Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin f...Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin first”strategy,corn straw is converted to valuable chemicals including lignin monomers,furfural and 5-methoxymethylfurfural via a two steps process.The key of this research lies in the development of a green and low-cost catalytic process utilizing magnetic Raney Ni catalyst and high boiling point ethylene glycol.The utilization of neat ethylene glycol as the sole slovent under atmospheric conditions obviates the need for additional additives,thereby facilitating the entire process to be conducted in glass flasks and rendering it highly convenient for scaling up.In the initial step,depolymerization of corn straw lignin resulted in a monomer yield of 18.1 wt%.Subsequently,in a dimethyl carbonate system,the carbohydrate component underwent complete conversion in a one-pot process,yielding furfural and 5-methoxymethylfurfural as the primary products with an impressive yield of 47.7%.展开更多
A flower-like BiOBr photocatalyst(CS/BiOBr)was prepared by using the carbon material derived from corn straw(CS)as the carrier.The prepared composites were characterized by X-ray diffraction(XRD),Fourier transform inf...A flower-like BiOBr photocatalyst(CS/BiOBr)was prepared by using the carbon material derived from corn straw(CS)as the carrier.The prepared composites were characterized by X-ray diffraction(XRD),Fourier transform infrared(FIIR)spectra,scanning electron microscope(SEM),X-ray photoelectron spectra(XPS),and UV-Vis diffuse reflectance spectra(UV-Vis DRS).The SEM analyses indicate that the introduction of CS promotes the formation of a unique flower-like structure in BiOBr,which not only optimizes the efficiency of light capture but also increases the specific surface area of BiOBr.The bandgap of the composite was narrower compared with the pure BiOBr.The CS/BiOBr composites exhibited higher photocatalytic activity than pure CS and BiOBr under visible light irradiation,and a higher first-order reaction rate constant(k)of 0.0437 min-1 than BiOBr(0.0146 min^(-1)),and exhibited excellent stability and reusability during the cyclic run.The enhanced photocatalytic activity is attributed to the efficient separation of photoinduced electrons and holes.Superoxide radicals and holes were the major active species.展开更多
[Objectives]To address the weeding challenges within the corn and soybean strip intercropping field and identify appropriate herbicide types and application methods suitable for the corn and soybean strip intercroppin...[Objectives]To address the weeding challenges within the corn and soybean strip intercropping field and identify appropriate herbicide types and application methods suitable for the corn and soybean strip intercropping fields in Siyang County.[Methods]The trial comprised six herbicide treatments and one blank control,with investigations conducted to assess efficacy,safety,and yield.[Results]Each herbicide treatment effectively controlled weeds,demonstrated high safety,and enhanced the yields of both soybeans and corn.The combined application of soil sealing with stem and leaf spray exhibited superior overall weed control compared to soil sealing alone.At 28 d following stem and leaf spray,the plant control effect and fresh weight control effect against weeds in the combined treatment of soil sealing with stem and leaf spray all exceeded 89%.[Conclusions]This study offers technical support for advancing the practice of strip intercropping between corn and soybeans.展开更多
Fermented corn starch has emerged as a promising functional food due to its triad of gut biotics,prebiotic,probiotic,and postbiotic properties,which present significant potential for the management of type 2 diabetes ...Fermented corn starch has emerged as a promising functional food due to its triad of gut biotics,prebiotic,probiotic,and postbiotic properties,which present significant potential for the management of type 2 diabetes through gut microbiota modulation.During fermentation,microbial activity alters the starch matrix,enhancing the production of bioactive compounds such as resistant starch,isomalto-oligosaccharides,and resistant dextrin,which improve insulin sensitivity,reduce inflammation,and support glycemic control.Additionally,fermented corn starch harbors beneficial microbial strains including Lactiplantibacillus fermentum,Bifidobacterium breve,and Saccharomyces cerevisiae,which reinforce gut barrier integrity,stimulate incretin secretion,and suppress systemic inflammation.Postbiotic metabolites such as short-chain fatty acids,exopolysaccharides,and bacteriocins further contribute to glucose homeostasis through immune modulation and gut hormone regulation.Despite its promise,the clinical translation of fermented corn starch is limited by safety concerns(e.g.,contamination with pathogens or mycotoxins),lack of standardized fermentation protocols,and a scarcity of targeted studies.This review synthesizes current evidence on the antidiabetic potential of fermented corn starch,advocating for its integration into precision nutrition approaches and supporting further research to address safety and standardization challenges in functional food development.展开更多
A field experiment was conducted to investigate the effect of integrated nano-fertilizer spray and vermicompost in growth and quality of corn yield in calcareous soil at College ofAgricultural Engineering Sciences/Uni...A field experiment was conducted to investigate the effect of integrated nano-fertilizer spray and vermicompost in growth and quality of corn yield in calcareous soil at College ofAgricultural Engineering Sciences/University of Baghdad/Iraq during the autumn season of 2022 using Split Split Plot Design in a randomized complete block design with three replicates.Main plots were designated to two types of vermicompost(local and imported).The secondary plots were assigned to vermicompost added to the soil at three levels of 0,10 and 20 Mg ha-1.The third plots were assigned to nano-fertilizer containing N,P,K,Zn,Fe and Mn at 0,50,100 and 150 mg L-1 sprayed on plant at 20,40 and 60 days after planting.The results showed a significant effect of local vermicompost achieving available nitrogen and phosphorus in the soil as 43.31 mg N kg-1 soil and 19.25 mg P kg-1 soil.In the leaves,nitrogen was 3.86%,potassium 4.54%,iron 174.22 mg Fe kg-1 and Zinc was 73.53 mg Zn kg-1,grain yield was 165.48 Mg ha-1.Adding vermicompost to the soil at 20 Mg ha-1 achieving in available nitrogen in the soil of 43.74 mg N kg-1 soil,available phosphorus of 19.72 mg P kg-1 soil and available potassium of 196.93 mg K kg-1 soil.In the leaves,nitrogen was 4.37%,phosphorus was 0.44%,potassium 4.87%,iron was 182.63 mg Fe kg-1,zinc was 73.70 mg Zn kg-1 and grain yield was 168.43 Mg ha-1.Spraying nano-fertilizer on the plant at 150 mg L-1 achieved In the leaves,nitrogen 4.28%,phosphorus of 0.46%,potassium of 5.10%,iron of 204.83 mg Fe kg-1,zinc of 89.28 mg Zn kg-1 and manganese of 234.07 mg Mn kg-1 and grain yield was 172.88 Mg ha-1.展开更多
