Research on the mechanical–electrical properties is crucial for designing and preparing high-temperature superconducting(HTS)cables.Various winding core structures can influence the mechanical–electrical behavior of...Research on the mechanical–electrical properties is crucial for designing and preparing high-temperature superconducting(HTS)cables.Various winding core structures can influence the mechanical–electrical behavior of cables,but the impact of alterations in the winding core structure on the mechanical–electrical behavior of superconducting cables remains unclear.This paper presents a 3D finite element model to predict the performance of three cables with different core structures when subjected to transverse compression and axial tension.The three cables analyzed are CORC(conductor-on-round-core),CORT(conductor-on-round-tube),and HFRC(conductor-on-spiral-tube).A parametric analysis is carried out by varying the core diameter and inner-to-outer diameter ratio.Results indicate that the CORT cable demonstrates better performance in transverse compression compared to the CORC cable,aligning with experimental data.Among the three cables,the HFRC cables exhibit the weakest resistance to transverse deformation.However,the HFRC cable demonstrates superior tensile deformation resistance compared to the CORT cable,provided that the transverse compression properties are maintained.Finite element results also show that the optimum inner-to-outer diameter ratios for achieving the best transverse compression performance are approximately 0.8 for CORT cables and 0.6 for HFRC cables.Meanwhile,the study explores the effect of structural changes in HTS cable winding cores on their electromagnetic properties.It recommends utilizing small tape gaps,lower frequencies,and spiral core construction to minimize eddy losses.The findings presented in this paper offer valuable insights for the commercialization and practical manufacturing of HTS cables.展开更多
To investigate the wind⁃induced vibration re⁃sponse characteristics of multispan double⁃layer cable photo⁃voltaic(PV)support structures,wind tunnel tests using an aeroelastic model were carried out to obtain the wind⁃...To investigate the wind⁃induced vibration re⁃sponse characteristics of multispan double⁃layer cable photo⁃voltaic(PV)support structures,wind tunnel tests using an aeroelastic model were carried out to obtain the wind⁃induced vibration response data of a three⁃span four⁃row double⁃layer cable PV support system.The wind⁃induced vibration characteristics with different PV module tilt angles,wind speeds,and wind direction angles were analyzed.The results showed that the double⁃layer cable large⁃span flexible PV support can effectively control the wind⁃induced vibration response and prevent the occur⁃rence of flutter under strong wind conditions.The maxi⁃mum value of the wind⁃induced vibration displacement of the flexible PV support system occurs in the windward first row.The upstream module has a significant shading effect on the downstream module,with a maximum effect of 23%.The most unfavorable wind direction angles of the structure are 0°and 180°.The change of the wind direction angle in the range of 0°to 30°has little effect on the wind vi⁃bration response.The change in the tilt angle of the PV modules has a greater impact on the wind vibration in the downwind direction and a smaller impact in the upwind di⁃rection.Special attention should be paid to the structural wind⁃resistant design of such systems in the upwind side span.展开更多
The actively heated fiber-optic(AHFO)technology has emerged as a frontier and hotspot in soil water content measurement,offering advantages such as easy installation,large-scale distributed measurement capability,and ...The actively heated fiber-optic(AHFO)technology has emerged as a frontier and hotspot in soil water content measurement,offering advantages such as easy installation,large-scale distributed measurement capability,and resistance to electromagnetic interference.However,current AHFO water content sensors fail to simultaneously achieve high precision,applicability for deep soil,and automated real-time monitoring,thereby limiting their development and application.Therefore,this study introduces a novel actively heated fiber Bragg grating(AH-FBG)cable.Laboratory tests were conducted to assess the heating uniformity of the AH-FBG cable and to establish the temperature characteristic value(T_(t))-soil water content(θ)calibration formula for water content measurement.Subsequently,AH-FBG cables were deployed for in situ soil water content monitoring in a test pit on the Loess Plateau.Through two-year monitoring data verified the accuracy of the AH-FBG cable and elucidated the spatiotemporal distribution of in situ loess water content.Laboratory results demonstrated superior heating uniformity of AHFBG cable,with a T_(t) standard deviation of approximately 0.3℃.In the field,the AH-FBG cable exhibited excellent performance in soil water content measurement,achieving a high accuracy of 0.023 cm^(3)/cm^(3).Further analysis revealed that the θ fluctuation predominantly occurred within a 10 m depth from the soil surface,with an overall upward trend over the two-year monitoring period;the response of shallow θ to precipitation was significant but exhibited increasing hysteresis with depth;frequent precipitation significantly enhanced water infiltration depth.This study provides technical guidance for highprecision,quasi-distributed,automated and real-time water content measurement of deep soil.展开更多
