Computations and Experiments were performed to get an understanding of the flow field around a rectangular supersonic air intake with pointed cowl [90°] at different back pressures for Mach 2.2. The effect of Cow...Computations and Experiments were performed to get an understanding of the flow field around a rectangular supersonic air intake with pointed cowl [90°] at different back pressures for Mach 2.2. The effect of Cowl shape on the ramp surface pressure distribution is discussed and compared with existing V-Notch [90°] intake model at free exit condition. It was found that using pointed cowl [90°] intake model, a better pressure recovery was achieved compared to the V-Notch [90°] intake model at Mach 2.2. Both Pointed and V-Notch intake models showed good starting characteristics. For change in back pressure, the occurence of normal shock, flow separation zone and flow reversal were observed. All experiments are performed only for the Pointed cowl [90°] intake model. All the 3-D computations were performed by using software available at B.I.T, Mesra, Ranchi.展开更多
In this study, the cold ocean/warm land (COWL) pattern was identified from the leading empirical orthogonal function (EOF) of the monthly 1000-hPa geopotential height field poleward of 20°N. Traditionally, th...In this study, the cold ocean/warm land (COWL) pattern was identified from the leading empirical orthogonal function (EOF) of the monthly 1000-hPa geopotential height field poleward of 20°N. Traditionally, the leading EOF has been recognized as the Arctic Oscillation (AO), or Northern Annular Mode (NAM), which causes annular surface air temperature (SAT) anomalies over high-latitude regions of the Northern Hemisphere. A new finding of the present study is that the total AO events defined by the large AO index actually include a distinct type of events that are characterized by a less-annular spatial structure, i.e., the COWL pattern, which shows an NAO-like distribution in the Atlantic sector and a center of action over the North Pacific with the same sign as that over the Arctic. In addition, unlike canonical AO events, the COWL events also show a less-annular pattern in the stratosphere. Statistically, at least one-third of the AO events can be categorized as the COWL events. The SAT anomalies associated with the COWL pattern have an annular distribution over the high-latitude region of the two continents in the Northern Hemisphere. In contrast, if the COWL events are removed from the total AO events, the remainder shows less annular SAT anomalies. Thus, the typical annular SAT anomalies associated with AO events are in large part due to the contribution of the COWL pattern. Furthermore, the monthly variability and the interannual variability of all the AO events are equally important.展开更多
The interaction of cowl shock wave and boundary layer has a crucial effect on the stability,operability and performance of hypersonic inlets.Many studies on inhibiting the sep-aration and managing the strength of the ...The interaction of cowl shock wave and boundary layer has a crucial effect on the stability,operability and performance of hypersonic inlets.Many studies on inhibiting the sep-aration and managing the strength of the interaction of the shock wave and boundary layer with expansion corner have been conducted.However,the expansion waves near the circular arc shoulder to effectively control the interaction and cowl shock arrangement is little investigated.Therefore,the interaction of the cowl shock wave and boundary layer under thefluence of the expansion waves is studied by inviscid and viscous numerical simulations.The results reveal that the expansion waves have an important impact on the interaction between the cowl shock wave and boundary layer and the strength of shock wave,and that there are four types of inter-action processes with the change of the relative impingement positions of cowl shock wave.The expansion waves have a different influence on the shock wave and boundary layer inter-action at different incident points.When the incident point of the cowl shock wave goes far downstream from the end of the circular arc shoulder,the influence of expansion waves is weakened,and the magnitude of separation zone increases.However,when the expansion waves are applied to the interaction of the cowl shock wave and boundary layer on the circular arc shoulder,the separation can be effectively controlled.In particular,while the expansion waves interact with the shock wave and boundary layer in the back half of the circular arc shoulder,the separation is best inhibited.Compared with the upstream and downstream inci-dent points,the scale of separation area in the optimal control region is reduced by 65.3%at most.Furthermore,the total pressure recovery coefficientfirst increases and then decreases when the cowl moves from upstream to downstream,and the total pressure recovery coefficient reaches the maximum value of 68.36%at the incident position of cowl shock wave d Z 8.09d0.展开更多
文摘Computations and Experiments were performed to get an understanding of the flow field around a rectangular supersonic air intake with pointed cowl [90°] at different back pressures for Mach 2.2. The effect of Cowl shape on the ramp surface pressure distribution is discussed and compared with existing V-Notch [90°] intake model at free exit condition. It was found that using pointed cowl [90°] intake model, a better pressure recovery was achieved compared to the V-Notch [90°] intake model at Mach 2.2. Both Pointed and V-Notch intake models showed good starting characteristics. For change in back pressure, the occurence of normal shock, flow separation zone and flow reversal were observed. All experiments are performed only for the Pointed cowl [90°] intake model. All the 3-D computations were performed by using software available at B.I.T, Mesra, Ranchi.
