Background:Previously,a chronic social defeat stress(CSDS)model has been widely-adopted for assessing depressive-like behaviors in animals.However,there is still room for improvement in the CSDS model to safeguard stu...Background:Previously,a chronic social defeat stress(CSDS)model has been widely-adopted for assessing depressive-like behaviors in animals.However,there is still room for improvement in the CSDS model to safeguard study accuracy and the wel-fare of lab rodents.Our study team developed a novel,standardized apparatus to induce CSDS in rodents and assessed the model's practical adaptability.Methods:An innovative CSDS cage apparatus and water bottle was designed.To evaluate the effectiveness of the newly developed tools,a variety of animal models,including the tail suspension test(TST),sucrose preference test,forced swimming test(FST),novelty-suppressed feeding test,female urine sniffing test,and open field test(OFT),were adopted to assess depressive-like behaviors in mice.Fluoxetine treat-ment was also administered to observe the reversal effect,as part of the validation.Results:The CSDS cage apparatus resulted in the manifestation of depressive-like behaviors in the model mice.Significant reductions in sucrose preference and urine sniffing time were observed,while the OFT revealed decreased central zone total distance,residence time,and frequency of entry.Moreover,increased immobility was found in the FST and TST.Fluoxetine treatment was found to successfully reverse the modeling effect.Conclusion:The CSDS cage apparatus was validated for enhanced usability and ad-dressed the previous challenges of water bottle leakage and lab rodent welfare is-sues.The consistent results from multiple behavioral tests also supported real-world application of the apparatus,offering researchers a promising alternative to conven-tional rodent cages.展开更多
The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performanc...The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performances, a facile hydrothermal-aging pretreatment process for FGD gypsum raw materials was proposed, where FGD gypsum was firstly hydrothermally converted to α-CSH whiskers, and α-CSH whiskers were further hydrated to synthesize CaSO4·2H2O (CSD) by aging under the regulation of N,N'-methylenebisacrylamide (MBA). The effects of aging time, MBA addition, aging temperature, and pH on the morphology of the synthesized CSD were investigated. The synthesized CSD crystals exhibit highly uniform prismatic morphology with the length of ca 100μm and the whiteness of 91.56%. The regulation mechanism of MBA was also illustrated. The synthesized CSD crystals with prismatic morphology were further used as raw materials to synthesize the short columnar α-CSH. The absolute dry compressive strength of paste prepared from the short columnar α-CSH is 40.85 MPa, which reaches α40 strength grade.展开更多
The reduced weight and improved efficiency of modern aeronautical structures result in a decreasing separation of frequency ranges of rigid and elastic modes.Particularly,a high-aspect-ratio flexible flying wing is pr...The reduced weight and improved efficiency of modern aeronautical structures result in a decreasing separation of frequency ranges of rigid and elastic modes.Particularly,a high-aspect-ratio flexible flying wing is prone to body freedomflutter(BFF),which is a result of coupling of the rigid body short-periodmodewith 1st wing bendingmode.Accurate prediction of the BFF characteristics is helpful to reflect the attitude changes of the vehicle intuitively and design the active flutter suppression control law.Instead of using the rigid body mode,this work simulates the rigid bodymotion of the model by using the six-degree-of-freedom(6DOF)equation.A dynamicmesh generation strategy particularly suitable for BFF simulation of free flying aircraft is developed.An accurate Computational Fluid Dynamics/Computational Structural Dynamics/six-degree-of-freedom equation(CFD/CSD/6DOF)-based BFF prediction method is proposed.Firstly,the time-domain CFD/CSD method is used to calculate the static equilibrium state of the model.Based on this state,the CFD/CSD/6DOF equation is solved in time domain to evaluate the structural response of themodel.Then combinedwith the variable stiffnessmethod,the critical flutter point of the model is obtained.This method is applied to the BFF calculation of a flyingwing model.The calculation results of the BFF characteristics of the model agree well with those fromthe modalmethod andNastran software.Finally,the method is used to analyze the influence factors of BFF.The analysis results show that the flutter speed can be improved by either releasing plunge constraint or moving the center ofmass forward or increasing the pitch inertia.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:82204958 and 82305065Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2020ZD17+2 种基金Traditional Chinese Medicine Emotional Disease and Brain Steady State Regulation Innovation Team,Grant/Award Number:2023KJ191Medical and Health Science and Technology Development Plan Project of Shandong Province,Grant/Award Number:202105010467Traditional Chinese Medicine Science and Technology Project of Shandong Province,Grant/Award Number:Q-2022059。
