COSMIC-2(constellation observing system for meteorology ionosphere and climate-2)作为COSMIC掩星星座的后续计划,得益于升级了支持多模GNSS信号的接收机和高增益定向波束掩星天线,其观测数据质量和数量得到显著提升。围绕掩星观...COSMIC-2(constellation observing system for meteorology ionosphere and climate-2)作为COSMIC掩星星座的后续计划,得益于升级了支持多模GNSS信号的接收机和高增益定向波束掩星天线,其观测数据质量和数量得到显著提升。围绕掩星观测数据和反演产品的定量评估,分析COSMIC-2定轨和掩星天线的原始观测数据质量,并以欧洲中期数值天气预报中心的再分析气象资料为基准,定量评估掩星反演大气廓线产品质量。结果显示,COSMIC-2定轨天线L1频段信噪比大多在45 dB以上,其对应伪距多路径效应中误差在0.2~0.4 m之间;掩星天线观测信噪比由第一代COSMIC的不足700 v/v大幅提升至1200 v/v,且GLONASS掩星廓线和GPS掩星廓线均与气象再分析资料表现出了很好的一致性。研究结果认为,升级后的COSMIC-2掩星载荷不仅大幅增加掩星观测数量,其高增益的掩星天线设计还有效地提升了掩星观测数据质量,为大气科学研究提供了重要气象观测资料。展开更多
We investigate the relationship between the magnitudes of Forbush decreases(FDs)and solar-geomagnetic characteristics using daily-averaged galactic cosmic ray(GCR)data from Inuvick(INVK)and Magadan(MGDN)neutron monito...We investigate the relationship between the magnitudes of Forbush decreases(FDs)and solar-geomagnetic characteristics using daily-averaged galactic cosmic ray(GCR)data from Inuvick(INVK)and Magadan(MGDN)neutron monitor(NM)stations to aid in counting the case of GCR flux intensity modulation.The FDs,obtained with an automated new computer software algorithm from daily-averaged GCR data from the IZMIRAN common website:http://cr0.izmiran.ru/common,at INVK(224)and MGDN(229)NM stations,from 1998 to 2002,were used in the present work.The associated solar-geomagnetic parameters of the same time range were obtained from the OMNI website.A statistical analytical method was employed to test the link between FD amplitudes and solargeomagnetic variables.We observed negative trends in FD-IMF,FD-SWS,FD-Kp,FD-SSN and FD-SI,while a positive relation was indicated in FD-Dst at both stations.All are statistically significant at a 95%confidence level.The results obtained here imply that solar emission characteristics impact the GCR flux intensity modulation.展开更多
利用2006—2020年中国区域的COSMIC-1/2(constellation observing system for meteorology ionosphere and climate-1/2)IonPrf产品数据,分析了中国区域电离层时空变化特征。首先介绍新一代COSMIC-2在中国以及全球区域的数据质量状况;...利用2006—2020年中国区域的COSMIC-1/2(constellation observing system for meteorology ionosphere and climate-1/2)IonPrf产品数据,分析了中国区域电离层时空变化特征。首先介绍新一代COSMIC-2在中国以及全球区域的数据质量状况;然后对IonPrf产品的数据质量控制和电离层特征参数提取方法进行说明;最后,以不同时间尺度统计分析了中国区域近15年电离层特征参数在一个完整太阳活动周期不同活动水平下的时空变化特征。统计结果表明,中国区域电离层变化具有与太阳活动相关的周年变化、季节变化和日变化特征;周年变化中具有明显空间分布特征,以30°N左右为界,中国南方地区峰值密度NmF2、峰值高度HmF2和电子总含量(total electron content,TEC)年均值普遍高于北方地区;在月份季节变化中,NmF2和TEC最大值一般出现在3月、10月,最小值出现在6月、7月,仅中国南方部分地区存在冬季异常现象,且春、夏季的HmF2均值大于秋、冬季;在日变化中,NmF2和TEC的最大值主要出现在地方时(local time,LT)12:00—16:00,且峰值对应的地方时随纬度升高而向前推移。当太阳活动高年时,日落后NmF2和TEC仍保持较高水平。HmF2在中国南方地区最大值出现在LT 12:00—16:00,最小值出现在LT 05:00—07:00,北方地区HmF2的值白天普遍低于夜间。展开更多
顶部电离层是指F2层电子密度最大值所在高度以上的电离层区域。掩星观测能够提供地面到低轨卫星轨道高度处的整个电离层电子密度剖面,对于顶部电离层的研究具有重要作用。标高是构建顶部以上电离层电子密度剖面模型的重要参数。本文使用...顶部电离层是指F2层电子密度最大值所在高度以上的电离层区域。掩星观测能够提供地面到低轨卫星轨道高度处的整个电离层电子密度剖面,对于顶部电离层的研究具有重要作用。标高是构建顶部以上电离层电子密度剖面模型的重要参数。本文使用2007—2020年的气象、电离层和气候星座观测系统(Constellation Observing System for Meteorology,Ionosphere and Climate,COSMIC)掩星观测数据,提取有效电子密度剖面数据的顶部标高,分析了其随地方时、季节、经纬度和太阳活动水平的变化特性。结果表明:顶部标高具有明显的日变化和季节变化规律,并且表现出强烈的太阳活动依赖性;顶部标高在纬度上的变化强烈依赖于地方时,同时在东西经向上表现出明显的波状结构,且这种经度波状结构在南北半球具有不同的形态;顶部标高在夏季半球具有显著的东西经向差异,南半球夏季更为明显。展开更多
According to models such as panspermia or the Nebula-Relay hypothesis,the ancestors of life on Earth once lived in molecular clouds.Then what are the energy source and bioenergetics for such lifeforms?A new bioenerget...According to models such as panspermia or the Nebula-Relay hypothesis,the ancestors of life on Earth once lived in molecular clouds.Then what are the energy source and bioenergetics for such lifeforms?A new bioenergetic mechanism powered by cosmic ray ionization of hydrogen molecules is proposed and its relation with the origin of chemiosmosis is also discussed in this paper.Based on this mechanism,the Last Universal Common Ancestor may be a type of lifeform that utilizes hydrogen molecules as donors of electron transport chains.展开更多
