With rapid advancements in physics and particle medicine,the domestic accelerator industry has grown rapidly.During the 12th Five-Year Plan period,the Institute of Modern Physics of the Chinese Academy of Sciences too...With rapid advancements in physics and particle medicine,the domestic accelerator industry has grown rapidly.During the 12th Five-Year Plan period,the Institute of Modern Physics of the Chinese Academy of Sciences took on a plurality of accelerator projects.Nevertheless,the stability of the coupler,a crucial system within the cavities of accelerators,has encountered certain difficulties.The alumina ceramics,which constitute the core component of the coupler,are increasingly prone to breakage and solder joint failures due to their inferior environmental adaptability,inadequate mechanical properties,and high gas emissions.Conversely,with the advancements in medical technology and materials science,zirconia ceramics have emerged as a prospective remedy for these problems.This type of ceramic is highly esteemed for its outstanding environmental adaptability,remarkable mechanical properties,and excellent high-temperature resistance,exhibiting extraordinary value in dental applications.This study investigates the use of zirconia ceramics in a 162.5 MHz 3-1/8"standard ceramic window,combining experimental data with finite element RF simulations and multi-physics analysis.A new coupler featuring a zirconia ceramic window was tested on a Quarter-Wave Resonator,demonstrating excellent alignment between electromagnetic simulations and measurement results.This reveals the substantial application potential and practical worth of the zirconia ceramic material in the context of accelerators.展开更多
Fundamental power couplers are crucial components for feeding radio frequency power to accelerating cavities. Couplers must be tested and conditioned on a room-temperature test stand to evaluate and potentially improv...Fundamental power couplers are crucial components for feeding radio frequency power to accelerating cavities. Couplers must be tested and conditioned on a room-temperature test stand to evaluate and potentially improve their performance before being installed in an accelerating cavity. A new test system has been designed and is under construction at the institute of modern physics.For this test system, multiple conditioning modes, including the pulse mode, CW mode, and amplitude-sweeping mode, have been embedded in the low-level radio frequency system of the test stand. All of these conditioning modes can be run manually or automatically. In addition, a novel test cavity is proposed and has been designed, which facilitates non-contact conditioning and a multi-purpose test stand.展开更多
Utilizing hybrid integration model.the integrated model optocouplers have successfully developed.The design,fabrication and characteristic parameters of the devices are presented.
Two-mode converters at 1.3μm, aiming at applications in mode-division multiplexing in Ethernet systems, are proposed and experimentally demonstrated. Based on multimode interference couplers, the two-mode converters ...Two-mode converters at 1.3μm, aiming at applications in mode-division multiplexing in Ethernet systems, are proposed and experimentally demonstrated. Based on multimode interference couplers, the two-mode converters with 50% and 66% mode conversion efficiencies are designed and fabricated on InP substrates. AIode conver- sion from the fundamental mode (TEo) to the first order mode (TE1) is successfully demonstrated within the wavelength range of 1280-1320nm. The 1.3-μm mode converters should be important devices in mode-division multiplexing systems in Ethernet systems.展开更多
We present exact analytical solutions to parity-time(P T) symmetric optical system describing light transport in P T-symmetric optical couplers. We show that light intensity oscillates periodically between two wavegui...We present exact analytical solutions to parity-time(P T) symmetric optical system describing light transport in P T-symmetric optical couplers. We show that light intensity oscillates periodically between two waveguides for unbroken P T-symmetric phase, whereas light always leaves the system from the waveguide experiencing gain when light is initially input at either waveguide experiencing gain or waveguide experiencing loss for broken P T-symmetric phase. These analytical results agree with the recent experimental observation reported by Ru¨ter et al. [Nat. Phys.6(2010) 192]. Besides, we present a scheme for manipulating P T symmetry by applying a periodic modulation. Our results provide an efficient way to control light propagation in periodically modulated P T-symmetric system by tuning the modulation amplitude and frequency.展开更多
In this paper, we present the results of numerical analysis of optical solitons in dual core couplers. We studied the optical couplers as an application for the non-linear Schrödinger equation in the case of ...In this paper, we present the results of numerical analysis of optical solitons in dual core couplers. We studied the optical couplers as an application for the non-linear Schrödinger equation in the case of Kerr law for non-linear and clarify the exact solution in this case. Then we have provided a numerical study of the effect of changing the constants in the form of the three types of solitons: bright soliton and dark solitons and singular soliton.展开更多