基金Supported by the National Basic Research and Development(973)Program of China(2009CB421406)National Science and Technology Support Program of China(2009BAC51B02)National Natural Science Foundation of China(40975033)
文摘In this study, the cold ocean/warm land (COWL) pattern was identified from the leading empirical orthogonal function (EOF) of the monthly 1000-hPa geopotential height field poleward of 20°N. Traditionally, the leading EOF has been recognized as the Arctic Oscillation (AO), or Northern Annular Mode (NAM), which causes annular surface air temperature (SAT) anomalies over high-latitude regions of the Northern Hemisphere. A new finding of the present study is that the total AO events defined by the large AO index actually include a distinct type of events that are characterized by a less-annular spatial structure, i.e., the COWL pattern, which shows an NAO-like distribution in the Atlantic sector and a center of action over the North Pacific with the same sign as that over the Arctic. In addition, unlike canonical AO events, the COWL events also show a less-annular pattern in the stratosphere. Statistically, at least one-third of the AO events can be categorized as the COWL events. The SAT anomalies associated with the COWL pattern have an annular distribution over the high-latitude region of the two continents in the Northern Hemisphere. In contrast, if the COWL events are removed from the total AO events, the remainder shows less annular SAT anomalies. Thus, the typical annular SAT anomalies associated with AO events are in large part due to the contribution of the COWL pattern. Furthermore, the monthly variability and the interannual variability of all the AO events are equally important.
基金supported by the Project 1912,the National Natural Science Foundation of China (Grant Nos.52125603 and 11972139)the Fundamental Research Funds for the Central Universities (HIT.BRET.2021006 and FRFCU5710094620).
文摘The interaction of cowl shock wave and boundary layer has a crucial effect on the stability,operability and performance of hypersonic inlets.Many studies on inhibiting the sep-aration and managing the strength of the interaction of the shock wave and boundary layer with expansion corner have been conducted.However,the expansion waves near the circular arc shoulder to effectively control the interaction and cowl shock arrangement is little investigated.Therefore,the interaction of the cowl shock wave and boundary layer under thefluence of the expansion waves is studied by inviscid and viscous numerical simulations.The results reveal that the expansion waves have an important impact on the interaction between the cowl shock wave and boundary layer and the strength of shock wave,and that there are four types of inter-action processes with the change of the relative impingement positions of cowl shock wave.The expansion waves have a different influence on the shock wave and boundary layer inter-action at different incident points.When the incident point of the cowl shock wave goes far downstream from the end of the circular arc shoulder,the influence of expansion waves is weakened,and the magnitude of separation zone increases.However,when the expansion waves are applied to the interaction of the cowl shock wave and boundary layer on the circular arc shoulder,the separation can be effectively controlled.In particular,while the expansion waves interact with the shock wave and boundary layer in the back half of the circular arc shoulder,the separation is best inhibited.Compared with the upstream and downstream inci-dent points,the scale of separation area in the optimal control region is reduced by 65.3%at most.Furthermore,the total pressure recovery coefficientfirst increases and then decreases when the cowl moves from upstream to downstream,and the total pressure recovery coefficient reaches the maximum value of 68.36%at the incident position of cowl shock wave d Z 8.09d0.