We develop methods to extract key dark energy information from cosmic distance measurements including the BAO scales and supernova(SN) luminosity distances.Demonstrated using simulated data sets of the complete DESI,L...We develop methods to extract key dark energy information from cosmic distance measurements including the BAO scales and supernova(SN) luminosity distances.Demonstrated using simulated data sets of the complete DESI,LSST and Roman surveys designed for BAO and SN distance measurements,we show that using our method,the dynamical behavior of the energy,pressure,equation of state(with its time derivative) of dark energy and the cosmic deceleration function can all be accurately recovered from high-quality data,which allows for robust diagnostic tests for dark energy models.展开更多
Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter lea...Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter leads to the disagreement in the galaxy clustering amplitude, quantified by the parameter S8. Within the same model we described the Hubble tension. We described also the mechanism that transforms the gravitational collapse into an explosion—it concerns the dynamics of virtual fields that lead to dark energy. Our calculations concern the Type Ia supernovae and the core-collapse supernovae. We calculated the quantized masses of the progenitors of supernovae, emitted total energy during explosion, and we calculated how much of the released energy was transferred to neutrinos. Value of the speed of sound in the strongly interacting matter measured at the LHC confirms that presented here model is correct. Our calculations show that the Universe is cyclic.展开更多
Two existing solutions for the diffusion of cosmic rays (CRs) are analyzed. The first one is a well-known solution in 3D over an infinite spatial domain and the second one is a 1D solution with an exponential decay in...Two existing solutions for the diffusion of cosmic rays (CRs) are analyzed. The first one is a well-known solution in 3D over an infinite spatial domain and the second one is a 1D solution with an exponential decay initial profile over an infinite spatial domain. For each solution, the temporal evolution of the number of particles at a fixed distance has been analyzed. The anticorrelation between the flux of CRs and the magnetic field at one astronomical unit has been explained by adopting a careful choice of the astrophysical parameters involved.展开更多
Two new solutions of the homogeneous diffusion equation in 1D are derived in the presence of losses and a trigonometric profile for a profile of density. A simulation for the ankle in the energy distribution of cosmic...Two new solutions of the homogeneous diffusion equation in 1D are derived in the presence of losses and a trigonometric profile for a profile of density. A simulation for the ankle in the energy distribution of cosmic rays (CRs) is provided in the framework of the fine tuning of the involved parameters. A theoretical image for the overall diffusion of CRs in galactic coordinates is provided.展开更多
We show that recently multi-messenger astronomy has provided compelling evidence that the bulk of high energy cosmic rays (CRs) are produced by highly relativistic narrow jets of plasmoids launched in core collapse of...We show that recently multi-messenger astronomy has provided compelling evidence that the bulk of high energy cosmic rays (CRs) are produced by highly relativistic narrow jets of plasmoids launched in core collapse of stripped-envelope massive stars to neutron stars and stellar mass black holes. Such events produce also a visible GRB if the jet happens to point in our direction. This has been long advocated by the cannon ball (CB) model of high energy CRs and GRBs, but the evidence has been provided only recently by what were widely believed to be unrelated discoveries. They include the very recent discovery of a knee around TeV in the energy spectrum of high energy CR electrons, the peak photon energy in the “brightest of all time” GRB221009A, and the failure of IceCube to detect high energy neutrinos from GRBs, including GRB221009A. They were all predicted by the cannonball (CB) model of high energy CRs and GRBs long before they were discovered in observations, despite a negligible probability to occur by chance.展开更多
Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among...Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among these empirical equations, the CMB temperature (Tc) and gravitational constant (G) were calculated to be 2.726312 K and 6.673778 × 10−11 m3∙kg−1∙s−2, respectively. Every equation can be explained numerically in terms of the Compton length of an electron (λe), the Compton length of a proton (λp) and α. Furthermore, every equation can also be explained in terms of the Avogadro number and the number of electrons at 1 C. We show that every equation can be described in terms of the Planck constant. Then, the ratio of the gravitational force to the electric force can be uniquely determined with the assumption of minimum mass. In this report, we describe the algorithms used to explain these equations in detail. Thus, there are no dimension mismatch problems.展开更多
Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among...Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among these empirical equations, the CMB temperature (T<sub>c</sub>) and gravitational constant (G) were calculated to be 2.726312 K and 6.673778 × 10<sup>−11</sup> m<sup>3</sup>∙kg<sup>−1</sup>∙s<sup>−2</sup>, respectively. Every equation could be explained in terms of the Compton length of an electron (λ<sub>e</sub>), the Compton length of a proton (λ<sub>p</sub>) and a. Furthermore, every equation could also be explained in terms of Avogadro’s number and the number of electrons in 1 C. However, the ratio of the gravitational force to the electric force cannot be uniquely determined when the unit of the Planck constant (Js) is changed. In this study, we showed that every equation can be described in terms of Planck constant. From the assumption of minimum mass, the ratio of gravitational force to electric force could be elucidated.展开更多
文摘COSMIC-2(constellation observing system for meteorology ionosphere and climate-2)作为COSMIC掩星星座的后续计划,得益于升级了支持多模GNSS信号的接收机和高增益定向波束掩星天线,其观测数据质量和数量得到显著提升。围绕掩星观测数据和反演产品的定量评估,分析COSMIC-2定轨和掩星天线的原始观测数据质量,并以欧洲中期数值天气预报中心的再分析气象资料为基准,定量评估掩星反演大气廓线产品质量。结果显示,COSMIC-2定轨天线L1频段信噪比大多在45 dB以上,其对应伪距多路径效应中误差在0.2~0.4 m之间;掩星天线观测信噪比由第一代COSMIC的不足700 v/v大幅提升至1200 v/v,且GLONASS掩星廓线和GPS掩星廓线均与气象再分析资料表现出了很好的一致性。研究结果认为,升级后的COSMIC-2掩星载荷不仅大幅增加掩星观测数量,其高增益的掩星天线设计还有效地提升了掩星观测数据质量,为大气科学研究提供了重要气象观测资料。
文摘We investigate the relationship between the magnitudes of Forbush decreases(FDs)and solar-geomagnetic characteristics using daily-averaged galactic cosmic ray(GCR)data from Inuvick(INVK)and Magadan(MGDN)neutron monitor(NM)stations to aid in counting the case of GCR flux intensity modulation.The FDs,obtained with an automated new computer software algorithm from daily-averaged GCR data from the IZMIRAN common website:http://cr0.izmiran.ru/common,at INVK(224)and MGDN(229)NM stations,from 1998 to 2002,were used in the present work.The associated solar-geomagnetic parameters of the same time range were obtained from the OMNI website.A statistical analytical method was employed to test the link between FD amplitudes and solargeomagnetic variables.We observed negative trends in FD-IMF,FD-SWS,FD-Kp,FD-SSN and FD-SI,while a positive relation was indicated in FD-Dst at both stations.All are statistically significant at a 95%confidence level.The results obtained here imply that solar emission characteristics impact the GCR flux intensity modulation.