In this work, we develop a simulation method based on supermode theory and transfer matrix formalism, and then apply it to the analysis and design of taper couplers for vertically integrated As2S3 and Ti: LiNbO3 hybri...In this work, we develop a simulation method based on supermode theory and transfer matrix formalism, and then apply it to the analysis and design of taper couplers for vertically integrated As2S3 and Ti: LiNbO3 hybrid waveguides. Test structures based on taper couplers are fabricated and characterized. The experimental results confirm the validity of the modeling method, which in turn, is used to analyze the fabricated couplers.展开更多
Published studies in regard to coupler systems have been mainly focused on the manufacturing process or coupler strength issues. With the ever increasing of tonnage and length of heavy haul trains, lateral in-train fo...Published studies in regard to coupler systems have been mainly focused on the manufacturing process or coupler strength issues. With the ever increasing of tonnage and length of heavy haul trains, lateral in-train forces generated by longitudinal in-train forces and coupler rotations have become a more and more significant safety issue for heavy haul train operations. Derailments caused by excessive lateral in-train forces are frequently reported. This article studies two typical coupler systems used on heavy haul locomotives. Their structures and stabilizing mechanism are analyzed before the corresponding models are developed. Coupler systems models are featured by two distinct stabilizing mechanism models and draft gear models with hysteresis considered. A model set which consists of four locomotives and three coupler systems is developed to study the rotational behavior of different coupler systems and their implications for locomotive dynamics. Simulated results indicate that when the locomotives are equipped with the type B coupler system, locomotives can meet the dynamics standard on tangent tracks; while the dynamics performance on curved tracks is very poor. The maximum longitudinal in-train force for locomotives equipped with the type B coupler system is 2000 kN. Simulations revealed a distinct trend for the type A coupler system. Locomotive dynamics are poorer for the type A case when locomotives are running on tangent tracks, while the dynamics are better for the type A case when locomotives are running on curved tracks. Theoretical studies and simulations carried out in this article suggest that a combination of the two types of stabilizing mechanism can result in a good design which can significantly decrease the relevant derailments.展开更多
A novel grating coupler with a stair-step blaze profile is proposed. The coupler is a CMOS process compatible device and can be used for light coupling in optical communication. The blaze profile can be optimized to o...A novel grating coupler with a stair-step blaze profile is proposed. The coupler is a CMOS process compatible device and can be used for light coupling in optical communication. The blaze profile can be optimized to obtain a high efficiency of 66.7% for the out-of-plane coupling at the centre wavelength of 1595 nm with a 1 dB bandwidth of 41 nm. Five key parameters of the stair-step blaze grating and their effects on the coupling are discussed for the application in L band telecommunication.展开更多
Grating couplers are widely investigated as coupling interfaces between silicon-on-insulator waveguides and optical fibers.In this work,a high-efficiency and complementary metal-oxide-semiconductor(CMOS) process com...Grating couplers are widely investigated as coupling interfaces between silicon-on-insulator waveguides and optical fibers.In this work,a high-efficiency and complementary metal-oxide-semiconductor(CMOS) process compatible grating coupler is proposed.The poly-Si layer used as a gate in the CMOS metal-oxide-semiconductor field effect transistor(MOSFET) is combined with a normal fully etched grating coupler,which greatly enhances its coupling efficiency.With optimal structure parameters,a coupling efficiency can reach as high as ~ 70% at a wavelength of 1550 nm as indicated by simulation.From the angle of fabrication,all masks and etching steps are shared between MOSFETs and grating couplers,thereby making the high performance grating couplers easily integrated with CMOS circuits.Fabrication errors such as alignment shift are also simulated,showing that the device is quite tolerant in fabrication.展开更多
We demonstrate visible-light all-fiber vortex lasers by incorporating the home-made mode selective couplers (MSCs). The MSC at green or red wavebands is fabricated by specially designing and fusing a single-mode fiber...We demonstrate visible-light all-fiber vortex lasers by incorporating the home-made mode selective couplers (MSCs). The MSC at green or red wavebands is fabricated by specially designing and fusing a single-mode fiber (SMF) and a few-mode fiber (FMF). The MSCs inserted into visible fiber cavities act as power splitters and mode converters from the LP01 to LP11 mode at green and red wavelengths, respectively. The red-light all-fiber vortex laser is formed by a 10-cm Pr3+/Yb3+:ZBLAN fiber, a fiber Bragg grating, a fiber end-facet mirror and the MSC at 635 nm, which generates vortex beams with OAM±1 at 634.4 nm and an output power of 13 mW. The green-light all-fiber vortex laser consists of a 12-cm Ho3+:ZBLAN fiber, two fiber pigtail mirrors, and the MSC at 550 nm, which generates vortex beams with OAM±1 at 548.9 nm and an output power of 3 mW.展开更多
