In response to the challenges in highway pavement distress detection,such as multiple defect categories,difficulties in feature extraction for different damage types,and slow identification speeds,this paper proposes ...In response to the challenges in highway pavement distress detection,such as multiple defect categories,difficulties in feature extraction for different damage types,and slow identification speeds,this paper proposes an enhanced pavement crack detection model named Star-YOLO11.This improved algorithm modifies the YOLO11 architecture by substituting the original C3k2 backbone network with a Star-s50 feature extraction network.The enhanced structure adjusts the number of stacked layers in the StarBlock module to optimize detection accuracy and improve model efficiency.To enhance the accuracy of pavement crack detection and improve model efficiency,three key modifications to the YOLO11 architecture are proposed.Firstly,the original C3k2 backbone is replaced with a StarBlock-based structure,forming the Star-s50 feature extraction backbone network.This lightweight redesign reduces computational complexity while maintaining detection precision.Secondly,to address the inefficiency of the original Partial Self-attention(PSA)mechanism in capturing localized crack features,the convolutional prior-aware Channel Prior Convolutional Attention(CPCA)mechanism is integrated into the channel dimension,creating a hybrid CPC-C2PSA attention structure.Thirdly,the original neck structure is upgraded to a Star Multi-Branch Auxiliary Feature Pyramid Network(SMAFPN)based on the Multi-Branch Auxiliary Feature Pyramid Network architecture,which adaptively fuses high-level semantic and low-level spatial information through Star-s50 connections and C3k2 extraction blocks.Additionally,a composite dataset augmentation strategy combining traditional and advanced augmentation techniques is developed.This strategy is validated on a specialized pavement dataset containing five distinct crack categories for comprehensive training and evaluation.Experimental results indicate that the proposed Star-YOLO11 achieves an accuracy of 89.9%(3.5%higher than the baseline),a mean average precision(mAP)of 90.3%(+2.6%),and an F1-score of 85.8%(+0.5%),while reducing the model size by 18.8%and reaching a frame rate of 225.73 frames per second(FPS)for real-time detection.It shows potential for lightweight deployment in pavement crack detection tasks.展开更多
Soil desiccation cracking is a common phenomenon on the earth surface.Numerical modeling is an effective approach to study the desiccation cracking mechanism of soil.This work develops a novel 3D moisture diffusion di...Soil desiccation cracking is a common phenomenon on the earth surface.Numerical modeling is an effective approach to study the desiccation cracking mechanism of soil.This work develops a novel 3D moisture diffusion discrete model that is capable of dynamically assessing the effect of cracking on moisture diffusion and allowing moisture to be discontinuous on both sides of the cracks.Then,the parametric analysis of the moisture exchange coefficient in the 3D moisture diffusion discrete model is carried out for moisture diffusion in continuous media,and the selection criterion of the moisture exchange coefficient for the unbroken cohesive element is given.Subsequently,an example of moisture migration in a medium with one crack is provided to illustrate the crack hindering effect on moisture migration.Finally,combining the 3D moisture diffusion discrete model with the finite-discrete element method(FDEM),the moisture diffusion-fracture coupling model is built to study the desiccation cracking in a strip soil and the crack pattern of a rectangular soil.The evolution of crack area and volume with moisture content is quantitatively analyzed.The modeling number and average width of cracks in the strip soil show a good consistency with the experimental results,and the crack pattern of the rectangular soil matches well with the existing numerical results,validating the coupled moisture diffusion-fracture model.Additionally,the parametric study of soil desiccation cracking is performed.The developed model offers a powerful tool for exploring soil desiccation cracking.展开更多
Mg-Li alloys hold significant potential for applications in aerospace,automotive manufacturing,military weaponry,and biomedical implants,due to their excellent recyclability,high specific strength,biocompatibility,and...Mg-Li alloys hold significant potential for applications in aerospace,automotive manufacturing,military weaponry,and biomedical implants,due to their excellent recyclability,high specific strength,biocompatibility,and superior electromagnetic shielding properties.However,their poor corrosion resistance and high susceptibility to environmentally assisted cracking(EAC)significantly limit broader application.In recent years,growing attention has been directed toward understanding the corrosion and EAC behavior of Mg-Li alloys,as localized corrosion areas and hydrogen generated during the corrosion process can serve as crack initiation points and promote crack propagation.A comprehensive understanding of these mechanisms is essential for enhancing the reliability and performance of Mg-Li alloys in practical environments.This paper presents a detailed review of corrosion and EAC in Mg-Li alloys,focusing on corrosion behavior,crack initiation and propagation mechanisms,and the key factors influencing these processes.It summarizes recent advances in alloying,heat treatment,mechanical processing,microstructural control,environmental influences,mechanical loading,and surface treatments.In addition,the paper explores future research directions,highlights emerging trends,and proposes strategies to improve the durability and service performance of Mg-Li alloys.展开更多
Solidification cracking(SC)of 2024 high-strength aluminium alloy during fusion welding or additive manufacturing has been a long-term issue.In this work,crack-free weld could be obtained using a Zr-core-Alshell wire(Z...Solidification cracking(SC)of 2024 high-strength aluminium alloy during fusion welding or additive manufacturing has been a long-term issue.In this work,crack-free weld could be obtained using a Zr-core-Alshell wire(ZCASW filler material,a novel filler)coupled with an oscillating laser-arc hybrid welding process,and we investigated the solidification cracking susceptibility(SCS)and cracking behavior of AA2024 weld fabricated with different filler materials.The cracking inhibition mechanism of the weld fabricated with ZCASW filler material was elucidated by combined experiments and phase-field simulation.The results show that the effectiveness of filler materials in reducing the SC gradually improves in the order of ER2319 filler material<ER4043 filler material<ZCASW filler material.The main cracking(when using the ER2319 filler material)branches and the micro cracking branches interact with each other to produce cracking coalescence,which aggravates the cracking propagation.The formation of the Al_(3) Zr phase(when using the ZCASW filler material)promotes heterogeneous nucleation of α-Al,thereby resulting in finer and equiaxed non-dendrite structures,which shortens the liquid phase channels and decreases cracking susceptibility index|d T/d(f_(s))^(1/2)|(T is temperature and f_(s) is solidification fraction)at final solidification.A higher proportion(7.65%area fraction)of inter-dendrite phase with spherical distribution state,a shorter(8.6 mm liquid channel length)inter-dendrite phase coupled with round non-dendrite structure(6μm dendrite size)effectively inhibit the SC.The present study can be a useful database for welding and additive manufacturing of AA2024.展开更多