文摘Background:Previously,a chronic social defeat stress(CSDS)model has been widely-adopted for assessing depressive-like behaviors in animals.However,there is still room for improvement in the CSDS model to safeguard study accuracy and the wel-fare of lab rodents.Our study team developed a novel,standardized apparatus to induce CSDS in rodents and assessed the model's practical adaptability.Methods:An innovative CSDS cage apparatus and water bottle was designed.To evaluate the effectiveness of the newly developed tools,a variety of animal models,including the tail suspension test(TST),sucrose preference test,forced swimming test(FST),novelty-suppressed feeding test,female urine sniffing test,and open field test(OFT),were adopted to assess depressive-like behaviors in mice.Fluoxetine treat-ment was also administered to observe the reversal effect,as part of the validation.Results:The CSDS cage apparatus resulted in the manifestation of depressive-like behaviors in the model mice.Significant reductions in sucrose preference and urine sniffing time were observed,while the OFT revealed decreased central zone total distance,residence time,and frequency of entry.Moreover,increased immobility was found in the FST and TST.Fluoxetine treatment was found to successfully reverse the modeling effect.Conclusion:The CSDS cage apparatus was validated for enhanced usability and ad-dressed the previous challenges of water bottle leakage and lab rodent welfare is-sues.The consistent results from multiple behavioral tests also supported real-world application of the apparatus,offering researchers a promising alternative to conven-tional rodent cages.
基金Funded by National Natural Science Foundation of China(No.22008049)Natural Science Foundation of Hebei Province,China (Nos.B2020202081 and B2018202330)+1 种基金Key Laboratory of Gas Hydrate,Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,China (No.E029kf1601)Research Fund Program of Science and Technology of Colleges and Universities of Hebei Province,China (No.QN2019012)。
文摘The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performances, a facile hydrothermal-aging pretreatment process for FGD gypsum raw materials was proposed, where FGD gypsum was firstly hydrothermally converted to α-CSH whiskers, and α-CSH whiskers were further hydrated to synthesize CaSO4·2H2O (CSD) by aging under the regulation of N,N'-methylenebisacrylamide (MBA). The effects of aging time, MBA addition, aging temperature, and pH on the morphology of the synthesized CSD were investigated. The synthesized CSD crystals exhibit highly uniform prismatic morphology with the length of ca 100μm and the whiteness of 91.56%. The regulation mechanism of MBA was also illustrated. The synthesized CSD crystals with prismatic morphology were further used as raw materials to synthesize the short columnar α-CSH. The absolute dry compressive strength of paste prepared from the short columnar α-CSH is 40.85 MPa, which reaches α40 strength grade.
基金This work was supported by the National Natural Science Foundation of China(No.11872212)and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘The reduced weight and improved efficiency of modern aeronautical structures result in a decreasing separation of frequency ranges of rigid and elastic modes.Particularly,a high-aspect-ratio flexible flying wing is prone to body freedomflutter(BFF),which is a result of coupling of the rigid body short-periodmodewith 1st wing bendingmode.Accurate prediction of the BFF characteristics is helpful to reflect the attitude changes of the vehicle intuitively and design the active flutter suppression control law.Instead of using the rigid body mode,this work simulates the rigid bodymotion of the model by using the six-degree-of-freedom(6DOF)equation.A dynamicmesh generation strategy particularly suitable for BFF simulation of free flying aircraft is developed.An accurate Computational Fluid Dynamics/Computational Structural Dynamics/six-degree-of-freedom equation(CFD/CSD/6DOF)-based BFF prediction method is proposed.Firstly,the time-domain CFD/CSD method is used to calculate the static equilibrium state of the model.Based on this state,the CFD/CSD/6DOF equation is solved in time domain to evaluate the structural response of themodel.Then combinedwith the variable stiffnessmethod,the critical flutter point of the model is obtained.This method is applied to the BFF calculation of a flyingwing model.The calculation results of the BFF characteristics of the model agree well with those fromthe modalmethod andNastran software.Finally,the method is used to analyze the influence factors of BFF.The analysis results show that the flutter speed can be improved by either releasing plunge constraint or moving the center ofmass forward or increasing the pitch inertia.