An explanation of optical unitary transformation is presented for general nonoverlapping-image multimode interference(MMI)couplers with any number of input and output ports.The light transformation in the MMI coupler ...An explanation of optical unitary transformation is presented for general nonoverlapping-image multimode interference(MMI)couplers with any number of input and output ports.The light transformation in the MMI coupler can be considered as an optical field matrix acting on an input light column vector.We investigate the general phase principle of output light image.The complete proof of nonoverlapping-image MMI coupler’s optical unitarity along with the phase analysis of matrix element is provided.Based on a two-dimensional finite-difference time-domain(2 D-FDTD)simulation,the unitary transformation is obtained for a 4×4 nonoverlapping-image MMI coupler within a deviation of 4×10-2 for orthogonal invariance and 8×10-2 for transvection invariance in the C-band spectral range.A compact 1×4 splitter based on cascaded MMI coupler is proposed,showing a phase deviation less than 5.4°while maintaining a low-loss performance in C-band spectra.展开更多
Optical couplers are the key components for signal distribution in optoelectronic transmitters and receivers. A new low-loss, large-angle Y-junction hybrid polymer optical coupler with an integrated microprism has bee...Optical couplers are the key components for signal distribution in optoelectronic transmitters and receivers. A new low-loss, large-angle Y-junction hybrid polymer optical coupler with an integrated microprism has been fabricated and demonstrated experimentally for use in a mixed-signal module environment. The results show that the radiation loss is small with relatively wide branching angle as compared to a conventional Y-junction coupler.展开更多
The muhimode interference (MMI) couplers, which operate at 1. 55 microns in deep rib InGaAsP/InP waveguide with large lateral confinement and tunable power splitting ratios, are of high interest in integrated optics...The muhimode interference (MMI) couplers, which operate at 1. 55 microns in deep rib InGaAsP/InP waveguide with large lateral confinement and tunable power splitting ratios, are of high interest in integrated optics. The gold contacts are applied on the top of waveguides where tuning is desired and the plasma effect will lead to negative refractive index change. The three-dimensional (3D) finite difference beam propagation method(FD-BPM) is used to model the tunable MMI couplers. The length of a 2 × 2 overlap-MMI is determined by FD-BPM, so the longitudinal position of tuning spots is obtained. The position of gold contacts with two types, the edge-pads or center-pad, are also determined. In our design, the length of MMI is 180 microns. If the width of pads is 50 microns and the refractive index is tuned from 0 to -0. 027, the power ratio is tuned from 50 : 50 to the maximum 88.5 : 11.4. For deep rib structure, the effective index(EI) method can not be used to simplify the 3D waveguide to plane waveguide because of its lower precision, and so the direct 3D FD-BPM simulation is necessary for the design of 3D MMI couplers.展开更多
On-chip couplers are essential for coupling free-space electromagnetic waves into sub-wavelength semiconductor devices and enhancing light-matter interactions.However,the couplers used in existing single field-effect ...On-chip couplers are essential for coupling free-space electromagnetic waves into sub-wavelength semiconductor devices and enhancing light-matter interactions.However,the couplers used in existing single field-effect transistor(FET)detectors exhibit poor response over wide frequency ranges,making the detection of ultra-wideband weak signals highly challenging.In this work,we introduce a meta-array coupler for terahertz detectors based on field-effect transistors,which demonstrates exceptional coupling asymmetry beneath the gate.To optimize the meta-array structure for high gain across an ultra-wide frequency range,we propose a hybrid long short-term memory–multi-layer perceptron(LSTM-MLP)neural network for the detector’s on-chip coupler.This method enables accurate and rapid prediction of the enhanced spectra of meta-atoms,facilitating efficient conversion from structural parameters to resonance frequencies.Compared to traditional dipole couplers,the proposed metacoupler generates strong localized electric field enhancement through dipole resonance,achieving a mixing factor asymmetry up to 246 times higher near 660 GHz and an antenna factor enhancement of approximately 50 times.The meta-array coupled FET terahertz detector achieves ultra-wideband resonance enhancement from 350 to1000 GHz.This hardware architecture and hybrid LSTM-MLP neural network are expected to overcome the limitations of current FET-based detectors in coupling efficiency,bridging the performance gap toward ultra-sensitive detection applications.展开更多
The integrated quantum interferometer has provided a promising route for manipulating and measuring quantum states of light with high precision,requiring negligible optical loss,broad bandwidth,robust fabrication tole...The integrated quantum interferometer has provided a promising route for manipulating and measuring quantum states of light with high precision,requiring negligible optical loss,broad bandwidth,robust fabrication tolerance,and scalability.展开更多
