期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Image Super-Resolution Reconstruction Model Based on SRGAN
1
作者 LU Xin-ya CHEN Jia-yi +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第5期21-28,共8页
Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual... Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual perception,significantly increasing the utility of low-resolution images.In this study,an improved image superresolution reconstruction model based on Generative Adversarial Networks(SRGAN)was proposed.This model introduced a channel and spatial attention mechanism(CSAB)in the generator,allowing it to effectively leverage the information from the input image to enhance feature representations and capture important details.The discriminator was designed with an improved PatchGAN architecture,which more accurately captured local details and texture information of the image.With these enhanced generator and discriminator architectures and an optimized loss function design,this method demonstrated superior performance in image quality assessment metrics.Experimental results showed that this model outperforms traditional methods,presenting more detailed and realistic image details in the visual effects. 展开更多
关键词 Image super-resolution reconstruction Generative Adversarial Networks csab PatchGAN architecture
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部