Dose estimation and quality control in computed tomography (CT) scanners are useful in controlling the dose of radiation given to patients while tests are carried out. The study was performed in a 16-slice Computed To...Dose estimation and quality control in computed tomography (CT) scanners are useful in controlling the dose of radiation given to patients while tests are carried out. The study was performed in a 16-slice Computed Tomography (CT) system of LightSpeed RT16 Xtra CT scanner. Quality control was done using a vendor-provided QA Phantom, and the six aspects of image quality were measured. For CT dosimetry, Computed Tomography Dose index volume (CTDIvol) was performed using Computed Tomography Dose Index (CTDI) Phantom. CTDI Phantom consists of three parts: Pediatric Head, Adult Head, and Adult Body Phantom. A 10 cm long pencil ion chamber DCT-10 was used to measure the dose at different positions inside the CTDI Phantom. Data were collected using MagicMax Universal software. For dose estimation of the CTDIvol Report of AAPM Task Group, 96 and 111 formalisms were used. For Pediatric Head, Adult Head, and Adult Body Phantom the measured CIDIvol was 61.04 mGy, 48.11 mGy, and 18.08 mGy respectively. The study has shown deviations of 7%, 15%, and 19% between estimated and console-displayed doses for Pediatric Head, Adult Head, and Adult Body scan techniques respectively. The six aspects of image quality measured by QA Phantom were found to be compatible with the specifications of the machine and CTDIvol measured by CTDI Phantom were found within a tolerance limit of ±20%. Hence, the QC and dosimetry of the mentioned machine are within the limit.展开更多
目的:比较容积CT剂量指数(volume CT dose index,CTDI_(VOL))及基于水当量直径的体型特异性剂量估计值(size-specific dose estimate based on water equivalent diameter,SSDE_(WED))在衡量儿童头颅CT辐射剂量中的差异性,并分析CTDI_(V...目的:比较容积CT剂量指数(volume CT dose index,CTDI_(VOL))及基于水当量直径的体型特异性剂量估计值(size-specific dose estimate based on water equivalent diameter,SSDE_(WED))在衡量儿童头颅CT辐射剂量中的差异性,并分析CTDI_(VOL)、SSDE_(WED)与曝光量、水当量直径(water equivalent diameter,WED)的相关性,以为临床检查中儿童头颅CT辐射剂量衡量提供参考。方法:回顾性分析2021年1—12月于某院进行头颅CT检查的1297例患儿的临床资料,根据年龄将患儿分为≤1个月组、>1个月~4岁组、>4~10岁组、>10~15岁组。记录患儿的曝光量、年龄、CTDI_(VOL)、剂量长度乘积,并计算WED、转换因子及SSDE_(WED)。比较CTDI_(VOL)与SSDE_(WED)的差异;建立CTDI_(VOL)、SSDE_(WED)与曝光量、WED的回归模型,并采用Pearson分析CTDI_(VOL)、SSDE_(WED)与曝光量、WED之间的相关性;对比国内诊断参考水平(diagnostic reference level,DRL)、欧盟DRL及本医疗机构诊断参考水平(local diagnostic reference level,LDRL)的差异。采用SPSS 25.0统计学软件进行分析。结果:患儿头颅CT的CTDI_(VOL)为(9.22±1.63)mGy,SSDE_(WED)为(8.14±0.84)mGy,CTDI_(VOL)较SSDE_(WED)高13.27%,差异有统计学意义(t=47.66,P<0.001)。CTDI_(VOL)、SSDE_(WED)与曝光量、WED均呈正相关关系(P<0.001);CTDI_(VOL)、SSDE_(WED)与曝光量、WED回归模型拟合性较强(R^(2)为0.58~0.99)。与国内DRL及欧盟DRL比较,LDRL均处于较低水平。结论:在儿童头颅CT辐射剂量衡量中,相较于CTDI_(VOL),SSDE_(WED)对辐射剂量的衡量更准确。同时定期对医疗机构的DRL值进行统计更新并优化检查参数,是减少辐射剂量的重要方式。展开更多
文摘Dose estimation and quality control in computed tomography (CT) scanners are useful in controlling the dose of radiation given to patients while tests are carried out. The study was performed in a 16-slice Computed Tomography (CT) system of LightSpeed RT16 Xtra CT scanner. Quality control was done using a vendor-provided QA Phantom, and the six aspects of image quality were measured. For CT dosimetry, Computed Tomography Dose index volume (CTDIvol) was performed using Computed Tomography Dose Index (CTDI) Phantom. CTDI Phantom consists of three parts: Pediatric Head, Adult Head, and Adult Body Phantom. A 10 cm long pencil ion chamber DCT-10 was used to measure the dose at different positions inside the CTDI Phantom. Data were collected using MagicMax Universal software. For dose estimation of the CTDIvol Report of AAPM Task Group, 96 and 111 formalisms were used. For Pediatric Head, Adult Head, and Adult Body Phantom the measured CIDIvol was 61.04 mGy, 48.11 mGy, and 18.08 mGy respectively. The study has shown deviations of 7%, 15%, and 19% between estimated and console-displayed doses for Pediatric Head, Adult Head, and Adult Body scan techniques respectively. The six aspects of image quality measured by QA Phantom were found to be compatible with the specifications of the machine and CTDIvol measured by CTDI Phantom were found within a tolerance limit of ±20%. Hence, the QC and dosimetry of the mentioned machine are within the limit.