The paper presents the results of an experimental study and numerical cakulations of torques in magnetic cou-plers of various configurations.A comparison was made for model couplers based on permanent magnets(PMG)and ...The paper presents the results of an experimental study and numerical cakulations of torques in magnetic cou-plers of various configurations.A comparison was made for model couplers based on permanent magnets(PMG)and couplers based on high-temperature superconducting(HTS)tapes cooled with liquid nitrogen.In PMG-couplers,both coupler halves are made of pemmanent magnets,while in HTS-couplers,one coupler half is axial and radial configurations,with different clearances between the coupler halves.The results of experimental made of HTS-tapes stacks,and the second of permanent magnets.Both types of couplers are considered in both studies showed that in the configurations we considered,radial HTS-co uplers are superior to their axialanalogues in termsof the maximum torque between the coupler halves.In addition,in the considered configurations,PMG couplers excceded their HTS analogues in torque by 10times.Numerical finite element calculations usinga com-bined A-T-H form ulation were used to optimize the design of the HTS-coupler.The model was verified using the obtained experimental data for moments in model couplers.The model was used to calculate an optimized cou-pler with added HTS-windings,lowerHTS temperature and strongerpermanent magnets.The calculation results showed that HTS-couplers can be comparable with their PMG analogues,at the same time they are significantly superior to them in damping external disturbances.Due to the fact that the best characteristics were shown by model radial couplers with m inimal gaps between the coupler halves,radial couplers were manufactured based on windings of 10 and 20 layers of HTS-tapes and the torques in them weremeasured in theFCandZFC modes.It has been shown that in most operating conditions,10-layer couplers outperform 20-layer couplers.展开更多
Dissipative Kerr solitons(DKS) have long been suffering from poor power conversion efficiency when driven by continuous-wave lasers. By deriving the critical coupling condition of a multimode nonlinear optics system i...Dissipative Kerr solitons(DKS) have long been suffering from poor power conversion efficiency when driven by continuous-wave lasers. By deriving the critical coupling condition of a multimode nonlinear optics system in a generalized theoretical framework,two efficiency limitations of the conventional pump method of DKS are revealed: the effective coupling rate is too small and is also power-dependent. A general approach is provided to resolve this challenge by introducing two types of nonlinear couplers to couple the soliton cavity and CW input through nonlinear processes. The collective coupler opens multiple coupling channels and the self-adaptive coupler builds a power-independent effective external coupling rate to the DKS for approaching the generalized critical coupling condition, which promises near-unity power conversion efficiencies. For instance, a conversion efficiency exceeding 90% is predicted for aluminum nitride microrings with a nonlinear coupler utilizing second-harmonic generation. The mechanism applies to various nonlinear processes, including Raman and Brillouin scattering, and thus paves the way for micro-solitons toward practical applications.展开更多
A high-performance grating coupler(GC) operating at a wavelength of 1550 nm is proposed by utilizing the adjoint-based inverse design algorithm on a 220 nm silicon-on-insulator(SOI) substrate. The grating scheme offer...A high-performance grating coupler(GC) operating at a wavelength of 1550 nm is proposed by utilizing the adjoint-based inverse design algorithm on a 220 nm silicon-on-insulator(SOI) substrate. The grating scheme offers several advantages,including simple structure, large minimum feature size(MFS), manufacturing friendliness, support for large-scale production and multi-project wafer (MPW) runs, etc., while simultaneously maintaining exceptional coupling performance and fabrication tolerance. The design process incorporates various fabrication constraints to satisfy the specifications of different foundry processes. The optimized GC demonstrates excellent coupling performance and 3 d B bandwidth within the MFS range of 60 to 180 nm. The simulated coupling efficiency(CE) of the GC with 130 nm MFS is-1.69 dB, whereas the experimentally measured CE of the fabricated GC using electron beam lithography(EBL) is-2.83 dB. Notably, the experimental CE of the GC with 180 nm MFS fabricated using 248 nm deep ultraviolet(DUV) lithography is-2.77 dB, representing the highest experimental CE ever reported for a single-layer etching C-Band GC supported by MPW runs fabricated on 220 nm SOI without utilizing any back reflector, multi-etch layer, or overlay. The manufacturing outcomes of the same GC structure employing different manufacturing processes are discussed and analyzed, providing valuable insights for the fabrication of silicon photonics devices.展开更多
A team of researchers from the University of Science and Technology of China(USTC)of the Chinese Academy of Sciences(CAS)and its partners have made significant advancements in random quantum circuit sampling with Zuch...A team of researchers from the University of Science and Technology of China(USTC)of the Chinese Academy of Sciences(CAS)and its partners have made significant advancements in random quantum circuit sampling with Zuchongzhi-3,a superconducting quantum computing prototype featuring 105 qubits and 182 couplers.展开更多