文摘利用2006—2020年中国区域的COSMIC-1/2(constellation observing system for meteorology ionosphere and climate-1/2)IonPrf产品数据,分析了中国区域电离层时空变化特征。首先介绍新一代COSMIC-2在中国以及全球区域的数据质量状况;然后对IonPrf产品的数据质量控制和电离层特征参数提取方法进行说明;最后,以不同时间尺度统计分析了中国区域近15年电离层特征参数在一个完整太阳活动周期不同活动水平下的时空变化特征。统计结果表明,中国区域电离层变化具有与太阳活动相关的周年变化、季节变化和日变化特征;周年变化中具有明显空间分布特征,以30°N左右为界,中国南方地区峰值密度NmF2、峰值高度HmF2和电子总含量(total electron content,TEC)年均值普遍高于北方地区;在月份季节变化中,NmF2和TEC最大值一般出现在3月、10月,最小值出现在6月、7月,仅中国南方部分地区存在冬季异常现象,且春、夏季的HmF2均值大于秋、冬季;在日变化中,NmF2和TEC的最大值主要出现在地方时(local time,LT)12:00—16:00,且峰值对应的地方时随纬度升高而向前推移。当太阳活动高年时,日落后NmF2和TEC仍保持较高水平。HmF2在中国南方地区最大值出现在LT 12:00—16:00,最小值出现在LT 05:00—07:00,北方地区HmF2的值白天普遍低于夜间。
文摘顶部电离层是指F2层电子密度最大值所在高度以上的电离层区域。掩星观测能够提供地面到低轨卫星轨道高度处的整个电离层电子密度剖面,对于顶部电离层的研究具有重要作用。标高是构建顶部以上电离层电子密度剖面模型的重要参数。本文使用2007—2020年的气象、电离层和气候星座观测系统(Constellation Observing System for Meteorology,Ionosphere and Climate,COSMIC)掩星观测数据,提取有效电子密度剖面数据的顶部标高,分析了其随地方时、季节、经纬度和太阳活动水平的变化特性。结果表明:顶部标高具有明显的日变化和季节变化规律,并且表现出强烈的太阳活动依赖性;顶部标高在纬度上的变化强烈依赖于地方时,同时在东西经向上表现出明显的波状结构,且这种经度波状结构在南北半球具有不同的形态;顶部标高在夏季半球具有显著的东西经向差异,南半球夏季更为明显。
基金Supported by the National Key Research and Development Program of China(Grant No.2016YFA0400200)the National Natural Science Foundation of China(Grants No.11773075)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2016288).
文摘According to models such as panspermia or the Nebula-Relay hypothesis,the ancestors of life on Earth once lived in molecular clouds.Then what are the energy source and bioenergetics for such lifeforms?A new bioenergetic mechanism powered by cosmic ray ionization of hydrogen molecules is proposed and its relation with the origin of chemiosmosis is also discussed in this paper.Based on this mechanism,the Last Universal Common Ancestor may be a type of lifeform that utilizes hydrogen molecules as donors of electron transport chains.