The soybean and corn strip compound planting technology is a crucial measure for improving land use efficiency and ensuring food security.This paper deeply analyzed the principles,advantages,and key technical aspects ...The soybean and corn strip compound planting technology is a crucial measure for improving land use efficiency and ensuring food security.This paper deeply analyzed the principles,advantages,and key technical aspects of this technology,including variety selection,planting pattern,sowing management,and field management.It also illustrated its application effectiveness through practical cases and proposed corresponding solutions to existing challenges in its promotion.This study provides theoretical support and practical reference for the widespread adoption and efficient application of this technology.展开更多
Background Diets with high inclusion of corn co-products such as corn fermented protein(CFP)may contain excess Leu,which has a negative impact on feed intake and growth performance of pigs due to increased catabolism ...Background Diets with high inclusion of corn co-products such as corn fermented protein(CFP)may contain excess Leu,which has a negative impact on feed intake and growth performance of pigs due to increased catabolism of Val and Ile and reduced availability of Trp in the brain for serotonin synthesis.However,we hypothesized that the negative effect of using CFP in diets for weanling pigs may be overcome if diets are fortified with crystalline sources of Val,Trp,and(or)Ile.Methods Three hundred and twenty weanling pigs were randomly allotted to one of 10 dietary treatments in a com-pletely randomized design,with 4 pigs per pen and 8 replicate pens per treatment.A corn-soybean meal diet and 2 basal diets based on corn and 10%CFP or corn and 20%CFP were formulated.Seven additional diets were formu-lated by fortifying the basal diet with 20%CFP with Ile,Trp,Val,Ile and Val,Ile and Trp,Trp and Val,or Ile,Trp and Val.A two-phase feeding program was used,with d 1 to 14 being phase 1 and d 15 to 28 being phase 2.Fecal scores were recorded every other day.Blood samples were collected on d 14 and 28 from one pig per pen.On d 14,fecal samples were collected from one pig per pen in 3 of the 10 treatments to determine volatile fatty acids,ammonium concen-tration,and microbial protein.These pigs were also euthanized and ileal tissue was collected.Results There were no effects of dietary treatments on any of the parameters evaluated in phase 1.Inclusion of 10%or 20%CFP in diets reduced(P<0.05)final body weight on d 28,and average daily gain(ADG)and average daily feed intake(ADFI)in phase 2 and for the entire experimental period.However,pigs fed the CFP diet supplemented with Val,Ile,and Trp had final body weight,ADFI,ADG and gain to feed ratio in phase 2 and for the entire experiment that was not different from pigs fed the control diet.Fecal scores in phase 2 were reduced(P<0.05)if CFP was used.Conclusions Corn fermented protein may be included by up to 20%in diets for weanling pigs without affecting growth performance,gut health,or hindgut fermentation,if diets are fortified with extra Val,Trp,and Ile.Inclusion of CFP also improved fecal consistency of pigs.展开更多
The aim of this research is to assess the energy potential of cow dung and corn cob inputs,with a view to estimating their biogas potential.The inputs were characterized in the microbiology laboratory of the National ...The aim of this research is to assess the energy potential of cow dung and corn cob inputs,with a view to estimating their biogas potential.The inputs were characterized in the microbiology laboratory of the National Control Office Quality in Matoto,Conakry.The experiment to produce methane from cow dung and maize cob was carried out at the Applied Research in Natural Sciences Laboratory of the University of Kindia(UK)using the following equipment:Three digesters were each connected to an air chamber(gasometer)by means of flexible pipes 8 mm in diameter,connected by clamps,liquid adhesives,valves and Teflon.This research focused on determining the quantity of biogas contained in each type of substrate(cow dung,maize cob and their mixture).Three experiments on the methanization of these inputs were carried out,with anaerobic digestion lasting 27 days,in a temperature range of 27℃ to 31℃(mesophilic range).The results were as follows:maize cob 28.4 L,cow dung 22.6 L and codigestion 38.7 L.These results compared with similar studies revealed a coincidence.展开更多
Enzymatic modification is an important approach to changing the structure and expanding industrial application of natural starch. In the process of starch modification, thermostable enzymes are favored owing to their ...Enzymatic modification is an important approach to changing the structure and expanding industrial application of natural starch. In the process of starch modification, thermostable enzymes are favored owing to their compatibility with higher reaction temperatures and lower required dosage. In this study, thermostable glucoamylase from Thermothelomyces thermophilus(TtGA) was heterologously expressed in Pichia pastoris, and its effects on the structure and physicochemical properties of raw corn starch were determined. The purified TtGA had a molecular weight of approximately 66 kDa, and its optimum reaction temperature and pH were 50 ℃ and 5.0, respectively. TtGA retained > 60% of its activity following treatment at 60 ℃ for 2 h and remained stable within a pH range of 4.0–7.0 for 6 h. The enzymatic modification of raw corn starch with TtGA led to 3% hydrolysis at 50 ℃ for 24 h. In comparison with natural raw corn starch, TtGA-modified starch had a smaller particle size with an unchanged crystalline structure, increased relative crystallinity, and amylose content.Scanning electronic observation showed that larger pores were formed on the surface of starch particles, and Fourier-transform infrared spectroscopy indicated that TtGA increased the degree of order in the raw corn starch.TtGA modification caused enhanced viscosity of the raw corn starch and altered the rheological properties with decreases in storage and loss moduli, as well as shear viscosity. Moreover, TtGA treatment enhanced the thermal characteristics of the raw corn starch, and decreased gelatinization enthalpy. This study provides detailed evidence for TtGA modification of raw corn starch, which would be helpful for its practical utilization in starch modification.展开更多
Southern corn rust(SCR)is an airborne fungal disease caused by Puccinia polysora Underw.(P.polysora)that adversely impacts maize quality and yields worldwide.Screening for new elite SCR-resistant maize loci or genes h...Southern corn rust(SCR)is an airborne fungal disease caused by Puccinia polysora Underw.(P.polysora)that adversely impacts maize quality and yields worldwide.Screening for new elite SCR-resistant maize loci or genes has the potential to enhance overall resistance to this pathogen.Using phenotypic SCR resistance-related data collected over two years and three geographical environments,a genome-wide association study was carried out in this work,which eventually identified 91 loci that were substantially correlated with SCR susceptibility.These included 13 loci that were significant in at least three environments and overlapped with 74 candidate genes(B73_RefGen_v4).Comparative transcriptomic analyses were then performed to identify the genes related to SCR infection,with 2,586 and 797 differentially expressed genes(DEGs)ultimately being identified in the resistant Qi319and susceptible 8112 inbred lines following P.polysora infection,respectively,including 306 genes common to both lines.Subsequent integrative multi-omics investigations identified four potential candidate SCR response-related genes.One of these genes is ZmHCT9,which encodes the protein hydroxycinnamoyl transferase 9.This gene was up-regulated in susceptible inbred lines and linked to greater P.polysora resistance as confirmed through cucumber mosaic virus(CMV)-based virus induced-gene silencing(VIGS)system-mediated gene silencing.These data provide important insights into the genetic basis of the maize SCR response.They will be useful for for future research on potential genes related to SCR resistance in maize.展开更多