文摘With rapid advancements in physics and particle medicine,the domestic accelerator industry has grown rapidly.During the 12th Five-Year Plan period,the Institute of Modern Physics of the Chinese Academy of Sciences took on a plurality of accelerator projects.Nevertheless,the stability of the coupler,a crucial system within the cavities of accelerators,has encountered certain difficulties.The alumina ceramics,which constitute the core component of the coupler,are increasingly prone to breakage and solder joint failures due to their inferior environmental adaptability,inadequate mechanical properties,and high gas emissions.Conversely,with the advancements in medical technology and materials science,zirconia ceramics have emerged as a prospective remedy for these problems.This type of ceramic is highly esteemed for its outstanding environmental adaptability,remarkable mechanical properties,and excellent high-temperature resistance,exhibiting extraordinary value in dental applications.This study investigates the use of zirconia ceramics in a 162.5 MHz 3-1/8"standard ceramic window,combining experimental data with finite element RF simulations and multi-physics analysis.A new coupler featuring a zirconia ceramic window was tested on a Quarter-Wave Resonator,demonstrating excellent alignment between electromagnetic simulations and measurement results.This reveals the substantial application potential and practical worth of the zirconia ceramic material in the context of accelerators.
基金supported by the National Key Basic Research Program of China(973 Program)(No.2014CB845504)
文摘Fundamental power couplers are crucial components for feeding radio frequency power to accelerating cavities. Couplers must be tested and conditioned on a room-temperature test stand to evaluate and potentially improve their performance before being installed in an accelerating cavity. A new test system has been designed and is under construction at the institute of modern physics.For this test system, multiple conditioning modes, including the pulse mode, CW mode, and amplitude-sweeping mode, have been embedded in the low-level radio frequency system of the test stand. All of these conditioning modes can be run manually or automatically. In addition, a novel test cavity is proposed and has been designed, which facilitates non-contact conditioning and a multi-purpose test stand.
文摘Utilizing hybrid integration model.the integrated model optocouplers have successfully developed.The design,fabrication and characteristic parameters of the devices are presented.
基金Supported by the National Basic Research Program of China under Grant No 2014CB340102the National Natural Science Foundation of China under Grant Nos 61474111 and 61274046
文摘Two-mode converters at 1.3μm, aiming at applications in mode-division multiplexing in Ethernet systems, are proposed and experimentally demonstrated. Based on multimode interference couplers, the two-mode converters with 50% and 66% mode conversion efficiencies are designed and fabricated on InP substrates. AIode conver- sion from the fundamental mode (TEo) to the first order mode (TE1) is successfully demonstrated within the wavelength range of 1280-1320nm. The 1.3-μm mode converters should be important devices in mode-division multiplexing systems in Ethernet systems.
基金Supported by the National Natural Science Foundation of China under Grant No.11465008the Hunan Provincial Natural Science Foundation under Grant Nos.2015JJ4020 and 2015JJ2114the Scientific Research Fund of Hunan Provincial Education Department under Grant No.14A118
文摘We present exact analytical solutions to parity-time(P T) symmetric optical system describing light transport in P T-symmetric optical couplers. We show that light intensity oscillates periodically between two waveguides for unbroken P T-symmetric phase, whereas light always leaves the system from the waveguide experiencing gain when light is initially input at either waveguide experiencing gain or waveguide experiencing loss for broken P T-symmetric phase. These analytical results agree with the recent experimental observation reported by Ru¨ter et al. [Nat. Phys.6(2010) 192]. Besides, we present a scheme for manipulating P T symmetry by applying a periodic modulation. Our results provide an efficient way to control light propagation in periodically modulated P T-symmetric system by tuning the modulation amplitude and frequency.
文摘In this paper, we present the results of numerical analysis of optical solitons in dual core couplers. We studied the optical couplers as an application for the non-linear Schrödinger equation in the case of Kerr law for non-linear and clarify the exact solution in this case. Then we have provided a numerical study of the effect of changing the constants in the form of the three types of solitons: bright soliton and dark solitons and singular soliton.
文摘In this work, we develop a simulation method based on supermode theory and transfer matrix formalism, and then apply it to the analysis and design of taper couplers for vertically integrated As2S3 and Ti: LiNbO3 hybrid waveguides. Test structures based on taper couplers are fabricated and characterized. The experimental results confirm the validity of the modeling method, which in turn, is used to analyze the fabricated couplers.
