used for training the stacked ensemble magnitude prediction model,MagPred,designed specifically for this study.There are 13295,3989,and1710 records designated for training,testing,and validation.The mean absolute error of the test dataset for single station magnitude detection using early three,four,and five seconds of P wave are 0.41,0.40,and 0.38 MJMA.The study demonstrates that the Generative Adversarial Networks(GANs)can provide a good result for single-station magnitude prediction.The study can be effective where less seismic data is available.The study shows that the machine learning method yields better magnitude detection results compared with the several regression models.The multi-station magnitude prediction study has been conducted on prominent Osaka,Off Fukushima,and Kumamoto earthquakes.Furthermore,to validate the performance of the model,an inter-region study has been performed on the earthquakes of the India or Nepal region.The study demonstrates that GANs can discover effective magnitude estimation compared with non-GAN-based methods.This has a high potential for wide application in earthquake early warning systems.