基金supported by the National Key R&D Program of China(2023YFA1607800,2023YFA1607803)the National Natural Science Foundation of China (NSFC,Grant Nos.11925303 and11890691)+3 种基金supported by the National Natural Science Foundation of China (NSFC,Grant No.12203062)by a CAS Project for Young Scientists in Basic Research (No.YSBR-092)supported by science research grants from the China Manned Space Project with No.CMS-CSST-2021-B01supported by the New Cornerstone Science Foundation through the XPLORER prize。
文摘We develop methods to extract key dark energy information from cosmic distance measurements including the BAO scales and supernova(SN) luminosity distances.Demonstrated using simulated data sets of the complete DESI,LSST and Roman surveys designed for BAO and SN distance measurements,we show that using our method,the dynamical behavior of the energy,pressure,equation of state(with its time derivative) of dark energy and the cosmic deceleration function can all be accurately recovered from high-quality data,which allows for robust diagnostic tests for dark energy models.
文摘Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter leads to the disagreement in the galaxy clustering amplitude, quantified by the parameter S8. Within the same model we described the Hubble tension. We described also the mechanism that transforms the gravitational collapse into an explosion—it concerns the dynamics of virtual fields that lead to dark energy. Our calculations concern the Type Ia supernovae and the core-collapse supernovae. We calculated the quantized masses of the progenitors of supernovae, emitted total energy during explosion, and we calculated how much of the released energy was transferred to neutrinos. Value of the speed of sound in the strongly interacting matter measured at the LHC confirms that presented here model is correct. Our calculations show that the Universe is cyclic.
文摘Two existing solutions for the diffusion of cosmic rays (CRs) are analyzed. The first one is a well-known solution in 3D over an infinite spatial domain and the second one is a 1D solution with an exponential decay initial profile over an infinite spatial domain. For each solution, the temporal evolution of the number of particles at a fixed distance has been analyzed. The anticorrelation between the flux of CRs and the magnetic field at one astronomical unit has been explained by adopting a careful choice of the astrophysical parameters involved.
文摘Two new solutions of the homogeneous diffusion equation in 1D are derived in the presence of losses and a trigonometric profile for a profile of density. A simulation for the ankle in the energy distribution of cosmic rays (CRs) is provided in the framework of the fine tuning of the involved parameters. A theoretical image for the overall diffusion of CRs in galactic coordinates is provided.
文摘We show that recently multi-messenger astronomy has provided compelling evidence that the bulk of high energy cosmic rays (CRs) are produced by highly relativistic narrow jets of plasmoids launched in core collapse of stripped-envelope massive stars to neutron stars and stellar mass black holes. Such events produce also a visible GRB if the jet happens to point in our direction. This has been long advocated by the cannon ball (CB) model of high energy CRs and GRBs, but the evidence has been provided only recently by what were widely believed to be unrelated discoveries. They include the very recent discovery of a knee around TeV in the energy spectrum of high energy CR electrons, the peak photon energy in the “brightest of all time” GRB221009A, and the failure of IceCube to detect high energy neutrinos from GRBs, including GRB221009A. They were all predicted by the cannonball (CB) model of high energy CRs and GRBs long before they were discovered in observations, despite a negligible probability to occur by chance.
文摘Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among these empirical equations, the CMB temperature (Tc) and gravitational constant (G) were calculated to be 2.726312 K and 6.673778 × 10−11 m3∙kg−1∙s−2, respectively. Every equation can be explained numerically in terms of the Compton length of an electron (λe), the Compton length of a proton (λp) and α. Furthermore, every equation can also be explained in terms of the Avogadro number and the number of electrons at 1 C. We show that every equation can be described in terms of the Planck constant. Then, the ratio of the gravitational force to the electric force can be uniquely determined with the assumption of minimum mass. In this report, we describe the algorithms used to explain these equations in detail. Thus, there are no dimension mismatch problems.
文摘Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among these empirical equations, the CMB temperature (T<sub>c</sub>) and gravitational constant (G) were calculated to be 2.726312 K and 6.673778 × 10<sup>−11</sup> m<sup>3</sup>∙kg<sup>−1</sup>∙s<sup>−2</sup>, respectively. Every equation could be explained in terms of the Compton length of an electron (λ<sub>e</sub>), the Compton length of a proton (λ<sub>p</sub>) and a. Furthermore, every equation could also be explained in terms of Avogadro’s number and the number of electrons in 1 C. However, the ratio of the gravitational force to the electric force cannot be uniquely determined when the unit of the Planck constant (Js) is changed. In this study, we showed that every equation can be described in terms of Planck constant. From the assumption of minimum mass, the ratio of gravitational force to electric force could be elucidated.