The objective of this study was to characterize the rumination time in lactating dairy cows fed with corn silage.Rumination time was recorded 24 h/day using direct visual observation.Six trials were conducted during 2...The objective of this study was to characterize the rumination time in lactating dairy cows fed with corn silage.Rumination time was recorded 24 h/day using direct visual observation.Six trials were conducted during 2018,2019 and 2020,and rumination time was recorded in 480-2-hour periods from 40 Holstein Friesian cows.In each trial,6 or 8 cows were selected and balanced for days in milk(DIM),milk production and number of lactations.Each cow was recorded continuously for periods of 2 h at a time to complete a full 24-h period per week(12 values per day).Data from all cows were associated with 4 reproductive statuses of cows:Inseminated(1-45 days after insemination),Open(45-150 days after calving),not-pregnant and pregnant.The longest rumination time(RT)was found in pregnant cows(average 536.9±29.87 min/day),and the shortest RT was in open cows(average 420.3±63.2 min/day).Inseminated and non-pregnant cows were found with intermediate values(527.3±82.4 min/day and 467.1±30.7 respectively).Significantly different RT means were found between pregnant and open cows(p<0.0001),pregnant vs.inseminated cows(p<0.0001),and between inseminated and open cows(p=0.0005).We concluded that some gynecological conditions of lactating cows affect the RT.Measurement of RT by visual observations proved to be acceptable for the conditions of this study when cows were housed indoors and were fed with partial mixed ration(PMR)based on corn silage.展开更多
Anaerobic digestion has been defined as a competitive approach to facilitate the recycling of corn stalks.However,few studies have focused on the role of direct interspecies electron transfer(DIET)pathway in the acidi...Anaerobic digestion has been defined as a competitive approach to facilitate the recycling of corn stalks.However,few studies have focused on the role of direct interspecies electron transfer(DIET)pathway in the acidification stage under the addition of different particle sizes of zero-valent iron(ZVI).In this study,three types of ZVI,namely iron filings,iron powder and nanoscale iron,were investigated,respectively,to enhance its high-value conversion.Variations in volatile fatty acids(VFAs)and methane(CH4)production associated with the underlyingmechanisms were emphatically determined.Results indicated that the addition of ZVI could increase the concentration of VFAs,with the most outstanding performance observed with the use of nanoscale iron.Importantly,the conversion of propionic acid to acetic acid was driven by adding ZVI with no between-group differences in acidizing phase.Conversely,the substrate was more fully utilized when supplied with iron powder compared with other groups in methanogenic phase,thereby displaying the maximumCH4 yield with a value of 263.1 mL/(g total solids(TS)).However,adding nanoscale iron could signally shorten the digestion time(T80),saving 7 days in comparison to the group of iron powder.展开更多
Type 2 diabetes mellitus(T2DM)is a metabolic disease caused by a glycolipid metabolism disorder and isletβ-cell dysfunction.SCP-80-I is a biologically active water-soluble polysaccharide isolated from sweet corncob,a...Type 2 diabetes mellitus(T2DM)is a metabolic disease caused by a glycolipid metabolism disorder and isletβ-cell dysfunction.SCP-80-I is a biologically active water-soluble polysaccharide isolated from sweet corncob,an agricultural byproduct.The hypoglycemic effects of SCP-80-I on T2DM mice and its mechanisms were investigated in this study.SCP-80-I was found to significantly reduce blood glucose and lipid deposition levels in T2DM mice,as well as decrease serum leptin and increase adiponectin secretion.Interestingly,real time-polymerase chain reaction(RT-PCR)and Western blotting results revealed that SCP-80-I could regulate the expression of several glycolipid metabolisms and insulin secretion genes and proteins,including 5'-AMP-activated protein kinase(AMPK),carnitine palmitoyltransferase I(CPTI),and acetyl coenzyme A carboxylase(ACC)in the liver and AMPK,sirtuin1(Sirtl),peroxisome proliferator-activated receptorycoactivator-1(PGC-1α),and uncoupling protein 2(UCP2)in the pancreas.To have a hypoglycemic effect,SCP-80-1 regulated glycolipid metabolism and islet cell function in the liver by regulating the AMPK/AC C/CPT1 signaling pathway and the AMPK/Sirt1/PGC-1αand AMPK/Sirtl/UCP2 signaling pathways.These findings improve our understanding of polysaccharides derived from sweet corncob and the use of SCP-80-I in the production of hypoglycemic foods.展开更多
Background Reduction of the particle size of corn increases energy digestibility and concentrations of digestible and metabolizable energy.Pelleting may also reduce particle size of grain,but it is not known if there ...Background Reduction of the particle size of corn increases energy digestibility and concentrations of digestible and metabolizable energy.Pelleting may also reduce particle size of grain,but it is not known if there are interactions between particle size reduction and pelleting.The objective of this experiment was to test the hypothesis that particle size reduction and pelleting,separately or in combination,increase N balance,apparent total tract digestibility(ATTD)of fiber and fat,and net energy(NE)in corn-soybean meal diets fed to group-housed pigs.Methods Six corn-soybean meal-based diets were used in a 3×2 factorial design with 3 particle sizes of corn(i.e.,700,500,or 300μm)and 2 diet forms(i.e.,meal or pelleted).Pigs were allowed ad libitum access to feed and water.Twenty-four castrated male pigs(initial weight:29.52 kg;standard diviation:1.40)were allotted to the 6 diets using a 6×6 Latin square design with 6 calorimeter chambers(i.e.,4 pigs/chamber)and 6 periods.Oxygen consumption and CO_(2)and CH_(4)productions were measured during fed and fasting states and fecal and urine samples were collected.Results Regardless of particle size of corn,the ATTD of gross energy(GE),N,and acid-hydrolyzed ether extract(AEE),and the concentration of NE were greater(P<0.05)in pelleted diets than in meal diets.Regardless of diet form,the ATTD of GE,N,and AEE,and the concentration of NE were increased(linear;P<0.05)by reducing the particle size of corn,but the increase was greater in meal diets than in pelleted diets(interaction;P<0.05).Conclusions Both pelleting and reduction of corn particle size increased nutrient digestibility and NE,but increases were greater in meal diets than in pelleted diets.展开更多
