期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于CPSOGSA算法的风-光-小水电微电网负荷频率最优H_(2)/H_(∞)鲁棒控制 被引量:19
1
作者 邹屹东 钱晶 +3 位作者 张文英 梅宏 陈家焕 曾云 《电力系统保护与控制》 EI CSCD 北大核心 2022年第11期42-51,共10页
提出在优化过程中考虑H_(2)/H_(∞)范数权重来设计最优混合H_(2)/H_(∞)鲁棒控制器的方法,并将其应用在含风电、光伏以及小水电三个分布式电源的微电网负荷频率控制上。在对所建立的微电网负荷频率控制器优化中以系统的频率波动平方积... 提出在优化过程中考虑H_(2)/H_(∞)范数权重来设计最优混合H_(2)/H_(∞)鲁棒控制器的方法,并将其应用在含风电、光伏以及小水电三个分布式电源的微电网负荷频率控制上。在对所建立的微电网负荷频率控制器优化中以系统的频率波动平方积分最小作为最优化目标,并综合H_(2)/H_(∞)两个范数所表述的鲁棒性能,设计了具有最优的混合H_(2)/H_(∞)鲁棒控制器。采用基于收缩系数的粒子群引力搜索算法(CPSOGSA)对反映系统H_(2)性能、H_(∞)性能的权重值以及输出鲁棒性能的有关加权矩阵进行选优,从而能够使得控制器在满足约束条件下达到最优。通过仿真验证可知,所提的方法对该微电网的负荷频率在外部扰动和系统内部参数扰动下具有更好的动态性能。 展开更多
关键词 微电网 小水电 负荷频率控制 鲁棒控制 混沌粒子群引力搜索算法
在线阅读 下载PDF
A hybrid constriction coefficientbased particle swarm optimization and gravitational search algorithm for training multi-layer perceptron 被引量:2
2
作者 Sajad Ahmad Rather P.Shanthi Bala 《International Journal of Intelligent Computing and Cybernetics》 EI 2020年第2期129-165,共37页
Purpose-In this paper,a newly proposed hybridization algorithm namely constriction coefficient-based particle swarm optimization and gravitational search algorithm(CPSOGSA)has been employed for training MLP to overcom... Purpose-In this paper,a newly proposed hybridization algorithm namely constriction coefficient-based particle swarm optimization and gravitational search algorithm(CPSOGSA)has been employed for training MLP to overcome sensitivity to initialization,premature convergence,and stagnation in local optima problems of MLP.Design/methodology/approach-In this study,the exploration of the search space is carried out by gravitational search algorithm(GSA)and optimization of candidate solutions,i.e.exploitation is performed by particle swarm optimization(PSO).For training the multi-layer perceptron(MLP),CPSOGSA uses sigmoid fitness function for finding the proper combination of connection weights and neural biases to minimize the error.Secondly,a matrix encoding strategy is utilized for providing one to one correspondence between weights and biases of MLP and agents of CPSOGSA.Findings-The experimental findings convey that CPSOGSA is a better MLP trainer as compared to other stochastic algorithms because it provides superior results in terms of resolving stagnation in local optima and convergence speed problems.Besides,it gives the best results for breast cancer,heart,sine function and sigmoid function datasets as compared to other participating algorithms.Moreover,CPSOGSA also provides very competitive results for other datasets.Originality/value-The CPSOGSA performed effectively in overcoming stagnation in local optima problem and increasing the overall convergence speed of MLP.Basically,CPSOGSA is a hybrid optimization algorithm which has powerful characteristics of global exploration capability and high local exploitation power.In the research literature,a little work is available where CPSO and GSA have been utilized for training MLP.The only related research paper was given by Mirjalili et al.,in 2012.They have used standard PSO and GSA for training simple FNNs.However,the work employed only three datasets and used the MSE performance metric for evaluating the efficiency of the algorithms.In this paper,eight different standard datasets and five performance metrics have been utilized for investigating the efficiency of CPSOGSA in training MLPs.In addition,a non-parametric pair-wise statistical test namely the Wilcoxon rank-sum test has been carried out at a 5%significance level to statistically validate the simulation results.Besides,eight state-of-the-art metaheuristic algorithms were employed for comparative analysis of the experimental results to further raise the authenticity of the experimental setup. 展开更多
关键词 Neural network Feedforward neural network(FNN) Gravitational search algorithm(GSA) Particle swarm optimization(PSO) HYBRIDIZATION cpsogsa Multi-layer perceptron(MLP)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部