针对非线性CSTR(continuously stirred tank reactor)过程,提出一种新的预测控制的设计与仿真实现。在对一类特殊非线性过程分析的基础上,从系统的输入输出数据出发,基于子空间辨识算法建立双线性系统模型来近似描述被控系统;设计新的...针对非线性CSTR(continuously stirred tank reactor)过程,提出一种新的预测控制的设计与仿真实现。在对一类特殊非线性过程分析的基础上,从系统的输入输出数据出发,基于子空间辨识算法建立双线性系统模型来近似描述被控系统;设计新的预测控制算法实现对CSTR过程的跟踪控制;为补偿模型失配以消除控制中的稳态误差,将积分作用包含在预测控制器的设计中,实现对控制输出的良好跟踪性能;最后通过一个仿真实例验证算法的有效性。展开更多
针对遗传算法(GA)收敛速度慢,不利于在实时控制中应用这一问题,构造出一种快速收敛的混合遗传算法(HGA),该算法利用遗传算法的全局搜索能力,并采用N e lder-M ead单纯形法来加强算法的局部搜索能力,加快了算法的收敛效率.将基于该混合...针对遗传算法(GA)收敛速度慢,不利于在实时控制中应用这一问题,构造出一种快速收敛的混合遗传算法(HGA),该算法利用遗传算法的全局搜索能力,并采用N e lder-M ead单纯形法来加强算法的局部搜索能力,加快了算法的收敛效率.将基于该混合遗传算法的模型参考自适应控制方法引入连续搅拌反应釜(CSTR)这一复杂的非线性系统,根据参考模型的输出,通过混合遗传算法对控制系统的P ID参数进行在线寻优和在线调整,以达到参考模型所要求的控制效果,仿真结果表明了该方法的良好控制性能.展开更多
在MATLAB/Simulink环境下,针对典型的非线性连续系统模型—CSTR(continuousstirred tank reactor)模型,采用MAC、DMCⅠ型、DMCⅡ型三种常用的工业预测控制算法对其仿真比较,分析预测控制三种算法在非线性连续时间工业系统的控制性能。对...在MATLAB/Simulink环境下,针对典型的非线性连续系统模型—CSTR(continuousstirred tank reactor)模型,采用MAC、DMCⅠ型、DMCⅡ型三种常用的工业预测控制算法对其仿真比较,分析预测控制三种算法在非线性连续时间工业系统的控制性能。对CSTR模型进行非线性状态空间描述;利用Simulink实现了对该系统的实时仿真;仿真过程分为3个阶段,每一阶段设定了不同的控制目标。仿真结果对比分析表明,DMCⅡ型预测控制算法能够有效地控制存在严重非线性的连续时间系统。展开更多
This paper reports a comparative evaluation between 2 kinetic models for predicting nitrification and biodegradable organics(BOD5)removal rates in 5 vertical flow(VF)wetland systems,that received strong wastewaters(i....This paper reports a comparative evaluation between 2 kinetic models for predicting nitrification and biodegradable organics(BOD5)removal rates in 5 vertical flow(VF)wetland systems,that received strong wastewaters(i.e.tannery,textile and municipal effluents).The models were formulated by combining first order and Monod kinetics,with continuous-stirred tank reactor(CSTR)flow approach.The performance of the 2 models had been evaluated with3 statistical parameters:coefficient of determination(R2),relative root mean square error(RRMSE),and model efficiency(ME).The statistical parameters indicated better performance of the Monod CSTR model(over first order CSTR approach),for correlating ammoniacal nitrogen(NH4+—N)and BOD5removal profiles across VF systems.Higher Monod coefficient values(from Monod CSTR model)coincided with greater input NH4+—N and BOD5loading,and experimentally measured removal rate(g/(m2·d))values.Such trends indicate that NH4+—N and BOD5removals in the VF systems were mainly achieved via biological routes.On the other hand,the rate constants(from the first order CSTR model)did not exhibit such correlations(of Monod coefficients),elucidating their inefficiencies in capturing overall removal mechanisms.The interference of organics removal on nitrification process(in VF wetlands)was identified through Monod coefficients.The deviation between NH4+—N and BOD5Monod coefficients imply incorporation of both coefficients,for calculating the area of a single VF bed.Overall,closer performance of the Monod CSTR model for predicting NH4+—N and BOD5removals indicate its potential application,as a design tool for VF systems.展开更多