Film-stalk spaced dual mulching is a new type of cultivation measure that is increasingly highlighted in semi-arid areas in China.Despite its potential,there is limited understanding of how different mulching material...Film-stalk spaced dual mulching is a new type of cultivation measure that is increasingly highlighted in semi-arid areas in China.Despite its potential,there is limited understanding of how different mulching materials affect both soil quality and crop yield in these areas.To address this gap,we conducted a two-year(2020-2021)field experiment in central China to explore the yield-enhancing mechanisms and assess the impact of various mulching materials on soil and corn yield.The experiment comprised six treatments,i.e.,plastic film-whole stalk spaced mulching in fall(PSF),plastic film-whole stalk spaced mulching in spring(PSS),black and silver plastic film-whole stalk spaced mulching in spring(BPSS),biodegradable film-whole stalk spaced mulching in spring(BSS),liquid film-whole stalk spaced mulching in spring(LSS),and non-mulching cultivation(CK).Results revealed that BPSS demonstrated the most significant yield increase,surpassing CK by a notable 10.0%and other mulching treatments by 2.4%-5.9%.The efficacy of BPSS lied in its provision of favorable hydrothermal conditions for corn cultivation,particularly during hot season.Its cooling effect facilitated the establishment of optimal temperature conditions relative to transparent mulching,leading to higher root growth indices(e.g.,length and surface area),as well as higher leaf photosynthetic rate and dry matter accumulation per plant.Additionally,BPSS maintained higher average soil moisture content within 0-100 cm depth compared with biodegradable mulching and liquid mulching.As a result,BPSS increased activities of urease,catalase,and alkaline phosphatase,as well as the diversity and abundance of soil bacteria and fungi in the rhizosphere zone of corn,facilitating nutrient accessibility by the plant.These findings suggest that selecting appropriate mulching materials is crucial for optimizing corn production in drought-prone areas,highlighting the potential of BPSS cultivation.展开更多
Objective To investigate the efficacy of raw corn starch(RCS)in clinical management of insulinoma-induced hypoglycemia.Methods We retrospectively collected clinical data of insulinoma patients who received RCS-supplem...Objective To investigate the efficacy of raw corn starch(RCS)in clinical management of insulinoma-induced hypoglycemia.Methods We retrospectively collected clinical data of insulinoma patients who received RCS-supplemented diet preoperatively,and analyzed the therapeutic effects of the RCS intervention on blood glucose control,weight change,and its adverse events.Results The study population consisted of 24 cases of insulinoma patients,7 males and 17 females,aged 46.08±14.15 years.Before RCS-supplemented diet,all patients had frequent hypoglycemic episodes(2.51±3.88 times/week),concurrent with neuroglycopenia(in 83.3% of patients)and autonomic manifestations(in 75.0% of patients),with the median fasting blood glucose(FBG)of 2.70(interquartile range[IQR]:2.50-2.90)mmol/L.The patients'weight increased by 0.38(IQR:0.05-0.65)kg per month,with 8(33.3%)cases developing overweight and 7(29.2%)cases developing obesity.All patients maintained the RCS-supplemented diet until they underwent tumor resection(23 cases)and transarterial chemoembolization for liver metastases(1 case).For 19 patients receiving RCS throughout the day,the median FBG within one week of nutritional management was 4.30(IQR:3.30-5.70)mmol/L,which was a significant increase compared to pre-nutritional level[2.25(IQR:1.60-2.90)mmol/L;P<0.001].Of them,10 patients receiving RCS throughout the day for over four weeks had sustained improvement in FBG compared to pre-treatment[3.20(IQR:2.60-3.95)mmol/L vs.2.15(IQR:1.83-2.33)mmol/L;P<0.001].Five patients who received RCS only at night also had a significant increase in FBG within one week of nutritional management[3.50(IQR:2.50-3.65)mmol/L vs.2.20(IQR:1.80-2.60)mmol/L;P<0.001],but only one patient who continued to receive RCS for over four weeks did not have a significant improvement in FBG.No improvement in weight gain was observed upon RCS supplementation.Mild diarrhea(2 cases)and flatulence(1 case)occurred,and were relieved by reduction of RCS dose.Conclusion The RCS-supplemented diet is effective in controlling insulinoma-induced hypoglycemia.展开更多
Nutrient management plays a crucial role in the yield and quality of sweet corn.A field experiment was conducted in consecutive two kharif seasons in 2018 and 2019 to investigate the effect of various organic sources ...Nutrient management plays a crucial role in the yield and quality of sweet corn.A field experiment was conducted in consecutive two kharif seasons in 2018 and 2019 to investigate the effect of various organic sources of nutrients in combination with inorganic sources on the yield and quality of sweet corn under new alluvial soils of West Bengal,India.Treatments were:T_(1):Control(without fertilizers);T_(2):100%recommended dose(RDF)of chemical fertilizers(CF)(RDF CF_(100%));T_(3):100%recommended dose of N(RDN)through vermicompost(VC)(RDN VC_(100%));T_(4):50 RDN through CF+50%RDN through VC(RDN CF_(50%)+RDN VC50%);T_(5):50%RDF through CF+50%RDN through organic source(OS)1,Soligro(Ascophyllum nodosum)granular(RDN CF_(50%)+RDN OS_(150%));T6:50%RDN through CF+50%RDN through OS 2,Bioenzyme(liquid)(RDN CF_(50%)+RDN OS250%);T7:50%RDN through CF+50%RDN through OS 3,Opteine(Ascophyllum nodosum)filtrate[RDN CF_(50%)+RDN OS350%];T8:50%RDN through VC+50%RDF through OS 1,Soligro(Ascophyllum nodosum)granular(RDN VC50%+RDN OS_(150%)).The OS of fertilizers were VC,SoliGro Gr(OS1)(Ascophyllum nodosum),Bioenzyme liquid(OS2),and Opteine(Ascophyllum nodosum)filtrate(OS3).The inorganic source was traditional CF applied at the RDF(150:75:75 kg ha^(−1) of N:P2O5:K2O).The VC was used to supply 100%RDN as one source or 50%RDN when combined with CF or OS.Maximum fruit yield(10.75 and 10.79 t ha^(−1) in 2018 and 2019,respectively)was recorded when RDF was substituted through CF only,being statistically at par with 50%CF+50%VC on a nitrogen equivalent basis(9.92 and 10.00 t ha^(−1) in 2018 and 2019,respectively)and 100%VC(8.22 and 8.32 t ha^(−1) in 2018 and 2019,respectively).Compared to chemical sources of nutrients,VC-based treatments produced a larger percentage of large-size cob(>25 cm).The 100%VC increased antioxidant(8.35 and 8.45 mg g^(−1)),carotenoid(0.59 and 0.61 mg/100 g),and phenol(55.06 and 55.02 mg 100 g^(−1))content compared with its 50%dose in combination with other sources.The study revealed the potentiality of organic sources towards achieving improved cob quality of sweet corn.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(QNTD202302)National Natural Science Foundation of China(22378024)the Foreign expert program(G2022109001L).