Buckling failure in submarine cables presents a prevalent challenge in ocean engineering.This work aims to explore the buckling behavior of umbilical cables with damaged sheaths subjected to compression and bending cy...Buckling failure in submarine cables presents a prevalent challenge in ocean engineering.This work aims to explore the buckling behavior of umbilical cables with damaged sheaths subjected to compression and bending cyclic loads.A finite element model is devised,incorporating a singular armor wire,a rigid core,and a damaged sheath.To scrutinize the buckling progression and corresponding deformation,axial compression and bending cyclic loads are introduced.The observations reveal that a reduction in axial compression results in a larger number of cycles before buckling ensues and progressively shifts the buckling position toward the extrados and fixed end.Decreasing the bending radius precipitates a reduction in the buckling cycle number and minimizes the deformation in the armor wire.Furthermore,an empirical model is presented to predict the occurrence of birdcage buckling,providing a means to anticipate buckling events and to estimate the requisite number of cycles leading to buckling.展开更多
As the most important large-scale communication infrastructure in the world today,submarine cable can profoundly reflect the global Internet communication pattern,and is of great significance for understanding the glo...As the most important large-scale communication infrastructure in the world today,submarine cable can profoundly reflect the global Internet communication pattern,and is of great significance for understanding the global digital divide.We used multi-scale and network analysis methods to depict the distribution pattern,network structure and spatio-temporal evolution of global submarine cables at the national and landing point scales,in order to analyze the current situation,challenges and main directions of global digital divide governance.Results show that:(1)spatial distribution of global submarine cables is unbalanced,the United States and Europe are the concentrated distribution areas of submarine cables and global information flow centers;(2)core connections of the global submarine cable network are only composed of a tiny minority of countries or regions or landing points,and have strong geographical proximity and clustered-type characteristic,noting that multitudinous landing points of developed countries are at the semi-periphery or even periphery of the network;(3)submarine cables can alleviate the global digital divide through the three paths of infrastructure universalization,digital ecosystem reconstruction and economic empowerment,and the global digital divide governance still faces the dilemma of the differences in digital strategy development and the lack of a governance system.However,due to the increasingly important position of cities in developing countries in the international communication pattern,the global digital divide problem is being alleviated.展开更多
基金supported by the National Natural Science Foundation of China(12072136).
文摘Research on the mechanical–electrical properties is crucial for designing and preparing high-temperature superconducting(HTS)cables.Various winding core structures can influence the mechanical–electrical behavior of cables,but the impact of alterations in the winding core structure on the mechanical–electrical behavior of superconducting cables remains unclear.This paper presents a 3D finite element model to predict the performance of three cables with different core structures when subjected to transverse compression and axial tension.The three cables analyzed are CORC(conductor-on-round-core),CORT(conductor-on-round-tube),and HFRC(conductor-on-spiral-tube).A parametric analysis is carried out by varying the core diameter and inner-to-outer diameter ratio.Results indicate that the CORT cable demonstrates better performance in transverse compression compared to the CORC cable,aligning with experimental data.Among the three cables,the HFRC cables exhibit the weakest resistance to transverse deformation.However,the HFRC cable demonstrates superior tensile deformation resistance compared to the CORT cable,provided that the transverse compression properties are maintained.Finite element results also show that the optimum inner-to-outer diameter ratios for achieving the best transverse compression performance are approximately 0.8 for CORT cables and 0.6 for HFRC cables.Meanwhile,the study explores the effect of structural changes in HTS cable winding cores on their electromagnetic properties.It recommends utilizing small tape gaps,lower frequencies,and spiral core construction to minimize eddy losses.The findings presented in this paper offer valuable insights for the commercialization and practical manufacturing of HTS cables.
基金The National Natural Science Foundation of China(No.52338011).