Coralline soils,specialized materials found extensively in the South China Sea,are playing an increasingly vital role in engineering projects.However,like most terrigenous soils,fine-grained coral soil is prone to shr...Coralline soils,specialized materials found extensively in the South China Sea,are playing an increasingly vital role in engineering projects.However,like most terrigenous soils,fine-grained coral soil is prone to shrinkage and cracking,which can significantly affect its engineering properties and ultimately jeopardize engineering safety.This paper presents a desiccation cracking test of fine-grained coral soil,with a particular focus on the thickness effect.The study involved measuring the water content and recording the evolution of desiccation cracking.Advanced image processing technology is employed to analyze the variations in crack parameters,clod parameters,fractal dimensions,frequency distributions,and desiccation cracking propagation velocities of fine-grained coral soil.Furthermore,the dynamic evolution of desiccation cracking under the influence of layer thickness is analyzed.A comprehensive crack evolution model is proposed,encompassing both top-down and bottom-up crack propagation,as well as internal tensile cracking.This work introduces novel metrics for the propagation velocity of the total crack area,the characteristic propagation velocities of desiccation cracks,and the acceleration of crack propagation.Through data fitting,theoretical formulas for soil water evaporation,propagation velocities of desiccation cracks,and crack propagation acceleration are derived,laying a foundation for future soil cracking theories.展开更多
To cater the need for real-time crack monitoring of infrastructural facilities,a CNN-regression model is proposed to directly estimate the crack properties from patches.RGB crack images and their corresponding masks o...To cater the need for real-time crack monitoring of infrastructural facilities,a CNN-regression model is proposed to directly estimate the crack properties from patches.RGB crack images and their corresponding masks obtained from a public dataset are cropped into patches of 256 square pixels that are classified with a pre-trained deep convolution neural network,the true positives are segmented,and crack properties are extracted using two different methods.The first method is primarily based on active contour models and level-set segmentation and the second method consists of the domain adaptation of a mathematical morphology-based method known as FIL-FINDER.A statistical test has been performed for the comparison of the stated methods and a database prepared with the more suitable method.An advanced convolution neural network-based multi-output regression model has been proposed which was trained with the prepared database and validated with the held-out dataset for the prediction of crack-length,crack-width,and width-uncertainty directly from input image patches.The pro-posed model has been tested on crack patches collected from different locations.Huber loss has been used to ensure the robustness of the proposed model selected from a set of 288 different variations of it.Additionally,an ablation study has been conducted on the top 3 models that demonstrated the influence of each network component on the pre-diction results.Finally,the best performing model HHc-X among the top 3 has been proposed that predicted crack properties which are in close agreement to the ground truths in the test data.展开更多
Softening of soft red-bed rocks subjected to rainfall-evaporation cycles is commonly characterized by rapid disintegration and is often accompanied by cracking,resulting in degradation of the mechanical properties of ...Softening of soft red-bed rocks subjected to rainfall-evaporation cycles is commonly characterized by rapid disintegration and is often accompanied by cracking,resulting in degradation of the mechanical properties of the rock,which can lead to slope instability or rockfalls.The microstructural changes in soft red-bed rocks after immersion were imaged,and two-dimensional(2D)images of cracks under water absorption-evaporation conditions were obtained.The dynamics,fractal characteristics,and geometry of the cracks were analyzed using digital image processing and analysis based on morphological algorithms.The results indicate that the faceeface particle bonds become pointeface bonds with numerous micropores with sizes of 1-5 mm.The evolution of cracks generated after water absorption can be divided into four stages:edge crack initiation,crack propagation,crack coalescence forming the main crack,and subcrack segmentation.The evolution of the dynamic characteristics of cracks during water absorption and drying cycles can be effectively described by the crack intensity factor,crack density,and average width.The fractal dimension increases to a stable value with increasing soaking time,whereas drying increases the crack complexity,resulting in fractal dimensions ranging from 1.106 to 1.126.The geometry results indicate that the crack directions are mainly at angles of 30°-70°after soaking and primarily in the range of 50°-60°after 10 drying cycles.The transition of the crack intersection angle from a bimodal to a unimodal distribution suggests that water absorption and drying processes tend to form Y-shaped and T-shaped cracks,respectively.Finally,the evolution of the watererock interface induced by particle dissolution,ion exchange,expansion force,and liquid surface tensionwas used to explain the mechanism of crack evolution related to water entry and evaporation.These results provide a theoretical basis for evaluating the cracking behavior of soft red-bed rocks.展开更多
The short-range ordering(SRO)structure has been considered as a toughening method to improve the mechanical properties of high-entropy alloys(HEAs).However,the strengthening mechanism of the SRO structures on the HEAs...The short-range ordering(SRO)structure has been considered as a toughening method to improve the mechanical properties of high-entropy alloys(HEAs).However,the strengthening mechanism of the SRO structures on the HEAs still needs to be further revealed.Here,the effect of element distribution,Al content,crack orientation,temperature,and strain rate on the crack propagation behavior of the AlxFeCoCrNi HEAs are investigated using Monte Carlo(MC)/molecular dynamics(MD)simulation methods.Two HEA models are considered,one with five elements randomly distributed in the alloys,i.e.RSS_HEAs,and the other presenting SRO structure in the alloys,namely SRO_HEAs.The results show that Al atoms play a decisive role in the SRO degree of the HEA.The higher the Al content,the greater the SRO degree of the HEA,and the stronger the resistance of the SRO structure to crack propagation in the alloys.The results indicate that the reinforcement effect of the SRO structure in the model with the(111)[110]crack is more significant than that with the(111)[110]crack.The results show that the crack length of the alloys at maximum strain does not monotonically increase with temperature,but rather exhibits a turning point at the temperature of 400 K.When the temperature is below 400 K,the crack length of the alloys increases with the increase of temperature,while above 400 K,the opposite trend appears.In addition,the results indicate that the crack length of the alloys decreases with increasing strain rate under the same strain.展开更多
Microcrack growth during progressive compressive failure in brittle rocks strongly influences the safety of deep underground engineering.The external shear stressτxy on brittle rocks greatly affects microcrack growth...Microcrack growth during progressive compressive failure in brittle rocks strongly influences the safety of deep underground engineering.The external shear stressτxy on brittle rocks greatly affects microcrack growth and progressive failure.However,the theoretical mechanism of the growth direction evolution of the newly generated wing crack during progressive failure has rarely been studied.A novel analytical method is proposed to evaluate the shear stress effect on the progressive compressive failure and microcrack growth direction in brittle rocks.This model consists of the wing crack growth model under the principal compressive stresses,the direction correlation of the general stress,the principal stress and the initial microcrack inclination,and the relationship between the wing crack length and strain.The shear stress effect on the relationship between y-direction stress and wing crack growth and the relationship between y-direction stress and y-direction strain are analyzed.The shear stress effect on the wing crack growth direction during the progressive compressive failure is determined.The initial crack angle effect on the y-direction peak stress and the wing crack growth direction during the progressive compressive failure considering shear stress is also discussed.A crucial conclusion is that the direction of wing crack growth has a U-shaped variation with the growth of the wing crack.The rationality of the analytical results is verified by an experiment and from numerical results.The study results provide theoretical support for the evaluation of the safety and stability of surrounding rocks in deep underground engineering.展开更多