文摘Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin first”strategy,corn straw is converted to valuable chemicals including lignin monomers,furfural and 5-methoxymethylfurfural via a two steps process.The key of this research lies in the development of a green and low-cost catalytic process utilizing magnetic Raney Ni catalyst and high boiling point ethylene glycol.The utilization of neat ethylene glycol as the sole slovent under atmospheric conditions obviates the need for additional additives,thereby facilitating the entire process to be conducted in glass flasks and rendering it highly convenient for scaling up.In the initial step,depolymerization of corn straw lignin resulted in a monomer yield of 18.1 wt%.Subsequently,in a dimethyl carbonate system,the carbohydrate component underwent complete conversion in a one-pot process,yielding furfural and 5-methoxymethylfurfural as the primary products with an impressive yield of 47.7%.
文摘A flower-like BiOBr photocatalyst(CS/BiOBr)was prepared by using the carbon material derived from corn straw(CS)as the carrier.The prepared composites were characterized by X-ray diffraction(XRD),Fourier transform infrared(FIIR)spectra,scanning electron microscope(SEM),X-ray photoelectron spectra(XPS),and UV-Vis diffuse reflectance spectra(UV-Vis DRS).The SEM analyses indicate that the introduction of CS promotes the formation of a unique flower-like structure in BiOBr,which not only optimizes the efficiency of light capture but also increases the specific surface area of BiOBr.The bandgap of the composite was narrower compared with the pure BiOBr.The CS/BiOBr composites exhibited higher photocatalytic activity than pure CS and BiOBr under visible light irradiation,and a higher first-order reaction rate constant(k)of 0.0437 min-1 than BiOBr(0.0146 min^(-1)),and exhibited excellent stability and reusability during the cyclic run.The enhanced photocatalytic activity is attributed to the efficient separation of photoinduced electrons and holes.Superoxide radicals and holes were the major active species.
文摘[Objectives]To address the weeding challenges within the corn and soybean strip intercropping field and identify appropriate herbicide types and application methods suitable for the corn and soybean strip intercropping fields in Siyang County.[Methods]The trial comprised six herbicide treatments and one blank control,with investigations conducted to assess efficacy,safety,and yield.[Results]Each herbicide treatment effectively controlled weeds,demonstrated high safety,and enhanced the yields of both soybeans and corn.The combined application of soil sealing with stem and leaf spray exhibited superior overall weed control compared to soil sealing alone.At 28 d following stem and leaf spray,the plant control effect and fresh weight control effect against weeds in the combined treatment of soil sealing with stem and leaf spray all exceeded 89%.[Conclusions]This study offers technical support for advancing the practice of strip intercropping between corn and soybeans.
基金Supported by the Research Office,University of KwaZulu-Natal,Durbanan Incentive Grant from the National Research Foundation,Pretoria,South Africa,No.145943.
文摘Fermented corn starch has emerged as a promising functional food due to its triad of gut biotics,prebiotic,probiotic,and postbiotic properties,which present significant potential for the management of type 2 diabetes through gut microbiota modulation.During fermentation,microbial activity alters the starch matrix,enhancing the production of bioactive compounds such as resistant starch,isomalto-oligosaccharides,and resistant dextrin,which improve insulin sensitivity,reduce inflammation,and support glycemic control.Additionally,fermented corn starch harbors beneficial microbial strains including Lactiplantibacillus fermentum,Bifidobacterium breve,and Saccharomyces cerevisiae,which reinforce gut barrier integrity,stimulate incretin secretion,and suppress systemic inflammation.Postbiotic metabolites such as short-chain fatty acids,exopolysaccharides,and bacteriocins further contribute to glucose homeostasis through immune modulation and gut hormone regulation.Despite its promise,the clinical translation of fermented corn starch is limited by safety concerns(e.g.,contamination with pathogens or mycotoxins),lack of standardized fermentation protocols,and a scarcity of targeted studies.This review synthesizes current evidence on the antidiabetic potential of fermented corn starch,advocating for its integration into precision nutrition approaches and supporting further research to address safety and standardization challenges in functional food development.
文摘A field experiment was conducted to investigate the effect of integrated nano-fertilizer spray and vermicompost in growth and quality of corn yield in calcareous soil at College ofAgricultural Engineering Sciences/University of Baghdad/Iraq during the autumn season of 2022 using Split Split Plot Design in a randomized complete block design with three replicates.Main plots were designated to two types of vermicompost(local and imported).The secondary plots were assigned to vermicompost added to the soil at three levels of 0,10 and 20 Mg ha-1.The third plots were assigned to nano-fertilizer containing N,P,K,Zn,Fe and Mn at 0,50,100 and 150 mg L-1 sprayed on plant at 20,40 and 60 days after planting.The results showed a significant effect of local vermicompost achieving available nitrogen and phosphorus in the soil as 43.31 mg N kg-1 soil and 19.25 mg P kg-1 soil.In the leaves,nitrogen was 3.86%,potassium 4.54%,iron 174.22 mg Fe kg-1 and Zinc was 73.53 mg Zn kg-1,grain yield was 165.48 Mg ha-1.Adding vermicompost to the soil at 20 Mg ha-1 achieving in available nitrogen in the soil of 43.74 mg N kg-1 soil,available phosphorus of 19.72 mg P kg-1 soil and available potassium of 196.93 mg K kg-1 soil.In the leaves,nitrogen was 4.37%,phosphorus was 0.44%,potassium 4.87%,iron was 182.63 mg Fe kg-1,zinc was 73.70 mg Zn kg-1 and grain yield was 168.43 Mg ha-1.Spraying nano-fertilizer on the plant at 150 mg L-1 achieved In the leaves,nitrogen 4.28%,phosphorus of 0.46%,potassium of 5.10%,iron of 204.83 mg Fe kg-1,zinc of 89.28 mg Zn kg-1 and manganese of 234.07 mg Mn kg-1 and grain yield was 172.88 Mg ha-1.
基金Supported by Special Project for the Construction of the National Modern Agricultural Industry Technology System(CARS-04-CES16).
文摘The soybean and corn strip compound planting technology is a crucial measure for improving land use efficiency and ensuring food security.This paper deeply analyzed the principles,advantages,and key technical aspects of this technology,including variety selection,planting pattern,sowing management,and field management.It also illustrated its application effectiveness through practical cases and proposed corresponding solutions to existing challenges in its promotion.This study provides theoretical support and practical reference for the widespread adoption and efficient application of this technology.