文摘To investigate the wind⁃induced vibration re⁃sponse characteristics of multispan double⁃layer cable photo⁃voltaic(PV)support structures,wind tunnel tests using an aeroelastic model were carried out to obtain the wind⁃induced vibration response data of a three⁃span four⁃row double⁃layer cable PV support system.The wind⁃induced vibration characteristics with different PV module tilt angles,wind speeds,and wind direction angles were analyzed.The results showed that the double⁃layer cable large⁃span flexible PV support can effectively control the wind⁃induced vibration response and prevent the occur⁃rence of flutter under strong wind conditions.The maxi⁃mum value of the wind⁃induced vibration displacement of the flexible PV support system occurs in the windward first row.The upstream module has a significant shading effect on the downstream module,with a maximum effect of 23%.The most unfavorable wind direction angles of the structure are 0°and 180°.The change of the wind direction angle in the range of 0°to 30°has little effect on the wind vi⁃bration response.The change in the tilt angle of the PV modules has a greater impact on the wind vibration in the downwind direction and a smaller impact in the upwind di⁃rection.Special attention should be paid to the structural wind⁃resistant design of such systems in the upwind side span.
基金supported by the National Natural Science Foundation of China(Grant Nos.42307189 and 42030701)the China Postdoctoral Science Foundation(Grant No.2023M740974).
文摘The actively heated fiber-optic(AHFO)technology has emerged as a frontier and hotspot in soil water content measurement,offering advantages such as easy installation,large-scale distributed measurement capability,and resistance to electromagnetic interference.However,current AHFO water content sensors fail to simultaneously achieve high precision,applicability for deep soil,and automated real-time monitoring,thereby limiting their development and application.Therefore,this study introduces a novel actively heated fiber Bragg grating(AH-FBG)cable.Laboratory tests were conducted to assess the heating uniformity of the AH-FBG cable and to establish the temperature characteristic value(T_(t))-soil water content(θ)calibration formula for water content measurement.Subsequently,AH-FBG cables were deployed for in situ soil water content monitoring in a test pit on the Loess Plateau.Through two-year monitoring data verified the accuracy of the AH-FBG cable and elucidated the spatiotemporal distribution of in situ loess water content.Laboratory results demonstrated superior heating uniformity of AHFBG cable,with a T_(t) standard deviation of approximately 0.3℃.In the field,the AH-FBG cable exhibited excellent performance in soil water content measurement,achieving a high accuracy of 0.023 cm^(3)/cm^(3).Further analysis revealed that the θ fluctuation predominantly occurred within a 10 m depth from the soil surface,with an overall upward trend over the two-year monitoring period;the response of shallow θ to precipitation was significant but exhibited increasing hysteresis with depth;frequent precipitation significantly enhanced water infiltration depth.This study provides technical guidance for highprecision,quasi-distributed,automated and real-time water content measurement of deep soil.
基金financially supported by the National Natural Science Foundation of China(Grant No.52471301)the Fujian Province Transportation Science and Technology Project(Grant No.JC202302)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY24E090003).
文摘Buckling failure in submarine cables presents a prevalent challenge in ocean engineering.This work aims to explore the buckling behavior of umbilical cables with damaged sheaths subjected to compression and bending cyclic loads.A finite element model is devised,incorporating a singular armor wire,a rigid core,and a damaged sheath.To scrutinize the buckling progression and corresponding deformation,axial compression and bending cyclic loads are introduced.The observations reveal that a reduction in axial compression results in a larger number of cycles before buckling ensues and progressively shifts the buckling position toward the extrados and fixed end.Decreasing the bending radius precipitates a reduction in the buckling cycle number and minimizes the deformation in the armor wire.Furthermore,an empirical model is presented to predict the occurrence of birdcage buckling,providing a means to anticipate buckling events and to estimate the requisite number of cycles leading to buckling.
基金National Natural Science Foundation of China,No.42371175。
文摘As the most important large-scale communication infrastructure in the world today,submarine cable can profoundly reflect the global Internet communication pattern,and is of great significance for understanding the global digital divide.We used multi-scale and network analysis methods to depict the distribution pattern,network structure and spatio-temporal evolution of global submarine cables at the national and landing point scales,in order to analyze the current situation,challenges and main directions of global digital divide governance.Results show that:(1)spatial distribution of global submarine cables is unbalanced,the United States and Europe are the concentrated distribution areas of submarine cables and global information flow centers;(2)core connections of the global submarine cable network are only composed of a tiny minority of countries or regions or landing points,and have strong geographical proximity and clustered-type characteristic,noting that multitudinous landing points of developed countries are at the semi-periphery or even periphery of the network;(3)submarine cables can alleviate the global digital divide through the three paths of infrastructure universalization,digital ecosystem reconstruction and economic empowerment,and the global digital divide governance still faces the dilemma of the differences in digital strategy development and the lack of a governance system.However,due to the increasingly important position of cities in developing countries in the international communication pattern,the global digital divide problem is being alleviated.