Soil desiccation cracking is ubiquitous in nature and has significantpotential impacts on the engineering geological properties of soils.Previous studies have extensively examined various factors affecting soil cracki...Soil desiccation cracking is ubiquitous in nature and has significantpotential impacts on the engineering geological properties of soils.Previous studies have extensively examined various factors affecting soil cracking behavior through a numerous small-sample experiments.However,experimental studies alone cannot accurately describe soil cracking behavior.In this study,we firstly propose a modeling framework for predicting the surface crack ratio of soil desiccation cracking based on machine learning and interpretable analysis.The framework utilizes 1040 sets of soil cracking experimental data and employs random forest(RF),extreme gradient boosting(XGBoost),and artificialneural network(ANN)models to predict the surface crack ratio of soil desiccation cracking.To clarify the influenceof input features on soil cracking behavior,feature importance and Shapley additive explanations(SHAP)are applied for interpretability analysis.The results reveal that ensemble methods(RF and XGBoost)provide better predictive performance than the deep learning model(ANN).The feature importance analysis shows that soil desiccation cracking is primarily influencedby initial water content,plasticity index,finalwater content,liquid limit,sand content,clay content and thickness.Moreover,SHAP-based interpretability analysis further explores how soil cracking responds to various input variables.This study provides new insight into the evolution of soil cracking behavior,enhancing the understanding of its physical mechanisms and facilitating the assessment of potential regional development of soil desiccation cracking.展开更多
Peridynamics(PD)is an effective method for simulating the spontaneous initiation and propagation of tensile cracks in materials.However,it faces great challenges in simulating compression-shear cracking of geomaterial...Peridynamics(PD)is an effective method for simulating the spontaneous initiation and propagation of tensile cracks in materials.However,it faces great challenges in simulating compression-shear cracking of geomaterials due to the lack of efficient contact-friction models.This paper introduces an original contact-friction model that leverages twin mesh and potential function principles within PD to model rock cracking under tensile and compressive stresses.The contact detection algorithm,based on space segmentation axis-aligned bounding box(AABB)tree data structure,is used to address the significant challenge of highly efficient contact detection in compression and shear problems.In this method,the twin mesh and potential function are utilized to quantify contact detection and contact degree,as well as friction behavior.This is in contrast to the distance and circular contact area model,which lacks physical significance in the classical PD method.As demonstrated by the tests on specimens containing cracks,the proposed model can capture 8 types of secondary fractures,reduce the contact detection error by about 29%e56%,and increase the contact retrieval efficiency by over 1600 times compared to the classic PD models.This significantly enhances the capability of PD to simulate the initiation,expansion,and coalescence of intricate compression-shear cracks.展开更多
Cracking affected by wetting-drying cycles is a major cause of shallow failure of soft rock slopes.Knowledge of rock tensile properties and cracking behaviors helps better assess the stability of soft rock slopes.This...Cracking affected by wetting-drying cycles is a major cause of shallow failure of soft rock slopes.Knowledge of rock tensile properties and cracking behaviors helps better assess the stability of soft rock slopes.This study aims to examine the cracking behaviors and tensile strength of silty mudstone under wetting-drying cycles.The wetting-drying cycle and Brazilian splitting tests were performed on silty mudstone considering various cycle number and amplitude.The cracking behaviors of wetting-drying cycles were analyzed by digital image correlation,three-dimensional(3D)scanning technology,and scanning electron microscopy.The results reveal a spiral-like pattern of crack ratio escalation in silty mudstone,with a higher crack ratio observed during drying than wetting.Tensile strength and fracture energy correlate negatively with cycle number or amplitude,with cycle number exerting a more pronounced effect.The variance of the maximum principal strain reflects stages of initial deformation,linear deformation,strain localization,and stable deformation.The formation of strain localization zones reveals the physical process of crack propagation.Crack tip opening displacement progresses through stages of slow growth,exponential growth,and linear growth,delineating the process from crack initiation to stable extension.Failure modes of silty mudstone primarily involve tensile and tensile-shear failure,influenced by the geometric parameters of cracks induced by wetting-drying cycles.Fracture surface roughness and fractal dimension increase with cycle number due to mineral dissolution,physical erosion,and nondirectional crack propagation.Hydration-swelling and dehydration-shrinkage of clay minerals,along with absorption-drying cracking,initiate and merge cracks,leading to degradation of the rock mechanical properties.The findings could provide insights for mitigating shallow cracking of soft rock slopes under wetting-drying cycles.展开更多
Cryogenic steels,i.e.,steels with maximum toughness at particularly low temperature,are increasingly becoming the focus of research.Cryogenic steels are usually alloyed with 5%–9%nickel.Ni can also be substituted by ...Cryogenic steels,i.e.,steels with maximum toughness at particularly low temperature,are increasingly becoming the focus of research.Cryogenic steels are usually alloyed with 5%–9%nickel.Ni can also be substituted by manganese as an austenite former.These high-manganese cryogenic grades are a cost-effective alternative to nickel-alloyed steels for use in liquefied natural gas storage tanks.The Mn content can then be more than 20 wt.%and lead to problems in production,particularly in the continuous casting process.In continuous casting of high-Mn-grades,quality issues and even breakout may result from the initial solidification behavior of the steel grades at high temperatures.Hot cracks form when a critical load is exceeded during solidification,close to the solidus temperature of the steel.A selected high-Mn-steel grade was characterized with respect to liquidus and solidus temperatures by means of thermal analysis and computational thermodynamics.In addition,so-called submerged split chill tensile tests were carried out to further understand the crack sensitivity of the solidifying shell for high-manganese cryogenic steels.The results reveal the presence of coarse hot tears,and also,a high frequency of hot cracks was observed at the location with the maximum accumulated strain,which is in line with the applied cracking criterion of Pierer and Bernhard for this investigation.In summary,the initial solidification phase of continuous casting poses a high risk of cracking for high-manganese cryogenic steel.展开更多
In order to realize the automatic recognition and classification of cracks with different depths,in this study,several deep convolutional neural networks including AlexNet,ResNet,and DenseNet were employed to identify...In order to realize the automatic recognition and classification of cracks with different depths,in this study,several deep convolutional neural networks including AlexNet,ResNet,and DenseNet were employed to identify and classify cracks at different depths and in various materials.An analysis process for the automatic classification of crack damage was presented.The image dataset used for model training was obtained from scanning experiments on aluminum and titanium alloy plates using an ultrasonic phased-array flaw detector.All models were trained and validated with the dataset;the proposed models were compared using classification precision and loss values.The results show that the automatic recognition and classification of crack depth can be realized by using the deep learning algorithm to analyze the ultrasonic phased array images,and the classification precision of DenseNet is the highest.The problem that ultrasonic damage identification relies on manual experience is solved.展开更多