基金Supported by National Basic Research Program of China (973 Program,Grant No.2001CB711104)National Natural Science Foundation of China (Grant No.51005190)Fok Ying Tung Education Foundation of China (Grant No.122014)
文摘Published studies in regard to coupler systems have been mainly focused on the manufacturing process or coupler strength issues. With the ever increasing of tonnage and length of heavy haul trains, lateral in-train forces generated by longitudinal in-train forces and coupler rotations have become a more and more significant safety issue for heavy haul train operations. Derailments caused by excessive lateral in-train forces are frequently reported. This article studies two typical coupler systems used on heavy haul locomotives. Their structures and stabilizing mechanism are analyzed before the corresponding models are developed. Coupler systems models are featured by two distinct stabilizing mechanism models and draft gear models with hysteresis considered. A model set which consists of four locomotives and three coupler systems is developed to study the rotational behavior of different coupler systems and their implications for locomotive dynamics. Simulated results indicate that when the locomotives are equipped with the type B coupler system, locomotives can meet the dynamics standard on tangent tracks; while the dynamics performance on curved tracks is very poor. The maximum longitudinal in-train force for locomotives equipped with the type B coupler system is 2000 kN. Simulations revealed a distinct trend for the type A coupler system. Locomotive dynamics are poorer for the type A case when locomotives are running on tangent tracks, while the dynamics are better for the type A case when locomotives are running on curved tracks. Theoretical studies and simulations carried out in this article suggest that a combination of the two types of stabilizing mechanism can result in a good design which can significantly decrease the relevant derailments.
基金Project supported by the National Natural Science Foundation of China (Grant No.60877036)the National Basic Research Program of China (Grant Nos.2006CB302803 and 2011CB301701)+1 种基金the State Key Laboratory of Advanced Optical Communication Systems and Networks,China (Grant No.2008SH02)the Knowledge Innovation Program of Institute of Semiconductors,Chinese Academy of Sciences (Grant No.ISCAS2008T10)
文摘A novel grating coupler with a stair-step blaze profile is proposed. The coupler is a CMOS process compatible device and can be used for light coupling in optical communication. The blaze profile can be optimized to obtain a high efficiency of 66.7% for the out-of-plane coupling at the centre wavelength of 1595 nm with a 1 dB bandwidth of 41 nm. Five key parameters of the stair-step blaze grating and their effects on the coupling are discussed for the application in L band telecommunication.
基金Project supported by the Natural Science Foundation of Shanghai,China (Grant No. 11ZR1443700)the Funds from the Science and Technology Commission of Shanghai Municipality,China (Grant Nos. 10DJ1400400 and 10706200500)the National Natural Science Foundation of China (Grant No. 61106051)
文摘Grating couplers are widely investigated as coupling interfaces between silicon-on-insulator waveguides and optical fibers.In this work,a high-efficiency and complementary metal-oxide-semiconductor(CMOS) process compatible grating coupler is proposed.The poly-Si layer used as a gate in the CMOS metal-oxide-semiconductor field effect transistor(MOSFET) is combined with a normal fully etched grating coupler,which greatly enhances its coupling efficiency.With optimal structure parameters,a coupling efficiency can reach as high as ~ 70% at a wavelength of 1550 nm as indicated by simulation.From the angle of fabrication,all masks and etching steps are shared between MOSFETs and grating couplers,thereby making the high performance grating couplers easily integrated with CMOS circuits.Fabrication errors such as alignment shift are also simulated,showing that the device is quite tolerant in fabrication.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91750115 and 91750108)the Equipment Pre-research Project of Equipment Development Department of Central Military Commission,China(Grant No.61404140112)the Science and Technology Planning Project of Xiamen City,China(Grant No.3502Z20183003).
文摘We demonstrate visible-light all-fiber vortex lasers by incorporating the home-made mode selective couplers (MSCs). The MSC at green or red wavebands is fabricated by specially designing and fusing a single-mode fiber (SMF) and a few-mode fiber (FMF). The MSCs inserted into visible fiber cavities act as power splitters and mode converters from the LP01 to LP11 mode at green and red wavelengths, respectively. The red-light all-fiber vortex laser is formed by a 10-cm Pr3+/Yb3+:ZBLAN fiber, a fiber Bragg grating, a fiber end-facet mirror and the MSC at 635 nm, which generates vortex beams with OAM±1 at 634.4 nm and an output power of 13 mW. The green-light all-fiber vortex laser consists of a 12-cm Ho3+:ZBLAN fiber, two fiber pigtail mirrors, and the MSC at 550 nm, which generates vortex beams with OAM±1 at 548.9 nm and an output power of 3 mW.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB2200202)the National Natural Science Foundation of China(Grant No.61804148)
文摘An explanation of optical unitary transformation is presented for general nonoverlapping-image multimode interference(MMI)couplers with any number of input and output ports.The light transformation in the MMI coupler can be considered as an optical field matrix acting on an input light column vector.We investigate the general phase principle of output light image.The complete proof of nonoverlapping-image MMI coupler’s optical unitarity along with the phase analysis of matrix element is provided.Based on a two-dimensional finite-difference time-domain(2 D-FDTD)simulation,the unitary transformation is obtained for a 4×4 nonoverlapping-image MMI coupler within a deviation of 4×10-2 for orthogonal invariance and 8×10-2 for transvection invariance in the C-band spectral range.A compact 1×4 splitter based on cascaded MMI coupler is proposed,showing a phase deviation less than 5.4°while maintaining a low-loss performance in C-band spectra.
