To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundati...To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundations under a strip footing,from macro to micro scales.The results demonstrate that the bearing characteristics of coral sand slope foundations can be successfully modeled by utilizing breakable corner particles in simulations.The dual effects of interlocking and breakage of corners well explained the specific shallower load transmission and narrower shear stress zones in breakable corner particle slopes.Additionally,the study revealed the significant influence of breakable corners on soil behaviors on slopes.Furthermore,progressive corner breakage within slip bands was successfully identified as the underling mechanism in determining the unique bearing characteristics and the distinct failure patterns of breakable corner particle slopes.This study provides a new perspective to clarify the behaviors of slope foundations composed of breakable corner particle materials.展开更多
Farmer Luo Baozhen receives regular weather updates on her smartphone,which help her to better manage her tea farm.Once living in precarious conditions and struggling to make ends meet,Luo now earns as much as 28,000 ...Farmer Luo Baozhen receives regular weather updates on her smartphone,which help her to better manage her tea farm.Once living in precarious conditions and struggling to make ends meet,Luo now earns as much as 28,000 yuan($3,868)annually from tea plantation on her 8 mu(0.53 hectares)of land in Pu’er,Yunnan Province.The modernisation of farming and the use of high technology have become a daily reality for farmers and significantly boosted their incomes.展开更多
The intelligent vehicle corner module system,which integrates four-wheel independent drive,independent steering,independent braking and active suspension,can accurately and efficiently perform vehicle driving tasks an...The intelligent vehicle corner module system,which integrates four-wheel independent drive,independent steering,independent braking and active suspension,can accurately and efficiently perform vehicle driving tasks and is the best carrier of intelligent vehicles.Nevertheless,too many angle/torque control inputs make control difficult and non-real-time.In this paper,a hierarchical real-time motion control framework for corner module configuration intelligent electric vehicles is proposed.In the trajectory planning module,an improved driving risk field is designed to describe the surrounding environment’s driving risk.Combined with the kinematic vehicle-road model,model predictive control(MPC)method,spline curve method,the local reference trajectory of safety,comfort and smoothness is planned in real time.The optimal steering angle is determined using MPC method in path tracking module.In the motion control module,a feedforward-feedback controller assigns the optimal steering angle to the front/rear axles,and an angle allocation controller distributes the target angles of the front/rear axles to four steered wheels.Finally,the PreScan-Simulink-CarSim joint simulation environment is established for conducting the human-in-the-loop emergency obstacle avoidance experiment.It took only 0.005 s for the hierarchical motion control system to determine its average solution time.This proves the effectiveness of the hierarchical motion control system.展开更多
We study the topological states(TSs)of all-dielectric honeycomb valley photonic crystals(VPCs).Breaking the space inversion symmetry of the honeycomb lattice by varying the filling ratio of materials for circular ring...We study the topological states(TSs)of all-dielectric honeycomb valley photonic crystals(VPCs).Breaking the space inversion symmetry of the honeycomb lattice by varying the filling ratio of materials for circular ring dielectric columns in the unit cell,which triggers topological phase transitions and thus achieves topological edge states(TESs)and topological corner states(TCSs).The results demonstrate that this structure has efficient photon transmission characteristics and anti-scattering robustness.In particular,we have found that changing the type of edge splicing between VPCs with different topological properties produces a change in the frequency of TCSs,and then based on this phenomenon,we have used a new method of adjusting only the type of edge splicing of the structure to design a novel TCSs combiner that can integrate four TCSs with different frequencies.This work not only expands the variety and number of unexplored TCSs that may exist in a fixed photonic band gap and can be rationalized to be selectively excited in the fixed configuration.Our study provides a feasible pathway for the design of integrated optical devices in which multiple TSs coexist in a single photonic system.展开更多
The topic of improving the mechanical stability of external cavity diode lasers(ECDLs)has recently attracted widespread attention and interest.The use of corner-cube-array(CCA)-based resonators provides a potential so...The topic of improving the mechanical stability of external cavity diode lasers(ECDLs)has recently attracted widespread attention and interest.The use of corner-cube-array(CCA)-based resonators provides a potential solution for this purpose,although continuous oscillation at super large incident angle remains challenging.In this work,we employ the CCA resonator to generate continuous oscillation within±20°angular misalignment of cavity mirror in experiment.On the basis of retroreflection theory,the retroreflectivity of a CCA is analyzed by using optical simulation software.Notably,the experiment verifies the advantage of using a CCA over a plane mirror in laser resonator,thereby providing a promising approach for ECDLs.The threshold characteristic curves measured at different incident angles in the experiment verify that the CCA possesses an obvious anti-angle misalignment performance.This research introduces an alternative solution of using CCA resonator instead of parallel plane cavity,thereby realizing an adjustment-free ECDL with enhanced mechanical stability.展开更多
Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ...Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.展开更多
To overcome the limitations posed by three-dimensional corner separation,this paper proposes a novel flow control technology known as passive End-Wall(EW)self-adaptive jet.Two single EW slotted schemes(EWS1 and EWS2),...To overcome the limitations posed by three-dimensional corner separation,this paper proposes a novel flow control technology known as passive End-Wall(EW)self-adaptive jet.Two single EW slotted schemes(EWS1 and EWS2),alongside a combined(COM)scheme featuring double EW slots,were investigated.The results reveal that the EW slot,driven by pressure differentials between the pressure and suction sides,can generate an adaptive jet with escalating velocity as the operational load increases.This high-speed jet effectively re-excites the local low-energy fluid,thereby mitigating the corner separation.Notably,the EWS1 slot,positioned near the blade leading edge,exhibits relatively low jet velocities at negative incidence angles,causing jet separation and exacerbating the corner separation.Besides,the EWS2 slot is close to the blade trailing edge,resulting in massive low-energy fluid accumulating and separating before the slot outlet at positive incidence angles.In contrast,the COM scheme emerges as the most effective solution for comprehensive corner separation control.It can significantly reduce the total pressure loss and improve the static pressure coefficient for the ORI blade at 0°-4° incidence angles,while causing minimal negative impact on the aerodynamic performance at negative incidence angles.Therefore,the corner stall is delayed,and the available incidence angle range is broadened from -10°--2°to -10°-4°.This holds substantial promise for advancing the aerodynamic performance,operational stability,and load capacity of future highly loaded compressors.展开更多
We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across th...We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across the discontinuity surfaces and provide an example to illustrate the issue regarding the regularity at the corners.展开更多
Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitud...Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.展开更多
We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell stru...We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell structure,topological edge states(TESs)and topological corner states(TCSs)are realized.We obtain a new type of wave transmission mode based on photonic crystal zipper-like boundaries and apply it to a beam splitter assembled from rectangular photonic crystals(PCs).The constructed beam splitter structure is compact and possesses frequency separation functions.In addition,we construct a box-shaped triangular PC structures with zipper-like boundaries and discover phenomena of TCSs in the corners,comparing its corner states with those formed by other boundaries.Based on this,we explore the regularities of the electric field patterns of TESs and TCSs,explain the connection between the characteristic frequencies and locality of TCSs,which helps better control photons and ensures low power consumption of the system.展开更多
Intrinsic higher-order topological insulators driven solely by orbital coupling are rare in electronic materials.Here,we propose that monolayer LaBrO is an intrinsic two-dimensional second-order topological insulator....Intrinsic higher-order topological insulators driven solely by orbital coupling are rare in electronic materials.Here,we propose that monolayer LaBrO is an intrinsic two-dimensional second-order topological insulator.The generalized second-order topological phase arises from the coupling between the 5d orbital of the La atom and the 2p orbital of the O atom.The underlying physics can be thoroughly described by a four-band generalized higher-order topological model.Notably,the edge states and corner states of monolayer LaBrO exhibit different characteristics in terms of morphology,number,and location distribution under different boundary and nanocluster configurations.Furthermore,the higher-order topological corner states of monolayer LaBrO are robust against variations in spin-orbit coupling and different values of Hubbard U.This provides a material platform for studying intrinsic 2D second-order topological insulators.展开更多
We investigate the higher-order topological laser in the two-dimensional(2D) coupled-cavity array. By adding staggered on-site gain and loss to the 2D Hermitian array with a trivial phase, the system will emerge degen...We investigate the higher-order topological laser in the two-dimensional(2D) coupled-cavity array. By adding staggered on-site gain and loss to the 2D Hermitian array with a trivial phase, the system will emerge degenerate topological corner modes, which are protected by bulk band gap. For such a non-Hermitian model, by adjusting the parameters of the system and introducing the pumping into the cavity at the corner, a single-mode lasing with topological protection emerges.Furthermore, single-mode lasing exists over a wide range of pumping strengths. No matter where the cavity is initially stimulated, after enough time evolution, all the cavities belonging to the topological corner mode can emit a stable laser.展开更多