It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and ...It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and electromagnetic radiation(EMR),uniaxial hierarchical cyclic loading and unloading tests were carried out on sandstones with different fracture numbers under dry,natural and saturated water content,to explore the fracture propagation,failure precursor characteristics and damage response mechanism under the influence of water content effect.The results show that with the increase of water content,the peak stress and crack initiation stress decrease gradually,and the decreases are 15.28%-21.11%and 17.64%-23.04%,respectively.The peak strain and crack initiation strain increase gradually,and the increases are 19.85%-44.53%and 19.15%-41.94%,respectively.The precracked rock with different water content is mainly characterized by tensile failure at different loading stages.However,with the increase of water content,the proportion of shear cracks gradually increases,while acoustic emission events gradually decrease,the dissipative energy and energy storage limits of the rock under peak load gradually decrease,and the charge signal increases significantly,which is because the lubrication effect of water reduces the friction coefficient between crack surfaces.展开更多
To meticulously dissect the cracking issue in the transverse diaphragm concrete,situated at the anchor point of a colossal large-span,single cable plane cable-stayed bridge,this research paper adopts an innovative lay...To meticulously dissect the cracking issue in the transverse diaphragm concrete,situated at the anchor point of a colossal large-span,single cable plane cable-stayed bridge,this research paper adopts an innovative layered modeling analysis methodology for numerical simulations.The approach is structured into three distinct layers,each tailored to address specific aspects of the cracking phenomenon.The foundational first layer model operates under the assumption of linear elasticity,adhering to the Saint Venant principle.It narrows its focus to the crucial zone between the Bp20 transverse diaphragm and the central axis of pier 4’s support,encompassing the critically cracked diaphragm beneath the N1 cable anchor.This layer provides a preliminary estimate of potential cracking zones within the concrete,serving as a baseline for further analysis.The second layer model builds upon this foundation by incorporating material plasticity into its considerations.It pinpoints its investigation to the immediate vicinity of the cracked transverse diaphragm associated with the N1 cable,aiming to capture the intricate material behavior under stress.This layer’s predictions of crack locations and patterns exhibit a remarkable alignment with actual detection results,confirming its precision and reliability.The third and most intricate layer delves deep into the heart of the matter,examining the cracked transverse diaphragm precisely where the cable force attains its maximum intensity.By leveraging advanced extended finite element technology,this layer offers an unprecedented level of detail in tracing the progression of concrete cracks.Its findings reveal a close correlation between predicted and observed crack widths,validating the model’s proficiency in simulating real-world cracking dynamics.Crucially,the boundary conditions for each layer are meticulously aligned with those of the overarching model,ensuring consistency and integrity throughout the analysis.These results not only enrich our understanding of the cracking mechanisms but also underscore the efficacy of reinforcing cracked concrete sections with external steel plates.In conclusion,this study represents a significant contribution to the field of bridge engineering,offering both theoretical insights and practical solutions for addressing similar challenges.展开更多
The commonly used method for estimating crack opening displacement(COD)is based on analytical models derived from strain transferring.However,when large background noise exists in distributed fiber optic sensing(DFOS)...The commonly used method for estimating crack opening displacement(COD)is based on analytical models derived from strain transferring.However,when large background noise exists in distributed fiber optic sensing(DFOS)data,estimating COD through an analytical model is very difficult even if the DFOS data have been denoised.To address this challenge,this study proposes a machine learning(ML)-based methodology to complete rock's COD estimation from establishment of a dataset with one-to-one correspondence between strain sequence and COD to the optimization of ML models.The Bayesian optimization is used via the Hyperopt Python library to determine the appropriate hyper-parameters of four ML models.To ensure that the best hyper-parameters will not be missing,the configuration space in Hyperopt is specified by probability distribution.The four models are trained using DFOS data with minimal noise while being examined on datasets with different noise levels to test their anti-noise robustness.The proposed models are compared each other in terms of goodness of fit and mean squared error.The results show that the Bayesian optimization-based random forest is promising to estimate the COD of rock using noisy DFOS data.展开更多
Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learni...Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learning(DL)methods automate crack detection,but many still struggle with variable crack patterns and environmental conditions.This study aims to address these limitations by introducing the Masker Transformer,a novel hybrid deep learning model that integrates the precise localization capabilities of Mask Region-based Convolutional Neural Network(Mask R-CNN)with the global contextual awareness of Vision Transformer(ViT).The research focuses on leveraging the strengths of both architectures to enhance segmentation accuracy and adaptability across different pavement conditions.We evaluated the performance of theMaskerTransformer against other state-of-theartmodels such asU-Net,TransformerU-Net(TransUNet),U-NetTransformer(UNETr),SwinU-NetTransformer(Swin-UNETr),You Only Look Once version 8(YoloV8),and Mask R-CNN using two benchmark datasets:Crack500 and DeepCrack.The findings reveal that the MaskerTransformer significantly outperforms the existing models,achieving the highest Dice SimilarityCoefficient(DSC),precision,recall,and F1-Score across both datasets.Specifically,the model attained a DSC of 80.04%on Crack500 and 91.37%on DeepCrack,demonstrating superior segmentation accuracy and reliability.The high precision and recall rates further substantiate its effectiveness in real-world applications,suggesting that the Masker Transformer can serve as a robust tool for automated pavement crack detection,potentially replacing more traditional methods.展开更多
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac...Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.展开更多
Accurate determination of crack opening stress is of central importance to fatigue crack growth analysis and life prediction based on the crack-closure model. This paper studies the crack opening behavior for center- ...Accurate determination of crack opening stress is of central importance to fatigue crack growth analysis and life prediction based on the crack-closure model. This paper studies the crack opening behavior for center- and edge-crack tension specimens. It is found that the crack opening stress is affected by the crack tip element. By taking the crack tip element into account, a modified crack opening stress equation is given for the center-crack tension specimen. Crack surface displace- ment equations for an edge crack in a semi-infinite plate under remote uniform tension and partially distributed pressure are derived by using the weight function method. Based on these displacements, a crack opening stress equation for an edge crack in a semi-infinite plate under uniform tension has been developed. The study shows that the crack opening stress is geometry-dependent, and the weight function method provides an effective and reliable tool to deal with such geometry depen- dence.展开更多
基金funded by the Jiangxi SASAC Science and Technology Innovation Special Project and the Key Technology Research and Application Promotion of Highway Overload Digital Solution.