基金Financial support for this research from Minnesota Corn Growers Association(Burnsville,MN,USA)Green Plains Energy(Omaha,NE,USA)is greatly appreciated.
文摘Background Diets with high inclusion of corn co-products such as corn fermented protein(CFP)may contain excess Leu,which has a negative impact on feed intake and growth performance of pigs due to increased catabolism of Val and Ile and reduced availability of Trp in the brain for serotonin synthesis.However,we hypothesized that the negative effect of using CFP in diets for weanling pigs may be overcome if diets are fortified with crystalline sources of Val,Trp,and(or)Ile.Methods Three hundred and twenty weanling pigs were randomly allotted to one of 10 dietary treatments in a com-pletely randomized design,with 4 pigs per pen and 8 replicate pens per treatment.A corn-soybean meal diet and 2 basal diets based on corn and 10%CFP or corn and 20%CFP were formulated.Seven additional diets were formu-lated by fortifying the basal diet with 20%CFP with Ile,Trp,Val,Ile and Val,Ile and Trp,Trp and Val,or Ile,Trp and Val.A two-phase feeding program was used,with d 1 to 14 being phase 1 and d 15 to 28 being phase 2.Fecal scores were recorded every other day.Blood samples were collected on d 14 and 28 from one pig per pen.On d 14,fecal samples were collected from one pig per pen in 3 of the 10 treatments to determine volatile fatty acids,ammonium concen-tration,and microbial protein.These pigs were also euthanized and ileal tissue was collected.Results There were no effects of dietary treatments on any of the parameters evaluated in phase 1.Inclusion of 10%or 20%CFP in diets reduced(P<0.05)final body weight on d 28,and average daily gain(ADG)and average daily feed intake(ADFI)in phase 2 and for the entire experimental period.However,pigs fed the CFP diet supplemented with Val,Ile,and Trp had final body weight,ADFI,ADG and gain to feed ratio in phase 2 and for the entire experiment that was not different from pigs fed the control diet.Fecal scores in phase 2 were reduced(P<0.05)if CFP was used.Conclusions Corn fermented protein may be included by up to 20%in diets for weanling pigs without affecting growth performance,gut health,or hindgut fermentation,if diets are fortified with extra Val,Trp,and Ile.Inclusion of CFP also improved fecal consistency of pigs.
文摘The aim of this research is to assess the energy potential of cow dung and corn cob inputs,with a view to estimating their biogas potential.The inputs were characterized in the microbiology laboratory of the National Control Office Quality in Matoto,Conakry.The experiment to produce methane from cow dung and maize cob was carried out at the Applied Research in Natural Sciences Laboratory of the University of Kindia(UK)using the following equipment:Three digesters were each connected to an air chamber(gasometer)by means of flexible pipes 8 mm in diameter,connected by clamps,liquid adhesives,valves and Teflon.This research focused on determining the quantity of biogas contained in each type of substrate(cow dung,maize cob and their mixture).Three experiments on the methanization of these inputs were carried out,with anaerobic digestion lasting 27 days,in a temperature range of 27℃ to 31℃(mesophilic range).The results were as follows:maize cob 28.4 L,cow dung 22.6 L and codigestion 38.7 L.These results compared with similar studies revealed a coincidence.
基金supported by the National Key Research and Development Plan of China(grant number 2023YFC2604903)National Natural Science Foundation of China(grant number 22338013)+2 种基金Natural Science Foundation of Henan Province(grant number 242300421106)Henan Province Science and Technology Research and Development Plan Joint Fund Project(grant number 222103810063)Key Scientific and Technological Project of Education Department of Henan Province(grant number 23A210007).
文摘Enzymatic modification is an important approach to changing the structure and expanding industrial application of natural starch. In the process of starch modification, thermostable enzymes are favored owing to their compatibility with higher reaction temperatures and lower required dosage. In this study, thermostable glucoamylase from Thermothelomyces thermophilus(TtGA) was heterologously expressed in Pichia pastoris, and its effects on the structure and physicochemical properties of raw corn starch were determined. The purified TtGA had a molecular weight of approximately 66 kDa, and its optimum reaction temperature and pH were 50 ℃ and 5.0, respectively. TtGA retained > 60% of its activity following treatment at 60 ℃ for 2 h and remained stable within a pH range of 4.0–7.0 for 6 h. The enzymatic modification of raw corn starch with TtGA led to 3% hydrolysis at 50 ℃ for 24 h. In comparison with natural raw corn starch, TtGA-modified starch had a smaller particle size with an unchanged crystalline structure, increased relative crystallinity, and amylose content.Scanning electronic observation showed that larger pores were formed on the surface of starch particles, and Fourier-transform infrared spectroscopy indicated that TtGA increased the degree of order in the raw corn starch.TtGA modification caused enhanced viscosity of the raw corn starch and altered the rheological properties with decreases in storage and loss moduli, as well as shear viscosity. Moreover, TtGA treatment enhanced the thermal characteristics of the raw corn starch, and decreased gelatinization enthalpy. This study provides detailed evidence for TtGA modification of raw corn starch, which would be helpful for its practical utilization in starch modification.
基金supported by the National Key R&D Program of China(2022YFD1201802)the Shandong Key R&D Program,China(2022CXGC010607)+2 种基金the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ZDRW202109)the Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ASTIP2017-ICS)the Subproject of the Major Project of Science and Technology in Shanxi Province,China(202201140601025-1-02)。
文摘Southern corn rust(SCR)is an airborne fungal disease caused by Puccinia polysora Underw.(P.polysora)that adversely impacts maize quality and yields worldwide.Screening for new elite SCR-resistant maize loci or genes has the potential to enhance overall resistance to this pathogen.Using phenotypic SCR resistance-related data collected over two years and three geographical environments,a genome-wide association study was carried out in this work,which eventually identified 91 loci that were substantially correlated with SCR susceptibility.These included 13 loci that were significant in at least three environments and overlapped with 74 candidate genes(B73_RefGen_v4).Comparative transcriptomic analyses were then performed to identify the genes related to SCR infection,with 2,586 and 797 differentially expressed genes(DEGs)ultimately being identified in the resistant Qi319and susceptible 8112 inbred lines following P.polysora infection,respectively,including 306 genes common to both lines.Subsequent integrative multi-omics investigations identified four potential candidate SCR response-related genes.One of these genes is ZmHCT9,which encodes the protein hydroxycinnamoyl transferase 9.This gene was up-regulated in susceptible inbred lines and linked to greater P.polysora resistance as confirmed through cucumber mosaic virus(CMV)-based virus induced-gene silencing(VIGS)system-mediated gene silencing.These data provide important insights into the genetic basis of the maize SCR response.They will be useful for for future research on potential genes related to SCR resistance in maize.