文摘针对非线性CSTR(continuously stirred tank reactor)过程,提出一种新的预测控制的设计与仿真实现。在对一类特殊非线性过程分析的基础上,从系统的输入输出数据出发,基于子空间辨识算法建立双线性系统模型来近似描述被控系统;设计新的预测控制算法实现对CSTR过程的跟踪控制;为补偿模型失配以消除控制中的稳态误差,将积分作用包含在预测控制器的设计中,实现对控制输出的良好跟踪性能;最后通过一个仿真实例验证算法的有效性。
文摘针对遗传算法(GA)收敛速度慢,不利于在实时控制中应用这一问题,构造出一种快速收敛的混合遗传算法(HGA),该算法利用遗传算法的全局搜索能力,并采用N e lder-M ead单纯形法来加强算法的局部搜索能力,加快了算法的收敛效率.将基于该混合遗传算法的模型参考自适应控制方法引入连续搅拌反应釜(CSTR)这一复杂的非线性系统,根据参考模型的输出,通过混合遗传算法对控制系统的P ID参数进行在线寻优和在线调整,以达到参考模型所要求的控制效果,仿真结果表明了该方法的良好控制性能.
文摘在MATLAB/Simulink环境下,针对典型的非线性连续系统模型—CSTR(continuousstirred tank reactor)模型,采用MAC、DMCⅠ型、DMCⅡ型三种常用的工业预测控制算法对其仿真比较,分析预测控制三种算法在非线性连续时间工业系统的控制性能。对CSTR模型进行非线性状态空间描述;利用Simulink实现了对该系统的实时仿真;仿真过程分为3个阶段,每一阶段设定了不同的控制目标。仿真结果对比分析表明,DMCⅡ型预测控制算法能够有效地控制存在严重非线性的连续时间系统。
基金Project Supported by the National Natural Science Foundation of China(1026100410561005)the Research Fund of North China Electric Power University(93509001).
文摘This paper reports a comparative evaluation between 2 kinetic models for predicting nitrification and biodegradable organics(BOD5)removal rates in 5 vertical flow(VF)wetland systems,that received strong wastewaters(i.e.tannery,textile and municipal effluents).The models were formulated by combining first order and Monod kinetics,with continuous-stirred tank reactor(CSTR)flow approach.The performance of the 2 models had been evaluated with3 statistical parameters:coefficient of determination(R2),relative root mean square error(RRMSE),and model efficiency(ME).The statistical parameters indicated better performance of the Monod CSTR model(over first order CSTR approach),for correlating ammoniacal nitrogen(NH4+—N)and BOD5removal profiles across VF systems.Higher Monod coefficient values(from Monod CSTR model)coincided with greater input NH4+—N and BOD5loading,and experimentally measured removal rate(g/(m2·d))values.Such trends indicate that NH4+—N and BOD5removals in the VF systems were mainly achieved via biological routes.On the other hand,the rate constants(from the first order CSTR model)did not exhibit such correlations(of Monod coefficients),elucidating their inefficiencies in capturing overall removal mechanisms.The interference of organics removal on nitrification process(in VF wetlands)was identified through Monod coefficients.The deviation between NH4+—N and BOD5Monod coefficients imply incorporation of both coefficients,for calculating the area of a single VF bed.Overall,closer performance of the Monod CSTR model for predicting NH4+—N and BOD5removals indicate its potential application,as a design tool for VF systems.