文摘In response to the challenges in highway pavement distress detection,such as multiple defect categories,difficulties in feature extraction for different damage types,and slow identification speeds,this paper proposes an enhanced pavement crack detection model named Star-YOLO11.This improved algorithm modifies the YOLO11 architecture by substituting the original C3k2 backbone network with a Star-s50 feature extraction network.The enhanced structure adjusts the number of stacked layers in the StarBlock module to optimize detection accuracy and improve model efficiency.To enhance the accuracy of pavement crack detection and improve model efficiency,three key modifications to the YOLO11 architecture are proposed.Firstly,the original C3k2 backbone is replaced with a StarBlock-based structure,forming the Star-s50 feature extraction backbone network.This lightweight redesign reduces computational complexity while maintaining detection precision.Secondly,to address the inefficiency of the original Partial Self-attention(PSA)mechanism in capturing localized crack features,the convolutional prior-aware Channel Prior Convolutional Attention(CPCA)mechanism is integrated into the channel dimension,creating a hybrid CPC-C2PSA attention structure.Thirdly,the original neck structure is upgraded to a Star Multi-Branch Auxiliary Feature Pyramid Network(SMAFPN)based on the Multi-Branch Auxiliary Feature Pyramid Network architecture,which adaptively fuses high-level semantic and low-level spatial information through Star-s50 connections and C3k2 extraction blocks.Additionally,a composite dataset augmentation strategy combining traditional and advanced augmentation techniques is developed.This strategy is validated on a specialized pavement dataset containing five distinct crack categories for comprehensive training and evaluation.Experimental results indicate that the proposed Star-YOLO11 achieves an accuracy of 89.9%(3.5%higher than the baseline),a mean average precision(mAP)of 90.3%(+2.6%),and an F1-score of 85.8%(+0.5%),while reducing the model size by 18.8%and reaching a frame rate of 225.73 frames per second(FPS)for real-time detection.It shows potential for lightweight deployment in pavement crack detection tasks.
基金supported by the State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering(Grant No.SKLGDUEK2206)National Natural Science Foundation of China(Grant No.11872340).
文摘Soil desiccation cracking is a common phenomenon on the earth surface.Numerical modeling is an effective approach to study the desiccation cracking mechanism of soil.This work develops a novel 3D moisture diffusion discrete model that is capable of dynamically assessing the effect of cracking on moisture diffusion and allowing moisture to be discontinuous on both sides of the cracks.Then,the parametric analysis of the moisture exchange coefficient in the 3D moisture diffusion discrete model is carried out for moisture diffusion in continuous media,and the selection criterion of the moisture exchange coefficient for the unbroken cohesive element is given.Subsequently,an example of moisture migration in a medium with one crack is provided to illustrate the crack hindering effect on moisture migration.Finally,combining the 3D moisture diffusion discrete model with the finite-discrete element method(FDEM),the moisture diffusion-fracture coupling model is built to study the desiccation cracking in a strip soil and the crack pattern of a rectangular soil.The evolution of crack area and volume with moisture content is quantitatively analyzed.The modeling number and average width of cracks in the strip soil show a good consistency with the experimental results,and the crack pattern of the rectangular soil matches well with the existing numerical results,validating the coupled moisture diffusion-fracture model.Additionally,the parametric study of soil desiccation cracking is performed.The developed model offers a powerful tool for exploring soil desiccation cracking.
基金supported by the National Natural Science Foundation of China Projects under Grant(nos.52301112,52331004,U21A2049,and 51871211)Guangdong Basic and Applied Basic Research Foundation(Grant no.2024A1515030065)+4 种基金Basic and Applied Basic Research Project of Guangzhou(Grant no.2024A04J6299)LiaoNing Revitalization Talents Program(XLYC1907062,and XLYC2403026)Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program(RC231178)the Fundamental Research Funds for the Central Universities(N25GFY002)the Innovation Fund of Institute of Metal Research(IMR),Chinese Academy of Sciences(CAS).
文摘Mg-Li alloys hold significant potential for applications in aerospace,automotive manufacturing,military weaponry,and biomedical implants,due to their excellent recyclability,high specific strength,biocompatibility,and superior electromagnetic shielding properties.However,their poor corrosion resistance and high susceptibility to environmentally assisted cracking(EAC)significantly limit broader application.In recent years,growing attention has been directed toward understanding the corrosion and EAC behavior of Mg-Li alloys,as localized corrosion areas and hydrogen generated during the corrosion process can serve as crack initiation points and promote crack propagation.A comprehensive understanding of these mechanisms is essential for enhancing the reliability and performance of Mg-Li alloys in practical environments.This paper presents a detailed review of corrosion and EAC in Mg-Li alloys,focusing on corrosion behavior,crack initiation and propagation mechanisms,and the key factors influencing these processes.It summarizes recent advances in alloying,heat treatment,mechanical processing,microstructural control,environmental influences,mechanical loading,and surface treatments.In addition,the paper explores future research directions,highlights emerging trends,and proposes strategies to improve the durability and service performance of Mg-Li alloys.
基金financially supported by the National Natural Science Foundation of China under Grant Nos.52305467,52188102,U22A20196,and 52075201the Guangdong Basic and Applied Basic Research Foundation Nos.2023A1515010081 and 2022B1212020003the Fundamental Research Funds for the Central Universities under Grant No.YCJJ20230360.
文摘Solidification cracking(SC)of 2024 high-strength aluminium alloy during fusion welding or additive manufacturing has been a long-term issue.In this work,crack-free weld could be obtained using a Zr-core-Alshell wire(ZCASW filler material,a novel filler)coupled with an oscillating laser-arc hybrid welding process,and we investigated the solidification cracking susceptibility(SCS)and cracking behavior of AA2024 weld fabricated with different filler materials.The cracking inhibition mechanism of the weld fabricated with ZCASW filler material was elucidated by combined experiments and phase-field simulation.The results show that the effectiveness of filler materials in reducing the SC gradually improves in the order of ER2319 filler material<ER4043 filler material<ZCASW filler material.The main cracking(when using the ER2319 filler material)branches and the micro cracking branches interact with each other to produce cracking coalescence,which aggravates the cracking propagation.The formation of the Al_(3) Zr phase(when using the ZCASW filler material)promotes heterogeneous nucleation of α-Al,thereby resulting in finer and equiaxed non-dendrite structures,which shortens the liquid phase channels and decreases cracking susceptibility index|d T/d(f_(s))^(1/2)|(T is temperature and f_(s) is solidification fraction)at final solidification.A higher proportion(7.65%area fraction)of inter-dendrite phase with spherical distribution state,a shorter(8.6 mm liquid channel length)inter-dendrite phase coupled with round non-dendrite structure(6μm dendrite size)effectively inhibit the SC.The present study can be a useful database for welding and additive manufacturing of AA2024.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2022CDJQY-012)the Innovation Group Science Foundation of the Natural Science Foundation of Chongqing,China(Grant No.cstc2020jcyj-cxttX0003).
