期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于CSWin-Transformer和WGAN技术的人脸遮挡修复研究
1
作者 黄施豪 金钊 《图像与信号处理》 2025年第2期299-309,共11页
针对于当前人脸遮挡修复方法中出现修复图像信息不完整、纹理模糊、产生伪影、细节欠佳以及模型训练不稳定等问题,提出一种基于CSWin-Transformer和WGAN的人脸遮挡修复方法。该方法以Encoder-Decoder结构作为生成器,在生成器中引入CSWin... 针对于当前人脸遮挡修复方法中出现修复图像信息不完整、纹理模糊、产生伪影、细节欠佳以及模型训练不稳定等问题,提出一种基于CSWin-Transformer和WGAN的人脸遮挡修复方法。该方法以Encoder-Decoder结构作为生成器,在生成器中引入CSWin-Transformer Block来精细识别和处理被遮挡的面部区域,以提高处理的针对性和效率,解码器通过跳跃连接与编码器多尺度特征融合,更好学习图像的细节特征,优化最终效果。在判别器中引入Wasserstein距离,来提高模型训练稳定性以及生成图像的真实性,同时在判别器中引入CSWinSelf-Attention,增强判别器对图像全局结构和细节信息的理解。实验结果显示,文章方法在所使用的CelebA的数据集上有良好的修复效果,在峰值信噪比(PSNR)和结构相似性指数(SSIM)指标上与目前一些图像修复方法相比表现更优。 In view of the problems of incomplete repair image information, blurred texture, artifacts, poor details and unstable model training, a face occlusion repair method based on CSWin-Transformer and WGAN is proposed. This method takes Encoder-Decoder, structure as the generator, and introduces CSWin-Transformer Block in the generator to finely identify and process the occluded face areas, so as to improve the pertinacity and efficiency of processing. The decoder integrates with the encoder multi-scale features through jump connection to better learn the detailed features of the image and optimize the final effect. The Wasserstein distance is introduced into the discriminator to improve the stability of the model training and the authenticity of the generated image. Meanwhile, CSWin Self-Attention is introduced in the discriminator to enhance the understanding of the global structure and details of the image. The experimental results show that the method has good repair effect on the data set of CelebA used, and better than some current image repair methods in peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) indicators. 展开更多
关键词 图像识别 人脸修复 生成对抗网络 WGAN cswin-transformer
在线阅读 下载PDF
结合CSWin-Transformer和门卷积的壁画图像修复方法 被引量:6
2
作者 徐志刚 杨欣宇 《计算机工程与应用》 CSCD 北大核心 2024年第21期215-224,共10页
敦煌壁画是珍贵的文化遗产,但现存壁画存在着大量破损现象。针对现有图像修复方法在处理敦煌壁画时面临着计算复杂度高、纹理模糊和特征提取不足等问题,提出了一种结合CSWin-Transformer(cross stripe window-Transformer)和门卷积的壁... 敦煌壁画是珍贵的文化遗产,但现存壁画存在着大量破损现象。针对现有图像修复方法在处理敦煌壁画时面临着计算复杂度高、纹理模糊和特征提取不足等问题,提出了一种结合CSWin-Transformer(cross stripe window-Transformer)和门卷积的壁画图像修复方法。构建由全局层网络和局部层门卷积残差密集网络组成的并行网络,利用条纹窗口增强图像特征提取能力,并通过门卷积残差块提升结构纹理修复的准确性。设计全局-局部特征融合模块来融合全局层和局部层输出的特征图像,以保持修复结果整体的一致性。通过建立共享注意力机制实现全局层和局部层之间的信息交互,同时为了完成破损壁画的修复,采用谱归一化马尔科夫判别模型进行对抗训练。通过对真实破损壁画的修复实验,结果表明,所提方法在主客观指标上均优于所对比的方法。 展开更多
关键词 深度学习 壁画修复 门卷积 cswin-transformer 全局-局部特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部