Lead-free halide double perovskites(HDPs)provide a promising platform for high-performance thermoelectric due to their intrinsically ultralow lattice thermal conductivity k_(l).In this study,we comprehensively investi...Lead-free halide double perovskites(HDPs)provide a promising platform for high-performance thermoelectric due to their intrinsically ultralow lattice thermal conductivity k_(l).In this study,we comprehensively investigate the lattice dynamics of Cs_(2)AgInCl_(6)using first-principles calculations.By explicitly incorporating four-phonon scattering and wave-like phonon tunneling,we predict a k_(l)of 0.52 W·m^(-1)·K^(-1)with a remarkably weak temperature dependence(k_(l)∝T^(-0.31)),confirming the intrinsically glass-like ultralow k_(l)in Cs_(2)AgInCl_(6).Further analyses reveal that hierarchical chemical bonds,loosely bonded rattling atoms and a mixed crystalline-liquid state collectively induce strong anharmonicity manifested in flat phonon modes.These factors dominate the glass-like thermal transport component of k_(l).This work uncovers the underlying mechanisms governing the unusual thermal transport properties in lead-free HDPs and offers guiding principles for designing novel energy conversion technologies.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12204482),the Natural Science Foundation of Shanxi Province(Grant No.202403021221164)Higher education teaching reform and innovation project of Shanxi Province(Grant No.J20220480)the Natural Science Foundation of Hainan Province(Grant Nos.525MS080 and 225MS076).
文摘Lead-free halide double perovskites(HDPs)provide a promising platform for high-performance thermoelectric due to their intrinsically ultralow lattice thermal conductivity k_(l).In this study,we comprehensively investigate the lattice dynamics of Cs_(2)AgInCl_(6)using first-principles calculations.By explicitly incorporating four-phonon scattering and wave-like phonon tunneling,we predict a k_(l)of 0.52 W·m^(-1)·K^(-1)with a remarkably weak temperature dependence(k_(l)∝T^(-0.31)),confirming the intrinsically glass-like ultralow k_(l)in Cs_(2)AgInCl_(6).Further analyses reveal that hierarchical chemical bonds,loosely bonded rattling atoms and a mixed crystalline-liquid state collectively induce strong anharmonicity manifested in flat phonon modes.These factors dominate the glass-like thermal transport component of k_(l).This work uncovers the underlying mechanisms governing the unusual thermal transport properties in lead-free HDPs and offers guiding principles for designing novel energy conversion technologies.