期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
On Quaternionic 3 CR-Structure and Pseudo-Riemannian Metric
1
作者 Yoshinobu Kamishima 《Applied Mathematics》 2018年第2期114-129,共16页
A CR-structure on a 2n +1-manifold gives a conformal class of Lorentz metrics on the Fefferman S1-bundle. This analogy is carried out to the quarternionic conformal 3-CR structure (a generalization of quaternionic CR-... A CR-structure on a 2n +1-manifold gives a conformal class of Lorentz metrics on the Fefferman S1-bundle. This analogy is carried out to the quarternionic conformal 3-CR structure (a generalization of quaternionic CR- structure) on a 4n + 3 -manifold M. This structure produces a conformal class [g] of a pseudo-Riemannian metric g of type (4n + 3,3) on M × S3. Let (PSp(n +1,1), S4n+3) be the geometric model obtained from the projective boundary of the complete simply connected quaternionic hyperbolic manifold. We shall prove that M is locally modeled on (PSp(n +1,1), S4n+3) if and only if (M × S3 ,[g]) is conformally flat (i.e. the Weyl conformal curvature tensor vanishes). 展开更多
关键词 Conformal STRUCTURE Quaternionic cr-structure G-STRUCTURE Conformally Flat STRUCTURE WEYL Tensor INTEGRABILITY UNIFORMIZATION Transformation Groups
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部