The design objectives of modern aircraft engines include high load capacity,efficiency,and stability.With increasing loads,the phenomenon of corner separation in compressors intensifies,affecting engine performance an...The design objectives of modern aircraft engines include high load capacity,efficiency,and stability.With increasing loads,the phenomenon of corner separation in compressors intensifies,affecting engine performance and stability.Therefore,the adoption of appropriate flow control technology holds significant academic and engineering significance.This study employs the Reynolds-averaged Navier-Stokes(RANS)method to investigate the effects and mechanisms of active/passive Co-flow Jet(CFJ)control,implemented by introducing full-height and partial height jet slots between the suction surface and end wall of a compressor cascade.The results indicate that passive CFJ control significantly reduces the impact of corner separation at small incidence,with partial-height control further enhancing the effectiveness.The introduction of active CFJ enables separation control at large incidence,improving blade performance under different operating conditions.Active control achieves this by reducing the scale of corner separation vortices,effectively reducing the size of the separation region and enhancing blade performance.展开更多
We present a novel incremental algorithm for non-slicing floorplans based on the corner block list representation. The horizontal and vertical adjacency graphs are derived from the packing of the initial floorplanning...We present a novel incremental algorithm for non-slicing floorplans based on the corner block list representation. The horizontal and vertical adjacency graphs are derived from the packing of the initial floorplanning results. Based on the critical path and the accumulated slack distances we define,we choose the best position for insertion and do a series of operations incrementally, such as deleting modules, adding modules, and resizing modules quickly. This incremental floorplanning algorithm has a very high speed less than 1μm,which is one of the most important measures in this research. The algorithm preserves the original good performances on area and wire length. It can also supply other tools with good physical estimates for area, wire length, and other performance guidelines.展开更多
Corner detection is a chief step in computer vision. A new corner detection algorithm in planar curves is proposed. Firstly, from the human perception, two key characteristics are given as an amendment of the traditio...Corner detection is a chief step in computer vision. A new corner detection algorithm in planar curves is proposed. Firstly, from the human perception, two key characteristics are given as an amendment of the traditional corner properties. Based on the two properties, the concept of the fuzzy set is introduced into a detection. Secondly, the extracted-formulae of three groups including the features of the corner subject degree are derived. Through synthesizing the features of three groups, the judgments of the corner detection, location, and optimization are obtained. Finally, by using the algorithm the detection results of several examples and feature curves for some interested parts, as well as the detection results for the test images history in references are given. Results show that the algorithm is easily realized after adopting the fuzzy set, and the detection effect is very ideal.展开更多
In milling around sharp corners, residual materials are left at sharp corners when the stepover is extremely long in the contour-parallel tool path. Milling force at the sharp corner rises momentarily due to the incre...In milling around sharp corners, residual materials are left at sharp corners when the stepover is extremely long in the contour-parallel tool path. Milling force at the sharp corner rises momentarily due to the increase of the cutter contact length, thus shortening the tool life and leading to machine chatter, even cutter breakage. Then a tool path improvement method by inserting biarc transition segments in the contour-parallel tool path is proposed for milling the pocket. Using the method, the cutter moves along the biarc transition tool path. And the corner material is removed. The improved tool path is continuous for clearing residual materials at the sharp corner. Finally, the machining experiment validates the proposed method.展开更多
A multi layer gridless area router is reported.Based on corner stitching,this router adopts tile expansion to explore path for each net.A heuristic method that penalizes nodes deviating from the destination is devise...A multi layer gridless area router is reported.Based on corner stitching,this router adopts tile expansion to explore path for each net.A heuristic method that penalizes nodes deviating from the destination is devised to accelerate the algorithm.Besides,an enhanced interval tree is used to manage the intermediate data structure.In order to improve the completion rate of routing,a new gridless rip up and rerouting algorithm is proposed.The experimental results indicate that the completion rate is improved after the rip up and reroute process and the speed of this algorithm is satisfactory.展开更多
基金Projects(51878103,52208370)supported by the National Natural Science Foundation of ChinaProject(cstc2020jcyjcxtt X0003)supported by the Innovation Group Science Foundation of the Natural Science Foundation of Chongqing,ChinaProject(2022CDJQY-012)supported by the Fundamental Research Funds for the Central Universities,China。
文摘To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundations under a strip footing,from macro to micro scales.The results demonstrate that the bearing characteristics of coral sand slope foundations can be successfully modeled by utilizing breakable corner particles in simulations.The dual effects of interlocking and breakage of corners well explained the specific shallower load transmission and narrower shear stress zones in breakable corner particle slopes.Additionally,the study revealed the significant influence of breakable corners on soil behaviors on slopes.Furthermore,progressive corner breakage within slip bands was successfully identified as the underling mechanism in determining the unique bearing characteristics and the distinct failure patterns of breakable corner particle slopes.This study provides a new perspective to clarify the behaviors of slope foundations composed of breakable corner particle materials.