文摘Coralline soils,specialized materials found extensively in the South China Sea,are playing an increasingly vital role in engineering projects.However,like most terrigenous soils,fine-grained coral soil is prone to shrinkage and cracking,which can significantly affect its engineering properties and ultimately jeopardize engineering safety.This paper presents a desiccation cracking test of fine-grained coral soil,with a particular focus on the thickness effect.The study involved measuring the water content and recording the evolution of desiccation cracking.Advanced image processing technology is employed to analyze the variations in crack parameters,clod parameters,fractal dimensions,frequency distributions,and desiccation cracking propagation velocities of fine-grained coral soil.Furthermore,the dynamic evolution of desiccation cracking under the influence of layer thickness is analyzed.A comprehensive crack evolution model is proposed,encompassing both top-down and bottom-up crack propagation,as well as internal tensile cracking.This work introduces novel metrics for the propagation velocity of the total crack area,the characteristic propagation velocities of desiccation cracks,and the acceleration of crack propagation.Through data fitting,theoretical formulas for soil water evaporation,propagation velocities of desiccation cracks,and crack propagation acceleration are derived,laying a foundation for future soil cracking theories.
文摘To cater the need for real-time crack monitoring of infrastructural facilities,a CNN-regression model is proposed to directly estimate the crack properties from patches.RGB crack images and their corresponding masks obtained from a public dataset are cropped into patches of 256 square pixels that are classified with a pre-trained deep convolution neural network,the true positives are segmented,and crack properties are extracted using two different methods.The first method is primarily based on active contour models and level-set segmentation and the second method consists of the domain adaptation of a mathematical morphology-based method known as FIL-FINDER.A statistical test has been performed for the comparison of the stated methods and a database prepared with the more suitable method.An advanced convolution neural network-based multi-output regression model has been proposed which was trained with the prepared database and validated with the held-out dataset for the prediction of crack-length,crack-width,and width-uncertainty directly from input image patches.The pro-posed model has been tested on crack patches collected from different locations.Huber loss has been used to ensure the robustness of the proposed model selected from a set of 288 different variations of it.Additionally,an ablation study has been conducted on the top 3 models that demonstrated the influence of each network component on the pre-diction results.Finally,the best performing model HHc-X among the top 3 has been proposed that predicted crack properties which are in close agreement to the ground truths in the test data.
基金funded by the Sichuan Science and Technology Program(Grant Nos.2023YFS0364 and 2024YFHZ0154)the Xizang Science and Technology Program(Grant No.XZ202401ZY0097).
文摘Softening of soft red-bed rocks subjected to rainfall-evaporation cycles is commonly characterized by rapid disintegration and is often accompanied by cracking,resulting in degradation of the mechanical properties of the rock,which can lead to slope instability or rockfalls.The microstructural changes in soft red-bed rocks after immersion were imaged,and two-dimensional(2D)images of cracks under water absorption-evaporation conditions were obtained.The dynamics,fractal characteristics,and geometry of the cracks were analyzed using digital image processing and analysis based on morphological algorithms.The results indicate that the faceeface particle bonds become pointeface bonds with numerous micropores with sizes of 1-5 mm.The evolution of cracks generated after water absorption can be divided into four stages:edge crack initiation,crack propagation,crack coalescence forming the main crack,and subcrack segmentation.The evolution of the dynamic characteristics of cracks during water absorption and drying cycles can be effectively described by the crack intensity factor,crack density,and average width.The fractal dimension increases to a stable value with increasing soaking time,whereas drying increases the crack complexity,resulting in fractal dimensions ranging from 1.106 to 1.126.The geometry results indicate that the crack directions are mainly at angles of 30°-70°after soaking and primarily in the range of 50°-60°after 10 drying cycles.The transition of the crack intersection angle from a bimodal to a unimodal distribution suggests that water absorption and drying processes tend to form Y-shaped and T-shaped cracks,respectively.Finally,the evolution of the watererock interface induced by particle dissolution,ion exchange,expansion force,and liquid surface tensionwas used to explain the mechanism of crack evolution related to water entry and evaporation.These results provide a theoretical basis for evaluating the cracking behavior of soft red-bed rocks.
基金financially supported by the Natural Science Foundation of Shaanxi Province(No.2021JZ-53)the Program for Graduate Innovation Fund of Xi'an Shiyou University(No.YCS22213146).
文摘The short-range ordering(SRO)structure has been considered as a toughening method to improve the mechanical properties of high-entropy alloys(HEAs).However,the strengthening mechanism of the SRO structures on the HEAs still needs to be further revealed.Here,the effect of element distribution,Al content,crack orientation,temperature,and strain rate on the crack propagation behavior of the AlxFeCoCrNi HEAs are investigated using Monte Carlo(MC)/molecular dynamics(MD)simulation methods.Two HEA models are considered,one with five elements randomly distributed in the alloys,i.e.RSS_HEAs,and the other presenting SRO structure in the alloys,namely SRO_HEAs.The results show that Al atoms play a decisive role in the SRO degree of the HEA.The higher the Al content,the greater the SRO degree of the HEA,and the stronger the resistance of the SRO structure to crack propagation in the alloys.The results indicate that the reinforcement effect of the SRO structure in the model with the(111)[110]crack is more significant than that with the(111)[110]crack.The results show that the crack length of the alloys at maximum strain does not monotonically increase with temperature,but rather exhibits a turning point at the temperature of 400 K.When the temperature is below 400 K,the crack length of the alloys increases with the increase of temperature,while above 400 K,the opposite trend appears.In addition,the results indicate that the crack length of the alloys decreases with increasing strain rate under the same strain.
基金National Natural Science Foundation of China,Grant/Award Numbers:51708016,12172036R&D Program of Beijing Municipal Education Commission,Grant/Award Number:KM202110016014+1 种基金Government of Perm Krai,Research Project,Grant/Award Numbers:СED-26-08-08-28,С-26/628Graduate Innovation Program of Beijing University of Civil Engineering and Architecture,Grant/Award Number:PG2024035。
文摘Microcrack growth during progressive compressive failure in brittle rocks strongly influences the safety of deep underground engineering.The external shear stressτxy on brittle rocks greatly affects microcrack growth and progressive failure.However,the theoretical mechanism of the growth direction evolution of the newly generated wing crack during progressive failure has rarely been studied.A novel analytical method is proposed to evaluate the shear stress effect on the progressive compressive failure and microcrack growth direction in brittle rocks.This model consists of the wing crack growth model under the principal compressive stresses,the direction correlation of the general stress,the principal stress and the initial microcrack inclination,and the relationship between the wing crack length and strain.The shear stress effect on the relationship between y-direction stress and wing crack growth and the relationship between y-direction stress and y-direction strain are analyzed.The shear stress effect on the wing crack growth direction during the progressive compressive failure is determined.The initial crack angle effect on the y-direction peak stress and the wing crack growth direction during the progressive compressive failure considering shear stress is also discussed.A crucial conclusion is that the direction of wing crack growth has a U-shaped variation with the growth of the wing crack.The rationality of the analytical results is verified by an experiment and from numerical results.The study results provide theoretical support for the evaluation of the safety and stability of surrounding rocks in deep underground engineering.
