Medium access control( MAC) protocol of underwater acoustic communication network is a key technology for underwater acoustic networks( UANs). Most of the MAC protocols for wireless terrestrial communication networks ...Medium access control( MAC) protocol of underwater acoustic communication network is a key technology for underwater acoustic networks( UANs). Most of the MAC protocols for wireless terrestrial communication networks have been designed with negligible propagation delay. If it is deployed directly in an underwater environment,the UANs will perform inefficiently. In this paper,the characteristics of underwater acoustic channel are modeled and simulated by using the OPNET simulation tool,which are the speed of sound, propagation loss, and four sources for ambient noise: the turbulence,shipping,wind driven waves and thermal noise. The performance of pure Aloha( P-Aloha),carrier sense multiple access with collision avoidance( CSMA / CA) and multiple access collision avoidance for wireless local area network( MACAW) protocols in underwater acoustic channel environment are evaluated. The different performance of protocols in underwater environment is compared in the simulation.展开更多
In wireless networks, packet access is a popular mode, and the key problem is how to improve throughput and access delay performance, especially the throughput for wireless channels. These results will be a reference ...In wireless networks, packet access is a popular mode, and the key problem is how to improve throughput and access delay performance, especially the throughput for wireless channels. These results will be a reference for not only a wireless channel but also a common MAC protocol.展开更多
It is known that packet collisions in wireless networks will deteriorate system performance, hence substantial efforts have been made to avoid collision in multi-user access designs. Also, there have been many studies...It is known that packet collisions in wireless networks will deteriorate system performance, hence substantial efforts have been made to avoid collision in multi-user access designs. Also, there have been many studies on throughput analysis of CSMA wireless networks. However, for a typical CSMA network in which not all nodes can sense each other, it is still not well investigated how link throughputs are affected by collisions. We note that in practical 802.11-like networks, the time is divided into mini-timeslots and packet collisions are in fact unavoidable. Thus, it is desirable to move forward to explore how collisions in such a network will affect system performance. Based on the collision-free ideal CSMA network(ICN) model, this paper attempts to analyze link throughputs when taking the backoff collisions into account and examine the effect of collisions on link throughputs. Specifically, we propose an Extended Ideal CSMA Network(EICN) model to characterize the collision effects as well as the interactions and dependency among links in the network. Based on EICN, we could directly compute link throughputs and collision probabilities. Simulations show that the EICN model is of high accuracy. Under various network topologies and protocol parameter settings, the computation error of link throughputs using EICN is kept to 4% or below. Interestingly, we find that unlike expected, the effect of collisions on link throughputs in a modest CSMA wireless network is not significant, which enriches our understanding on practical CSMA wireless networks such as Wi-Fi.展开更多
基金National Natural Science Foundations of China(Nos.60872073,6097501,and 51075068)the Doctoral Fund of Ministry of Education of China(No.20110092130004)the Research Foundation and Education Bureau of Anhui Province of China(No.KJ2009B137)
文摘Medium access control( MAC) protocol of underwater acoustic communication network is a key technology for underwater acoustic networks( UANs). Most of the MAC protocols for wireless terrestrial communication networks have been designed with negligible propagation delay. If it is deployed directly in an underwater environment,the UANs will perform inefficiently. In this paper,the characteristics of underwater acoustic channel are modeled and simulated by using the OPNET simulation tool,which are the speed of sound, propagation loss, and four sources for ambient noise: the turbulence,shipping,wind driven waves and thermal noise. The performance of pure Aloha( P-Aloha),carrier sense multiple access with collision avoidance( CSMA / CA) and multiple access collision avoidance for wireless local area network( MACAW) protocols in underwater acoustic channel environment are evaluated. The different performance of protocols in underwater environment is compared in the simulation.
基金This project was supported by the Scientific Research Foundation of Harbin Institute of Technology (HIT. 2001.01).
文摘In wireless networks, packet access is a popular mode, and the key problem is how to improve throughput and access delay performance, especially the throughput for wireless channels. These results will be a reference for not only a wireless channel but also a common MAC protocol.
基金partially supported by the National Natural Science Foundation of China under Grant 61571178,Grant 61771315 and Grant 61501160
文摘It is known that packet collisions in wireless networks will deteriorate system performance, hence substantial efforts have been made to avoid collision in multi-user access designs. Also, there have been many studies on throughput analysis of CSMA wireless networks. However, for a typical CSMA network in which not all nodes can sense each other, it is still not well investigated how link throughputs are affected by collisions. We note that in practical 802.11-like networks, the time is divided into mini-timeslots and packet collisions are in fact unavoidable. Thus, it is desirable to move forward to explore how collisions in such a network will affect system performance. Based on the collision-free ideal CSMA network(ICN) model, this paper attempts to analyze link throughputs when taking the backoff collisions into account and examine the effect of collisions on link throughputs. Specifically, we propose an Extended Ideal CSMA Network(EICN) model to characterize the collision effects as well as the interactions and dependency among links in the network. Based on EICN, we could directly compute link throughputs and collision probabilities. Simulations show that the EICN model is of high accuracy. Under various network topologies and protocol parameter settings, the computation error of link throughputs using EICN is kept to 4% or below. Interestingly, we find that unlike expected, the effect of collisions on link throughputs in a modest CSMA wireless network is not significant, which enriches our understanding on practical CSMA wireless networks such as Wi-Fi.