文摘Farmer Luo Baozhen receives regular weather updates on her smartphone,which help her to better manage her tea farm.Once living in precarious conditions and struggling to make ends meet,Luo now earns as much as 28,000 yuan($3,868)annually from tea plantation on her 8 mu(0.53 hectares)of land in Pu’er,Yunnan Province.The modernisation of farming and the use of high technology have become a daily reality for farmers and significantly boosted their incomes.
基金Supported by National Natural Science Foundation of China(Grant No.52332013)。
文摘The intelligent vehicle corner module system,which integrates four-wheel independent drive,independent steering,independent braking and active suspension,can accurately and efficiently perform vehicle driving tasks and is the best carrier of intelligent vehicles.Nevertheless,too many angle/torque control inputs make control difficult and non-real-time.In this paper,a hierarchical real-time motion control framework for corner module configuration intelligent electric vehicles is proposed.In the trajectory planning module,an improved driving risk field is designed to describe the surrounding environment’s driving risk.Combined with the kinematic vehicle-road model,model predictive control(MPC)method,spline curve method,the local reference trajectory of safety,comfort and smoothness is planned in real time.The optimal steering angle is determined using MPC method in path tracking module.In the motion control module,a feedforward-feedback controller assigns the optimal steering angle to the front/rear axles,and an angle allocation controller distributes the target angles of the front/rear axles to four steered wheels.Finally,the PreScan-Simulink-CarSim joint simulation environment is established for conducting the human-in-the-loop emergency obstacle avoidance experiment.It took only 0.005 s for the hierarchical motion control system to determine its average solution time.This proves the effectiveness of the hierarchical motion control system.
文摘We study the topological states(TSs)of all-dielectric honeycomb valley photonic crystals(VPCs).Breaking the space inversion symmetry of the honeycomb lattice by varying the filling ratio of materials for circular ring dielectric columns in the unit cell,which triggers topological phase transitions and thus achieves topological edge states(TESs)and topological corner states(TCSs).The results demonstrate that this structure has efficient photon transmission characteristics and anti-scattering robustness.In particular,we have found that changing the type of edge splicing between VPCs with different topological properties produces a change in the frequency of TCSs,and then based on this phenomenon,we have used a new method of adjusting only the type of edge splicing of the structure to design a novel TCSs combiner that can integrate four TCSs with different frequencies.This work not only expands the variety and number of unexplored TCSs that may exist in a fixed photonic band gap and can be rationalized to be selectively excited in the fixed configuration.Our study provides a feasible pathway for the design of integrated optical devices in which multiple TSs coexist in a single photonic system.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20240613)Jiangsu Province’s“Innovation and Entrepreneurship Doctor”Program(Grant No.JSSCBS20230088)+4 种基金Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY224123)Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY222112)Beijing Nova Program(Grant No.20240484696)Wenzhou Major Science and Technology Innovation Key Project(Grant No.ZG2020046)INNOVATION Program for Quantum Science and Technology(Grant No.2021ZD0303200)。
文摘The topic of improving the mechanical stability of external cavity diode lasers(ECDLs)has recently attracted widespread attention and interest.The use of corner-cube-array(CCA)-based resonators provides a potential solution for this purpose,although continuous oscillation at super large incident angle remains challenging.In this work,we employ the CCA resonator to generate continuous oscillation within±20°angular misalignment of cavity mirror in experiment.On the basis of retroreflection theory,the retroreflectivity of a CCA is analyzed by using optical simulation software.Notably,the experiment verifies the advantage of using a CCA over a plane mirror in laser resonator,thereby providing a promising approach for ECDLs.The threshold characteristic curves measured at different incident angles in the experiment verify that the CCA possesses an obvious anti-angle misalignment performance.This research introduces an alternative solution of using CCA resonator instead of parallel plane cavity,thereby realizing an adjustment-free ECDL with enhanced mechanical stability.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0107000)the General Projects of the National Natural Science Foundation of China(Grant No.52171259)the High-Tech Ship Research Project of the Ministry of Industry and Information Technology(Grant No.[2021]342)。
文摘Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.
