期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Liver Hydatid CT Image Segmentation Using Smoothed Bayesian Classification Method and Modified Parametric Active Contour Model 被引量:2
1
作者 HU Yan-ting HAMIT· Murat +3 位作者 CHEN Jian-jun SUN Jing JI Jin-hu KONG De-wei 《Chinese Journal of Biomedical Engineering(English Edition)》 2010年第4期139-147,155,共10页
Liver hydatid disease is a common parasitic disease in farm and pastoral areas, which seriously influences people's health. Based on CT imaging features of this disease, an iterative approach for liver segmentatio... Liver hydatid disease is a common parasitic disease in farm and pastoral areas, which seriously influences people's health. Based on CT imaging features of this disease, an iterative approach for liver segmentation and hydatid lesion extraction simultaneously is proposed. In each iteration, our algorithm consists of two main steps: 1) according to the user-defined pixel seeds in the liver and hydatid lesion, Gaussian probability model fitting and smoothed Bayesian classification are applied to get initial segmentation of liver and lesion; 2) the parametric active contour model using priori shape force field is adopted to refine initial segmentation. We make subjective and objective evaluation on the proposed algorithm validity by the experiments of liver and hydatid lesion segmentation on different patients' CT slices. In comparison with ground-truth manual segmentation results, the experimental results show the effectiveness of our method to segment liver and hydatid lesion. 展开更多
关键词 liver hydatid disease ct image segmentation Bayesian classification active contour model
暂未订购
Quantitative Detection of Micro Hole Wall Roughness in PCBs Based on Improved U-Net Model
2
作者 Lijuan Zheng Yonghao Li +5 位作者 Zhuangzhuang Sun Yangquan Luo Ying Xu Jun Wang Chengyong Wang Xin Wei 《Chinese Journal of Mechanical Engineering》 2025年第3期1-11,共11页
The current method for inspecting microholes in printed circuit boards(PCBs)involves preparing slices followed by optical microscope measurements.However,this approach suffers from low detection efficiency,poor reliab... The current method for inspecting microholes in printed circuit boards(PCBs)involves preparing slices followed by optical microscope measurements.However,this approach suffers from low detection efficiency,poor reliability,and insufficient measurement stability.Micro-CT enables the observation of the internal structures of the sample without the need for slicing,thereby presenting a promising new method for assessing the quality of microholes in PCBs.This study integrates computer vision technology with computed tomography(CT)to propose a method for detecting microhole wall roughness using a U-Net model and image processing algorithms.This study established an unplated copper PCB CT image dataset and trained an improved U-Net model.Validation of the test set demonstrated that the improved model effectively segmented microholes in the PCB CT images.Subsequently,the roughness of the holes’walls was assessed using a customized image-processing algorithm.Comparative analysis between CT detection based on various edge detection algorithms and slice detection revealed that CT detection employing the Canny algorithm closely approximates slice detection,yielding range and average errors of 2.92 and 1.64μm,respectively.Hence,the detection method proposed in this paper offers a novel approach for nondestructive testing of hole wall roughness in the PCB industry. 展开更多
关键词 PCB ct image segmentation Improved U-Net model Hole wall roughness Micro-ct non-destructive testing
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部