基金supported by the National Key Research and Development Program of China(Grant Nos.2023YFC3707900 and 2024YFC3012700)the National Natural Science Foundation of China(Grant No.42230710).
文摘Soil desiccation cracking is ubiquitous in nature and has significantpotential impacts on the engineering geological properties of soils.Previous studies have extensively examined various factors affecting soil cracking behavior through a numerous small-sample experiments.However,experimental studies alone cannot accurately describe soil cracking behavior.In this study,we firstly propose a modeling framework for predicting the surface crack ratio of soil desiccation cracking based on machine learning and interpretable analysis.The framework utilizes 1040 sets of soil cracking experimental data and employs random forest(RF),extreme gradient boosting(XGBoost),and artificialneural network(ANN)models to predict the surface crack ratio of soil desiccation cracking.To clarify the influenceof input features on soil cracking behavior,feature importance and Shapley additive explanations(SHAP)are applied for interpretability analysis.The results reveal that ensemble methods(RF and XGBoost)provide better predictive performance than the deep learning model(ANN).The feature importance analysis shows that soil desiccation cracking is primarily influencedby initial water content,plasticity index,finalwater content,liquid limit,sand content,clay content and thickness.Moreover,SHAP-based interpretability analysis further explores how soil cracking responds to various input variables.This study provides new insight into the evolution of soil cracking behavior,enhancing the understanding of its physical mechanisms and facilitating the assessment of potential regional development of soil desiccation cracking.
基金supported by the National Natural Science Foundation of China(Grant No.52278333)the China Scholarship Council(CSC)and the Science and Technology Department of Liaoning Province(Grant No.2024JH2/102500069).
文摘Peridynamics(PD)is an effective method for simulating the spontaneous initiation and propagation of tensile cracks in materials.However,it faces great challenges in simulating compression-shear cracking of geomaterials due to the lack of efficient contact-friction models.This paper introduces an original contact-friction model that leverages twin mesh and potential function principles within PD to model rock cracking under tensile and compressive stresses.The contact detection algorithm,based on space segmentation axis-aligned bounding box(AABB)tree data structure,is used to address the significant challenge of highly efficient contact detection in compression and shear problems.In this method,the twin mesh and potential function are utilized to quantify contact detection and contact degree,as well as friction behavior.This is in contrast to the distance and circular contact area model,which lacks physical significance in the classical PD method.As demonstrated by the tests on specimens containing cracks,the proposed model can capture 8 types of secondary fractures,reduce the contact detection error by about 29%e56%,and increase the contact retrieval efficiency by over 1600 times compared to the classic PD models.This significantly enhances the capability of PD to simulate the initiation,expansion,and coalescence of intricate compression-shear cracks.
基金the financial support by the National Natural Science Foundation of China(Grant No.52108397)“Xiaohe”Science and Technology Talent Special Project(Grant No.2024 TJ-X06)Water Resources Science and Technology Project of Hunan Province(Grant No.XSKJ2023059-41).
文摘Cracking affected by wetting-drying cycles is a major cause of shallow failure of soft rock slopes.Knowledge of rock tensile properties and cracking behaviors helps better assess the stability of soft rock slopes.This study aims to examine the cracking behaviors and tensile strength of silty mudstone under wetting-drying cycles.The wetting-drying cycle and Brazilian splitting tests were performed on silty mudstone considering various cycle number and amplitude.The cracking behaviors of wetting-drying cycles were analyzed by digital image correlation,three-dimensional(3D)scanning technology,and scanning electron microscopy.The results reveal a spiral-like pattern of crack ratio escalation in silty mudstone,with a higher crack ratio observed during drying than wetting.Tensile strength and fracture energy correlate negatively with cycle number or amplitude,with cycle number exerting a more pronounced effect.The variance of the maximum principal strain reflects stages of initial deformation,linear deformation,strain localization,and stable deformation.The formation of strain localization zones reveals the physical process of crack propagation.Crack tip opening displacement progresses through stages of slow growth,exponential growth,and linear growth,delineating the process from crack initiation to stable extension.Failure modes of silty mudstone primarily involve tensile and tensile-shear failure,influenced by the geometric parameters of cracks induced by wetting-drying cycles.Fracture surface roughness and fractal dimension increase with cycle number due to mineral dissolution,physical erosion,and nondirectional crack propagation.Hydration-swelling and dehydration-shrinkage of clay minerals,along with absorption-drying cracking,initiate and merge cracks,leading to degradation of the rock mechanical properties.The findings could provide insights for mitigating shallow cracking of soft rock slopes under wetting-drying cycles.
基金supported by National Natural Science Foundation of China(Grant Nos.52174324,51974213 and 52204351)the China Postdoctoral Science Foundation(2022M722487)+1 种基金Open fund project(Grant No.FMRUlab23-05)supported by Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Educationsupport under the scope of the COMET program within the K2 Center“Integrated Computational Material,Process and Product Engineering(IC-MPPE)”(Project No.886385).
文摘Cryogenic steels,i.e.,steels with maximum toughness at particularly low temperature,are increasingly becoming the focus of research.Cryogenic steels are usually alloyed with 5%–9%nickel.Ni can also be substituted by manganese as an austenite former.These high-manganese cryogenic grades are a cost-effective alternative to nickel-alloyed steels for use in liquefied natural gas storage tanks.The Mn content can then be more than 20 wt.%and lead to problems in production,particularly in the continuous casting process.In continuous casting of high-Mn-grades,quality issues and even breakout may result from the initial solidification behavior of the steel grades at high temperatures.Hot cracks form when a critical load is exceeded during solidification,close to the solidus temperature of the steel.A selected high-Mn-steel grade was characterized with respect to liquidus and solidus temperatures by means of thermal analysis and computational thermodynamics.In addition,so-called submerged split chill tensile tests were carried out to further understand the crack sensitivity of the solidifying shell for high-manganese cryogenic steels.The results reveal the presence of coarse hot tears,and also,a high frequency of hot cracks was observed at the location with the maximum accumulated strain,which is in line with the applied cracking criterion of Pierer and Bernhard for this investigation.In summary,the initial solidification phase of continuous casting poses a high risk of cracking for high-manganese cryogenic steel.
基金supported by the National Natural Science Foundation of China(Nos.52222504 and 52241502)the Natural Science Talents Foundation of Shaanxi Province(No.2021JC-04).