文摘The objective of this study was to characterize the rumination time in lactating dairy cows fed with corn silage.Rumination time was recorded 24 h/day using direct visual observation.Six trials were conducted during 2018,2019 and 2020,and rumination time was recorded in 480-2-hour periods from 40 Holstein Friesian cows.In each trial,6 or 8 cows were selected and balanced for days in milk(DIM),milk production and number of lactations.Each cow was recorded continuously for periods of 2 h at a time to complete a full 24-h period per week(12 values per day).Data from all cows were associated with 4 reproductive statuses of cows:Inseminated(1-45 days after insemination),Open(45-150 days after calving),not-pregnant and pregnant.The longest rumination time(RT)was found in pregnant cows(average 536.9±29.87 min/day),and the shortest RT was in open cows(average 420.3±63.2 min/day).Inseminated and non-pregnant cows were found with intermediate values(527.3±82.4 min/day and 467.1±30.7 respectively).Significantly different RT means were found between pregnant and open cows(p<0.0001),pregnant vs.inseminated cows(p<0.0001),and between inseminated and open cows(p=0.0005).We concluded that some gynecological conditions of lactating cows affect the RT.Measurement of RT by visual observations proved to be acceptable for the conditions of this study when cows were housed indoors and were fed with partial mixed ration(PMR)based on corn silage.
基金supported by the Fundamental Research Funds for the Central Universities of China(No.B220202066)the Natural Science Foundation of Jiangsu Province(No.BK20200527)the Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse(No.2021EPC05).
文摘Anaerobic digestion has been defined as a competitive approach to facilitate the recycling of corn stalks.However,few studies have focused on the role of direct interspecies electron transfer(DIET)pathway in the acidification stage under the addition of different particle sizes of zero-valent iron(ZVI).In this study,three types of ZVI,namely iron filings,iron powder and nanoscale iron,were investigated,respectively,to enhance its high-value conversion.Variations in volatile fatty acids(VFAs)and methane(CH4)production associated with the underlyingmechanisms were emphatically determined.Results indicated that the addition of ZVI could increase the concentration of VFAs,with the most outstanding performance observed with the use of nanoscale iron.Importantly,the conversion of propionic acid to acetic acid was driven by adding ZVI with no between-group differences in acidizing phase.Conversely,the substrate was more fully utilized when supplied with iron powder compared with other groups in methanogenic phase,thereby displaying the maximumCH4 yield with a value of 263.1 mL/(g total solids(TS)).However,adding nanoscale iron could signally shorten the digestion time(T80),saving 7 days in comparison to the group of iron powder.
基金financially supported by the Doctoral Scientific Research Start-up Foundation of the Harbin University of Commerce (2019DS098)the Young Innovation Talents Project from the Harbin University of Commerce (2019CX31)the Graduate Innovation Fund from the Harbin University of Commerce (YJSCX2019–615HSD)。
文摘Type 2 diabetes mellitus(T2DM)is a metabolic disease caused by a glycolipid metabolism disorder and isletβ-cell dysfunction.SCP-80-I is a biologically active water-soluble polysaccharide isolated from sweet corncob,an agricultural byproduct.The hypoglycemic effects of SCP-80-I on T2DM mice and its mechanisms were investigated in this study.SCP-80-I was found to significantly reduce blood glucose and lipid deposition levels in T2DM mice,as well as decrease serum leptin and increase adiponectin secretion.Interestingly,real time-polymerase chain reaction(RT-PCR)and Western blotting results revealed that SCP-80-I could regulate the expression of several glycolipid metabolisms and insulin secretion genes and proteins,including 5'-AMP-activated protein kinase(AMPK),carnitine palmitoyltransferase I(CPTI),and acetyl coenzyme A carboxylase(ACC)in the liver and AMPK,sirtuin1(Sirtl),peroxisome proliferator-activated receptorycoactivator-1(PGC-1α),and uncoupling protein 2(UCP2)in the pancreas.To have a hypoglycemic effect,SCP-80-1 regulated glycolipid metabolism and islet cell function in the liver by regulating the AMPK/AC C/CPT1 signaling pathway and the AMPK/Sirt1/PGC-1αand AMPK/Sirtl/UCP2 signaling pathways.These findings improve our understanding of polysaccharides derived from sweet corncob and the use of SCP-80-I in the production of hypoglycemic foods.
基金The financial support from the National Pork Board,Des Moines,IA,USA,is greatly appreciated。
文摘Background Reduction of the particle size of corn increases energy digestibility and concentrations of digestible and metabolizable energy.Pelleting may also reduce particle size of grain,but it is not known if there are interactions between particle size reduction and pelleting.The objective of this experiment was to test the hypothesis that particle size reduction and pelleting,separately or in combination,increase N balance,apparent total tract digestibility(ATTD)of fiber and fat,and net energy(NE)in corn-soybean meal diets fed to group-housed pigs.Methods Six corn-soybean meal-based diets were used in a 3×2 factorial design with 3 particle sizes of corn(i.e.,700,500,or 300μm)and 2 diet forms(i.e.,meal or pelleted).Pigs were allowed ad libitum access to feed and water.Twenty-four castrated male pigs(initial weight:29.52 kg;standard diviation:1.40)were allotted to the 6 diets using a 6×6 Latin square design with 6 calorimeter chambers(i.e.,4 pigs/chamber)and 6 periods.Oxygen consumption and CO_(2)and CH_(4)productions were measured during fed and fasting states and fecal and urine samples were collected.Results Regardless of particle size of corn,the ATTD of gross energy(GE),N,and acid-hydrolyzed ether extract(AEE),and the concentration of NE were greater(P<0.05)in pelleted diets than in meal diets.Regardless of diet form,the ATTD of GE,N,and AEE,and the concentration of NE were increased(linear;P<0.05)by reducing the particle size of corn,but the increase was greater in meal diets than in pelleted diets(interaction;P<0.05).Conclusions Both pelleting and reduction of corn particle size increased nutrient digestibility and NE,but increases were greater in meal diets than in pelleted diets.
基金financially supported by the Projects of National Key Research and Development Program of China(2021YFD1901101-5)the Special Major Research and Development Project of Shanxi Province(202101140601026-5)the Earmarked Fund for Modern Agro-industry Technology Research System(2023CYJSTX01-11).