文摘Optical couplers are the key components for signal distribution in optoelectronic transmitters and receivers. A new low-loss, large-angle Y-junction hybrid polymer optical coupler with an integrated microprism has been fabricated and demonstrated experimentally for use in a mixed-signal module environment. The results show that the radiation loss is small with relatively wide branching angle as compared to a conventional Y-junction coupler.
文摘The muhimode interference (MMI) couplers, which operate at 1. 55 microns in deep rib InGaAsP/InP waveguide with large lateral confinement and tunable power splitting ratios, are of high interest in integrated optics. The gold contacts are applied on the top of waveguides where tuning is desired and the plasma effect will lead to negative refractive index change. The three-dimensional (3D) finite difference beam propagation method(FD-BPM) is used to model the tunable MMI couplers. The length of a 2 × 2 overlap-MMI is determined by FD-BPM, so the longitudinal position of tuning spots is obtained. The position of gold contacts with two types, the edge-pads or center-pad, are also determined. In our design, the length of MMI is 180 microns. If the width of pads is 50 microns and the refractive index is tuned from 0 to -0. 027, the power ratio is tuned from 50 : 50 to the maximum 88.5 : 11.4. For deep rib structure, the effective index(EI) method can not be used to simplify the 3D waveguide to plane waveguide because of its lower precision, and so the direct 3D FD-BPM simulation is necessary for the design of 3D MMI couplers.
基金National Key Research and Development Program of China(2023YFB3207800)National Natural Science Foundation of China(61927804)。
文摘On-chip couplers are essential for coupling free-space electromagnetic waves into sub-wavelength semiconductor devices and enhancing light-matter interactions.However,the couplers used in existing single field-effect transistor(FET)detectors exhibit poor response over wide frequency ranges,making the detection of ultra-wideband weak signals highly challenging.In this work,we introduce a meta-array coupler for terahertz detectors based on field-effect transistors,which demonstrates exceptional coupling asymmetry beneath the gate.To optimize the meta-array structure for high gain across an ultra-wide frequency range,we propose a hybrid long short-term memory–multi-layer perceptron(LSTM-MLP)neural network for the detector’s on-chip coupler.This method enables accurate and rapid prediction of the enhanced spectra of meta-atoms,facilitating efficient conversion from structural parameters to resonance frequencies.Compared to traditional dipole couplers,the proposed metacoupler generates strong localized electric field enhancement through dipole resonance,achieving a mixing factor asymmetry up to 246 times higher near 660 GHz and an antenna factor enhancement of approximately 50 times.The meta-array coupled FET terahertz detector achieves ultra-wideband resonance enhancement from 350 to1000 GHz.This hardware architecture and hybrid LSTM-MLP neural network are expected to overcome the limitations of current FET-based detectors in coupling efficiency,bridging the performance gap toward ultra-sensitive detection applications.
基金National Research Foundation of Korea(2023M3K5A1094805, RS-2024-00343768)National Research Council of Science and Technology (CAP21034-000)+1 种基金Institute for Information and Communications Technology Promotion (2020-0-00972, RS-2024-00396999,RS-2023-00222863)Korea Institute of Science and Technology (KIST) research program (2E33541, 2E33571)
文摘The integrated quantum interferometer has provided a promising route for manipulating and measuring quantum states of light with high precision,requiring negligible optical loss,broad bandwidth,robust fabrication tolerance,and scalability.
基金The work was carried out under the State Assignment(project FSWU‐2022‐0013)with the support of the Ministry of ScienceHigher Education of the Russian Federation.