基金sponsored by the National Natural Science Foundation of China(No.52106057)the National Major Science and Technology Projects of China(No.2017-Ⅱ-0001-0013)+2 种基金Fundamental Research Funds for the Central Universities of China(No.D5000210483)the Foundation of State Level Key Laboratory of Airfoil and Cascade Aerodynamics of China(Nos.D5150210006 and D5050210015)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University of China(No.CX2023012).
文摘To overcome the limitations posed by three-dimensional corner separation,this paper proposes a novel flow control technology known as passive End-Wall(EW)self-adaptive jet.Two single EW slotted schemes(EWS1 and EWS2),alongside a combined(COM)scheme featuring double EW slots,were investigated.The results reveal that the EW slot,driven by pressure differentials between the pressure and suction sides,can generate an adaptive jet with escalating velocity as the operational load increases.This high-speed jet effectively re-excites the local low-energy fluid,thereby mitigating the corner separation.Notably,the EWS1 slot,positioned near the blade leading edge,exhibits relatively low jet velocities at negative incidence angles,causing jet separation and exacerbating the corner separation.Besides,the EWS2 slot is close to the blade trailing edge,resulting in massive low-energy fluid accumulating and separating before the slot outlet at positive incidence angles.In contrast,the COM scheme emerges as the most effective solution for comprehensive corner separation control.It can significantly reduce the total pressure loss and improve the static pressure coefficient for the ORI blade at 0°-4° incidence angles,while causing minimal negative impact on the aerodynamic performance at negative incidence angles.Therefore,the corner stall is delayed,and the available incidence angle range is broadened from -10°--2°to -10°-4°.This holds substantial promise for advancing the aerodynamic performance,operational stability,and load capacity of future highly loaded compressors.
基金supported by National Natural Science Foundation of China(12061080,12161087 and 12261093)the Science and Technology Project of the Education Department of Jiangxi Province(GJJ211601)supported by National Natural Science Foundation of China(11871305).
文摘We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across the discontinuity surfaces and provide an example to illustrate the issue regarding the regularity at the corners.
基金supported by the Equipment Pre-research Project(GK202002A020068)。
文摘Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.
基金Project supported by the Suzhou Basic Research Project (Grant No.SJC2023003)Suzhou City University National Project Pre-research Project (Grant No.2023SGY014)。
文摘We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell structure,topological edge states(TESs)and topological corner states(TCSs)are realized.We obtain a new type of wave transmission mode based on photonic crystal zipper-like boundaries and apply it to a beam splitter assembled from rectangular photonic crystals(PCs).The constructed beam splitter structure is compact and possesses frequency separation functions.In addition,we construct a box-shaped triangular PC structures with zipper-like boundaries and discover phenomena of TCSs in the corners,comparing its corner states with those formed by other boundaries.Based on this,we explore the regularities of the electric field patterns of TESs and TCSs,explain the connection between the characteristic frequencies and locality of TCSs,which helps better control photons and ensures low power consumption of the system.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFA1403200)the National Natural Science Foundation of China(Grant Nos.92265104,12022413,and 11674331)+5 种基金the Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures(Grant No.JZHKYPT-2021-08)the CASHIPS Director’s Fund(Grant No.BJPY2023A09)the“Strategic Priority Research Program(B)”of the Chinese Academy of Sciences(Grant No.XDB33030100)Anhui Provincial Major S&T Project(Grant No.s202305a12020005)the Major Basic Program of Natural Science Foundation of Shandong Province(Grant No.ZR2021ZD01)the High Magnetic Field Laboratory of Anhui Province(Grant No.AHHM-FX-2020-02)。
文摘Intrinsic higher-order topological insulators driven solely by orbital coupling are rare in electronic materials.Here,we propose that monolayer LaBrO is an intrinsic two-dimensional second-order topological insulator.The generalized second-order topological phase arises from the coupling between the 5d orbital of the La atom and the 2p orbital of the O atom.The underlying physics can be thoroughly described by a four-band generalized higher-order topological model.Notably,the edge states and corner states of monolayer LaBrO exhibit different characteristics in terms of morphology,number,and location distribution under different boundary and nanocluster configurations.Furthermore,the higher-order topological corner states of monolayer LaBrO are robust against variations in spin-orbit coupling and different values of Hubbard U.This provides a material platform for studying intrinsic 2D second-order topological insulators.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12274326 and 12174288)the National Key R&D Program of China (Grant No. 2021YFA1400602)。
文摘We investigate the higher-order topological laser in the two-dimensional(2D) coupled-cavity array. By adding staggered on-site gain and loss to the 2D Hermitian array with a trivial phase, the system will emerge degenerate topological corner modes, which are protected by bulk band gap. For such a non-Hermitian model, by adjusting the parameters of the system and introducing the pumping into the cavity at the corner, a single-mode lasing with topological protection emerges.Furthermore, single-mode lasing exists over a wide range of pumping strengths. No matter where the cavity is initially stimulated, after enough time evolution, all the cavities belonging to the topological corner mode can emit a stable laser.