文摘In order to realize the automatic recognition and classification of cracks with different depths,in this study,several deep convolutional neural networks including AlexNet,ResNet,and DenseNet were employed to identify and classify cracks at different depths and in various materials.An analysis process for the automatic classification of crack damage was presented.The image dataset used for model training was obtained from scanning experiments on aluminum and titanium alloy plates using an ultrasonic phased-array flaw detector.All models were trained and validated with the dataset;the proposed models were compared using classification precision and loss values.The results show that the automatic recognition and classification of crack depth can be realized by using the deep learning algorithm to analyze the ultrasonic phased array images,and the classification precision of DenseNet is the highest.The problem that ultrasonic damage identification relies on manual experience is solved.
基金financially supported by National Natural Science Foundation of China(No.52304136)Young Talent of Lifting Engineering for Science and Technology in Shandong,China(No.SDAST2024QTA060)Key Project of Research and Development in Liaocheng(No.2023YD02)。
文摘It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and electromagnetic radiation(EMR),uniaxial hierarchical cyclic loading and unloading tests were carried out on sandstones with different fracture numbers under dry,natural and saturated water content,to explore the fracture propagation,failure precursor characteristics and damage response mechanism under the influence of water content effect.The results show that with the increase of water content,the peak stress and crack initiation stress decrease gradually,and the decreases are 15.28%-21.11%and 17.64%-23.04%,respectively.The peak strain and crack initiation strain increase gradually,and the increases are 19.85%-44.53%and 19.15%-41.94%,respectively.The precracked rock with different water content is mainly characterized by tensile failure at different loading stages.However,with the increase of water content,the proportion of shear cracks gradually increases,while acoustic emission events gradually decrease,the dissipative energy and energy storage limits of the rock under peak load gradually decrease,and the charge signal increases significantly,which is because the lubrication effect of water reduces the friction coefficient between crack surfaces.
基金financially supported by National Natural Science Foundation of China(Project No.51878156,received by Wenwei Wang).
文摘To meticulously dissect the cracking issue in the transverse diaphragm concrete,situated at the anchor point of a colossal large-span,single cable plane cable-stayed bridge,this research paper adopts an innovative layered modeling analysis methodology for numerical simulations.The approach is structured into three distinct layers,each tailored to address specific aspects of the cracking phenomenon.The foundational first layer model operates under the assumption of linear elasticity,adhering to the Saint Venant principle.It narrows its focus to the crucial zone between the Bp20 transverse diaphragm and the central axis of pier 4’s support,encompassing the critically cracked diaphragm beneath the N1 cable anchor.This layer provides a preliminary estimate of potential cracking zones within the concrete,serving as a baseline for further analysis.The second layer model builds upon this foundation by incorporating material plasticity into its considerations.It pinpoints its investigation to the immediate vicinity of the cracked transverse diaphragm associated with the N1 cable,aiming to capture the intricate material behavior under stress.This layer’s predictions of crack locations and patterns exhibit a remarkable alignment with actual detection results,confirming its precision and reliability.The third and most intricate layer delves deep into the heart of the matter,examining the cracked transverse diaphragm precisely where the cable force attains its maximum intensity.By leveraging advanced extended finite element technology,this layer offers an unprecedented level of detail in tracing the progression of concrete cracks.Its findings reveal a close correlation between predicted and observed crack widths,validating the model’s proficiency in simulating real-world cracking dynamics.Crucially,the boundary conditions for each layer are meticulously aligned with those of the overarching model,ensuring consistency and integrity throughout the analysis.These results not only enrich our understanding of the cracking mechanisms but also underscore the efficacy of reinforcing cracked concrete sections with external steel plates.In conclusion,this study represents a significant contribution to the field of bridge engineering,offering both theoretical insights and practical solutions for addressing similar challenges.
基金The Young Scientists Fund of the National Natural Science Foundation of China(Grant No.42407250)the Fund from Research Centre for Resources Engineering towards Carbon Neutrality(RCRE)of The Hong Kong Polytechnic University(Grant No.No.1-BBEM)the Fund from Natural Science Foundation of Jiangsu Province(Grant No.BK20241211)。
文摘The commonly used method for estimating crack opening displacement(COD)is based on analytical models derived from strain transferring.However,when large background noise exists in distributed fiber optic sensing(DFOS)data,estimating COD through an analytical model is very difficult even if the DFOS data have been denoised.To address this challenge,this study proposes a machine learning(ML)-based methodology to complete rock's COD estimation from establishment of a dataset with one-to-one correspondence between strain sequence and COD to the optimization of ML models.The Bayesian optimization is used via the Hyperopt Python library to determine the appropriate hyper-parameters of four ML models.To ensure that the best hyper-parameters will not be missing,the configuration space in Hyperopt is specified by probability distribution.The four models are trained using DFOS data with minimal noise while being examined on datasets with different noise levels to test their anti-noise robustness.The proposed models are compared each other in terms of goodness of fit and mean squared error.The results show that the Bayesian optimization-based random forest is promising to estimate the COD of rock using noisy DFOS data.
文摘Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learning(DL)methods automate crack detection,but many still struggle with variable crack patterns and environmental conditions.This study aims to address these limitations by introducing the Masker Transformer,a novel hybrid deep learning model that integrates the precise localization capabilities of Mask Region-based Convolutional Neural Network(Mask R-CNN)with the global contextual awareness of Vision Transformer(ViT).The research focuses on leveraging the strengths of both architectures to enhance segmentation accuracy and adaptability across different pavement conditions.We evaluated the performance of theMaskerTransformer against other state-of-theartmodels such asU-Net,TransformerU-Net(TransUNet),U-NetTransformer(UNETr),SwinU-NetTransformer(Swin-UNETr),You Only Look Once version 8(YoloV8),and Mask R-CNN using two benchmark datasets:Crack500 and DeepCrack.The findings reveal that the MaskerTransformer significantly outperforms the existing models,achieving the highest Dice SimilarityCoefficient(DSC),precision,recall,and F1-Score across both datasets.Specifically,the model attained a DSC of 80.04%on Crack500 and 91.37%on DeepCrack,demonstrating superior segmentation accuracy and reliability.The high precision and recall rates further substantiate its effectiveness in real-world applications,suggesting that the Masker Transformer can serve as a robust tool for automated pavement crack detection,potentially replacing more traditional methods.
基金funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19680589).
文摘Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.
文摘Accurate determination of crack opening stress is of central importance to fatigue crack growth analysis and life prediction based on the crack-closure model. This paper studies the crack opening behavior for center- and edge-crack tension specimens. It is found that the crack opening stress is affected by the crack tip element. By taking the crack tip element into account, a modified crack opening stress equation is given for the center-crack tension specimen. Crack surface displace- ment equations for an edge crack in a semi-infinite plate under remote uniform tension and partially distributed pressure are derived by using the weight function method. Based on these displacements, a crack opening stress equation for an edge crack in a semi-infinite plate under uniform tension has been developed. The study shows that the crack opening stress is geometry-dependent, and the weight function method provides an effective and reliable tool to deal with such geometry depen- dence.