文摘The paper presents the results of an experimental study and numerical cakulations of torques in magnetic cou-plers of various configurations.A comparison was made for model couplers based on permanent magnets(PMG)and couplers based on high-temperature superconducting(HTS)tapes cooled with liquid nitrogen.In PMG-couplers,both coupler halves are made of pemmanent magnets,while in HTS-couplers,one coupler half is axial and radial configurations,with different clearances between the coupler halves.The results of experimental made of HTS-tapes stacks,and the second of permanent magnets.Both types of couplers are considered in both studies showed that in the configurations we considered,radial HTS-co uplers are superior to their axialanalogues in termsof the maximum torque between the coupler halves.In addition,in the considered configurations,PMG couplers excceded their HTS analogues in torque by 10times.Numerical finite element calculations usinga com-bined A-T-H form ulation were used to optimize the design of the HTS-coupler.The model was verified using the obtained experimental data for moments in model couplers.The model was used to calculate an optimized cou-pler with added HTS-windings,lowerHTS temperature and strongerpermanent magnets.The calculation results showed that HTS-couplers can be comparable with their PMG analogues,at the same time they are significantly superior to them in damping external disturbances.Due to the fact that the best characteristics were shown by model radial couplers with m inimal gaps between the coupler halves,radial couplers were manufactured based on windings of 10 and 20 layers of HTS-tapes and the torques in them weremeasured in theFCandZFC modes.It has been shown that in most operating conditions,10-layer couplers outperform 20-layer couplers.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11934012, 12293053, 12374361, 11904316, 61690192, U21A20433, 12104441, 12293052, and U21A6006)the Anhui Provincial Natural Science Foundation (Grant Nos. 2008085QA34, and 2108085MA22)+2 种基金the Major Scientific Project of Zhejiang Laboratory (Grant No. 2020LC0AD01)supported by the Fundamental Research Funds for the Central Universities and University of Science and Technology of China (USTC) Research Funds of the Double First-Class Initiativesupported by the Supercomputing System in the Supercomputing Center of USTC and the USTC Center for Micro and Nanoscale Research and Fabrication。
文摘Dissipative Kerr solitons(DKS) have long been suffering from poor power conversion efficiency when driven by continuous-wave lasers. By deriving the critical coupling condition of a multimode nonlinear optics system in a generalized theoretical framework,two efficiency limitations of the conventional pump method of DKS are revealed: the effective coupling rate is too small and is also power-dependent. A general approach is provided to resolve this challenge by introducing two types of nonlinear couplers to couple the soliton cavity and CW input through nonlinear processes. The collective coupler opens multiple coupling channels and the self-adaptive coupler builds a power-independent effective external coupling rate to the DKS for approaching the generalized critical coupling condition, which promises near-unity power conversion efficiencies. For instance, a conversion efficiency exceeding 90% is predicted for aluminum nitride microrings with a nonlinear coupler utilizing second-harmonic generation. The mechanism applies to various nonlinear processes, including Raman and Brillouin scattering, and thus paves the way for micro-solitons toward practical applications.
基金supported by the Shanghai Science and Technology Innovation Action Plan (No.22501100800)the SJTU Pinghu Institute of Intelligent Optoelectronics Open Foundation (No.22H010102520)。
文摘A high-performance grating coupler(GC) operating at a wavelength of 1550 nm is proposed by utilizing the adjoint-based inverse design algorithm on a 220 nm silicon-on-insulator(SOI) substrate. The grating scheme offers several advantages,including simple structure, large minimum feature size(MFS), manufacturing friendliness, support for large-scale production and multi-project wafer (MPW) runs, etc., while simultaneously maintaining exceptional coupling performance and fabrication tolerance. The design process incorporates various fabrication constraints to satisfy the specifications of different foundry processes. The optimized GC demonstrates excellent coupling performance and 3 d B bandwidth within the MFS range of 60 to 180 nm. The simulated coupling efficiency(CE) of the GC with 130 nm MFS is-1.69 dB, whereas the experimentally measured CE of the fabricated GC using electron beam lithography(EBL) is-2.83 dB. Notably, the experimental CE of the GC with 180 nm MFS fabricated using 248 nm deep ultraviolet(DUV) lithography is-2.77 dB, representing the highest experimental CE ever reported for a single-layer etching C-Band GC supported by MPW runs fabricated on 220 nm SOI without utilizing any back reflector, multi-etch layer, or overlay. The manufacturing outcomes of the same GC structure employing different manufacturing processes are discussed and analyzed, providing valuable insights for the fabrication of silicon photonics devices.
文摘A team of researchers from the University of Science and Technology of China(USTC)of the Chinese Academy of Sciences(CAS)and its partners have made significant advancements in random quantum circuit sampling with Zuchongzhi-3,a superconducting quantum computing prototype featuring 105 qubits and 182 couplers.