期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Advances in high-pressure materials discovery enabled by machine learning
1
作者 Zhenyu Wang Xiaoshan Luo +5 位作者 Qingchang Wang Heng Ge Pengyue Gao Wei Zhang Jian Lv Yanchao Wang 《Matter and Radiation at Extremes》 2025年第3期1-9,共9页
Crystal structure prediction(CSP)is a foundational computational technique for determining the atomic arrangements of crystalline materials,especially under high-pressure conditions.While CSP plays a critical role in ... Crystal structure prediction(CSP)is a foundational computational technique for determining the atomic arrangements of crystalline materials,especially under high-pressure conditions.While CSP plays a critical role in materials science,traditional approaches often encounter significant challenges related to computational efficiency and scalability,particularly when applied to complex systems.Recent advances in machine learning(ML)have shown tremendous promise in addressing these limitations,enabling the rapid and accurate prediction of crystal structures across a wide range of chemical compositions and external conditions.This review provides a concise overview of recent progress in ML-assisted CSP methodologies,with a particular focus on machine learning potentials and generative models.By critically analyzing these advances,we highlight the transformative impact of ML in accelerating materials discovery,enhancing computational efficiency,and broadening the applicability of CSP.Additionally,we discuss emerging opportunities and challenges in this rapidly evolving field. 展开更多
关键词 machine learning crystal structure prediction csp determining atomic arrangements crystalline materialsespecially crystal structure prediction machine learning ml complex systemsrecent high pressure materials discovery
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部