文摘Film-stalk spaced dual mulching is a new type of cultivation measure that is increasingly highlighted in semi-arid areas in China.Despite its potential,there is limited understanding of how different mulching materials affect both soil quality and crop yield in these areas.To address this gap,we conducted a two-year(2020-2021)field experiment in central China to explore the yield-enhancing mechanisms and assess the impact of various mulching materials on soil and corn yield.The experiment comprised six treatments,i.e.,plastic film-whole stalk spaced mulching in fall(PSF),plastic film-whole stalk spaced mulching in spring(PSS),black and silver plastic film-whole stalk spaced mulching in spring(BPSS),biodegradable film-whole stalk spaced mulching in spring(BSS),liquid film-whole stalk spaced mulching in spring(LSS),and non-mulching cultivation(CK).Results revealed that BPSS demonstrated the most significant yield increase,surpassing CK by a notable 10.0%and other mulching treatments by 2.4%-5.9%.The efficacy of BPSS lied in its provision of favorable hydrothermal conditions for corn cultivation,particularly during hot season.Its cooling effect facilitated the establishment of optimal temperature conditions relative to transparent mulching,leading to higher root growth indices(e.g.,length and surface area),as well as higher leaf photosynthetic rate and dry matter accumulation per plant.Additionally,BPSS maintained higher average soil moisture content within 0-100 cm depth compared with biodegradable mulching and liquid mulching.As a result,BPSS increased activities of urease,catalase,and alkaline phosphatase,as well as the diversity and abundance of soil bacteria and fungi in the rhizosphere zone of corn,facilitating nutrient accessibility by the plant.These findings suggest that selecting appropriate mulching materials is crucial for optimizing corn production in drought-prone areas,highlighting the potential of BPSS cultivation.
基金supported by the National High Level Hospital Clinical Research Fund(2022-PUMCH-A-146)the National Natural Science Foundation of China(72074222)the Na-tional Key Research and Development Program of China(2020YFC2005005).
文摘Objective To investigate the efficacy of raw corn starch(RCS)in clinical management of insulinoma-induced hypoglycemia.Methods We retrospectively collected clinical data of insulinoma patients who received RCS-supplemented diet preoperatively,and analyzed the therapeutic effects of the RCS intervention on blood glucose control,weight change,and its adverse events.Results The study population consisted of 24 cases of insulinoma patients,7 males and 17 females,aged 46.08±14.15 years.Before RCS-supplemented diet,all patients had frequent hypoglycemic episodes(2.51±3.88 times/week),concurrent with neuroglycopenia(in 83.3% of patients)and autonomic manifestations(in 75.0% of patients),with the median fasting blood glucose(FBG)of 2.70(interquartile range[IQR]:2.50-2.90)mmol/L.The patients'weight increased by 0.38(IQR:0.05-0.65)kg per month,with 8(33.3%)cases developing overweight and 7(29.2%)cases developing obesity.All patients maintained the RCS-supplemented diet until they underwent tumor resection(23 cases)and transarterial chemoembolization for liver metastases(1 case).For 19 patients receiving RCS throughout the day,the median FBG within one week of nutritional management was 4.30(IQR:3.30-5.70)mmol/L,which was a significant increase compared to pre-nutritional level[2.25(IQR:1.60-2.90)mmol/L;P<0.001].Of them,10 patients receiving RCS throughout the day for over four weeks had sustained improvement in FBG compared to pre-treatment[3.20(IQR:2.60-3.95)mmol/L vs.2.15(IQR:1.83-2.33)mmol/L;P<0.001].Five patients who received RCS only at night also had a significant increase in FBG within one week of nutritional management[3.50(IQR:2.50-3.65)mmol/L vs.2.20(IQR:1.80-2.60)mmol/L;P<0.001],but only one patient who continued to receive RCS for over four weeks did not have a significant improvement in FBG.No improvement in weight gain was observed upon RCS supplementation.Mild diarrhea(2 cases)and flatulence(1 case)occurred,and were relieved by reduction of RCS dose.Conclusion The RCS-supplemented diet is effective in controlling insulinoma-induced hypoglycemia.
基金Researchers Supporting Project Number(RSP2024R7)King Saud University,Riyadh,Saudi Arabia.
文摘Nutrient management plays a crucial role in the yield and quality of sweet corn.A field experiment was conducted in consecutive two kharif seasons in 2018 and 2019 to investigate the effect of various organic sources of nutrients in combination with inorganic sources on the yield and quality of sweet corn under new alluvial soils of West Bengal,India.Treatments were:T_(1):Control(without fertilizers);T_(2):100%recommended dose(RDF)of chemical fertilizers(CF)(RDF CF_(100%));T_(3):100%recommended dose of N(RDN)through vermicompost(VC)(RDN VC_(100%));T_(4):50 RDN through CF+50%RDN through VC(RDN CF_(50%)+RDN VC50%);T_(5):50%RDF through CF+50%RDN through organic source(OS)1,Soligro(Ascophyllum nodosum)granular(RDN CF_(50%)+RDN OS_(150%));T6:50%RDN through CF+50%RDN through OS 2,Bioenzyme(liquid)(RDN CF_(50%)+RDN OS250%);T7:50%RDN through CF+50%RDN through OS 3,Opteine(Ascophyllum nodosum)filtrate[RDN CF_(50%)+RDN OS350%];T8:50%RDN through VC+50%RDF through OS 1,Soligro(Ascophyllum nodosum)granular(RDN VC50%+RDN OS_(150%)).The OS of fertilizers were VC,SoliGro Gr(OS1)(Ascophyllum nodosum),Bioenzyme liquid(OS2),and Opteine(Ascophyllum nodosum)filtrate(OS3).The inorganic source was traditional CF applied at the RDF(150:75:75 kg ha^(−1) of N:P2O5:K2O).The VC was used to supply 100%RDN as one source or 50%RDN when combined with CF or OS.Maximum fruit yield(10.75 and 10.79 t ha^(−1) in 2018 and 2019,respectively)was recorded when RDF was substituted through CF only,being statistically at par with 50%CF+50%VC on a nitrogen equivalent basis(9.92 and 10.00 t ha^(−1) in 2018 and 2019,respectively)and 100%VC(8.22 and 8.32 t ha^(−1) in 2018 and 2019,respectively).Compared to chemical sources of nutrients,VC-based treatments produced a larger percentage of large-size cob(>25 cm).The 100%VC increased antioxidant(8.35 and 8.45 mg g^(−1)),carotenoid(0.59 and 0.61 mg/100 g),and phenol(55.06 and 55.02 mg 100 g^(−1))content compared with its 50%dose in combination with other sources.The study revealed the potentiality of organic sources towards achieving improved cob quality of sweet corn.