基金National Science&Technology Major Project(Grant No.2017-II-0004-0016)National Nature Science Foundation of China(Grant No.52176044)。
文摘The design objectives of modern aircraft engines include high load capacity,efficiency,and stability.With increasing loads,the phenomenon of corner separation in compressors intensifies,affecting engine performance and stability.Therefore,the adoption of appropriate flow control technology holds significant academic and engineering significance.This study employs the Reynolds-averaged Navier-Stokes(RANS)method to investigate the effects and mechanisms of active/passive Co-flow Jet(CFJ)control,implemented by introducing full-height and partial height jet slots between the suction surface and end wall of a compressor cascade.The results indicate that passive CFJ control significantly reduces the impact of corner separation at small incidence,with partial-height control further enhancing the effectiveness.The introduction of active CFJ enables separation control at large incidence,improving blade performance under different operating conditions.Active control achieves this by reducing the scale of corner separation vortices,effectively reducing the size of the separation region and enhancing blade performance.
文摘We present a novel incremental algorithm for non-slicing floorplans based on the corner block list representation. The horizontal and vertical adjacency graphs are derived from the packing of the initial floorplanning results. Based on the critical path and the accumulated slack distances we define,we choose the best position for insertion and do a series of operations incrementally, such as deleting modules, adding modules, and resizing modules quickly. This incremental floorplanning algorithm has a very high speed less than 1μm,which is one of the most important measures in this research. The algorithm preserves the original good performances on area and wire length. It can also supply other tools with good physical estimates for area, wire length, and other performance guidelines.
文摘Corner detection is a chief step in computer vision. A new corner detection algorithm in planar curves is proposed. Firstly, from the human perception, two key characteristics are given as an amendment of the traditional corner properties. Based on the two properties, the concept of the fuzzy set is introduced into a detection. Secondly, the extracted-formulae of three groups including the features of the corner subject degree are derived. Through synthesizing the features of three groups, the judgments of the corner detection, location, and optimization are obtained. Finally, by using the algorithm the detection results of several examples and feature curves for some interested parts, as well as the detection results for the test images history in references are given. Results show that the algorithm is easily realized after adopting the fuzzy set, and the detection effect is very ideal.
文摘In milling around sharp corners, residual materials are left at sharp corners when the stepover is extremely long in the contour-parallel tool path. Milling force at the sharp corner rises momentarily due to the increase of the cutter contact length, thus shortening the tool life and leading to machine chatter, even cutter breakage. Then a tool path improvement method by inserting biarc transition segments in the contour-parallel tool path is proposed for milling the pocket. Using the method, the cutter moves along the biarc transition tool path. And the corner material is removed. The improved tool path is continuous for clearing residual materials at the sharp corner. Finally, the machining experiment validates the proposed method.
文摘A multi layer gridless area router is reported.Based on corner stitching,this router adopts tile expansion to explore path for each net.A heuristic method that penalizes nodes deviating from the destination is devised to accelerate the algorithm.Besides,an enhanced interval tree is used to manage the intermediate data structure.In order to improve the completion rate of routing,a new gridless rip up and rerouting algorithm is proposed.The experimental results indicate that the completion rate is improved after the rip up and reroute process and the speed of this algorithm is satisfactory.