This study presents a comprehensive analysis of 132 tornadic events in northeastern China from 2004 to 2023,utilizing radar and ERA5 reanalysis data to investigate the climatology,environmental drivers,and synoptic li...This study presents a comprehensive analysis of 132 tornadic events in northeastern China from 2004 to 2023,utilizing radar and ERA5 reanalysis data to investigate the climatology,environmental drivers,and synoptic linkages with Northeast China cold vortices(NCCVs)of tornadic storms under different convective modes.Results reveal that discrete storms account for 70%of events,with clustered cells(CC)being the most frequent mode,while significant tornadoes(EF2+)are primarily associated with isolated cells(IC)and broken lines(BL).The storm mode distribution in northeastern China resembles that of the central United States but with a higher proportion of CC and lower IC.In contrast,southern China exhibits a higher frequency of quasi-linear(QL)modes(>50%),similar to European patterns.Although no single parameter clearly differentiates between all tornado modes,distinct morphological characteristics emerge through specific parameter combinations:NL modes are characterized by high 0-1 km storm-relative helicity(SRH1)and humidity but low 0-6 km shear(SR6),whereas IC modes display contrasting features with low SRH1 and high CAPE.Notably,83%of tornadoes are associated with NCCVs,preferentially forming in southeastern/southwestern quadrants.Strong tornadoes favor southeastern quadrants,while NCCV intensity correlates with tornadic distance from vortex centers.Three characteristic synoptic configurations emerge:(T1)strong deep vortices with vertically aligned cold troughs,generating southeast-dominant tornado clusters characterized by a high proportion of BL and QL modes;(T2)weaker vortices featuring sub-synoptic troughs,with southern-distributed events dominated by a predominance of the CC mode;(T3)transverse-trough systems exhibiting CAPE-SRH decoupling and reduced tornadic activity.This study enhances our understanding of tornadoes in northeastern China,informing future research on formation mechanisms,prediction methods,and disaster prevention strategies.展开更多
Studying the characteristics and mechanisms of convective and non-convective cirrus clouds over the South China Sea is vital for their impact on regional climate dynamics,and enhancing predictive models for weather an...Studying the characteristics and mechanisms of convective and non-convective cirrus clouds over the South China Sea is vital for their impact on regional climate dynamics,and enhancing predictive models for weather and climate forecasts.This study utilizes eight years of CALIPSO data(from March 2007 to February 2015)to investigate convective and non-convective cirrus clouds.Explicit new insights include the observation that convective cirrus cloud samples are three times more numerous than non-convective cirrus clouds.Convective cirrus clouds are associated with humid conditions and demonstrate higher ice water content(IWC)values ranging from 10^(−3)to 10^(−1)g m^(−3),whereas non-convective cirrus clouds tend to be drier,exhibiting IWC values ranging from 10^(−4)to 10^(−3)g m^(−3).Both cirrus cloud types exhibit a maximum cloud fraction at 10°N.Convective cirrus reach their peak cloud fraction at an altitude of 14 km,while non-convective cirrus typically occur at altitudes between 15 and 16 km.The seasonal variability of the convective cirrus cloud fraction primarily reflects bottom-up positive specific humidity anomalies originating from convective activity,whereas the non-convective cirrus cloud fraction is influenced by top-down negative temperature anomalies.展开更多
Using conventional observation data and Guilin Doppler weather radar data,the atmospheric circulation situation,environmental conditions and mesoscale characteristics of convective storms during the severe convective ...Using conventional observation data and Guilin Doppler weather radar data,the atmospheric circulation situation,environmental conditions and mesoscale characteristics of convective storms during the severe convective weather process in Guilin,Guangxi on April 19,2025 were analyzed in detail.The results showed that the severe convective process was dominated by short-term heavy rainfall,accompanied by thunderstorm and gale.This was a strong convective weather process in the warm region.On the south side of warm shear line,with the south branch fluctuation moving eastward,strong convection occurred near the surface convergence line.With the establishment of low-level jet at night,organized development of convection system was obtained.The environmental conditions showed unstable stratification,inversion layer,small convective effective potential energy,large K value and strong wind shear,and the inverted V-shaped structure was at low level.The convective storm that produced short-term heavy rainfall presented as low centroid precipitation echo.The mixed convection in Xinlong,Baishou,Yongfu was caused by heavy rainfall supercell and presented as high centroid precipitation echo,with weak echo area,bounded weak echo area and medium-intensity mesocyclone.展开更多
Accurately simulating mesoscale convective systems(MCSs)is essential for predicting global precipitation patterns and extreme weather events.Despite the ability of advanced models to reproduce MCS climate statistics,c...Accurately simulating mesoscale convective systems(MCSs)is essential for predicting global precipitation patterns and extreme weather events.Despite the ability of advanced models to reproduce MCS climate statistics,capturing extreme storm cases over complex terrain remains challenging.This study utilizes the Global–Regional Integrated Forecast System(GRIST)with variable resolution to simulate an eastward-propagating MCS event.The impact of three microphysics schemes,including two single-moment schemes(WSM6,Lin)and one double-moment scheme(Morrison),on the model sensitivity of MCS precipitation simulations is investigated.The results demonstrate that while all the schemes capture the spatial distribution and temporal variation of MCS precipitation,the Morrison scheme alleviates overestimated precipitation compared to the Lin and WSM6 schemes.The ascending motion gradually becomes weaker in the Morrison scheme during the MCS movement process.Compared to the runs with convection parameterization,the explicit-convection setup at 3.5-km resolution reduces disparities in atmospheric dynamics due to microphysics sensitivity in terms of vertical motions and horizontal kinetic energy at the high-wavenumber regimes.The explicit-convection setup more accurately captures the propagation of both main and secondary precipitation centers during the MCS development,diminishing the differences in both precipitation intensity and propagation features between the Morrison and two single-moment schemes.These findings underscore the importance of microphysics schemes for global nonhydrostatic modeling at the kilometer scale.The role of explicit convection for reducing model uncertainty is also outlined.展开更多
Early detection of convective clouds is vital for minimizing hazardous impacts.Forecasting convective initiation(CI)using current multispectral geostationary meteorological satellites is often challenged by high false...Early detection of convective clouds is vital for minimizing hazardous impacts.Forecasting convective initiation(CI)using current multispectral geostationary meteorological satellites is often challenged by high false-alarm rates and missed detections caused by limited resolution.In contrast,high-resolution earth observation satellites offer more detailed texture information,improving early detection capabilities.The authors propose a novel methodology that integrates the advanced features of China’s latest-generation satellites,Gaofen-4(GF-4)and Fengyun-4A(FY-4A).This fusion method retains GF’s high-resolution details and FY-4A’s multispectral information.Two cases from different observational scenarios and weather conditions under GF-4’s staring mode were carried out to compare the CI forecast results based on fused data and solely on FY-4A data.The fused data demonstrated superior performance in detecting smaller-scale convective clouds,enabling earlier forecasting with a lead time of 15–30 minutes,and more accurate location identification.Integrating high-resolution earth observation satellites into early convective cloud detection provides valuable insights for forecasters and decision-makers,particularly given the current resolution limitations of geostationary meteorological satellites.展开更多
Taking short-duration heavy rainfall and convective wind gusts as examples, the present study examined the characteristics of radar reflectivity and several convective parameters. We analyzed nowcasting techniques by ...Taking short-duration heavy rainfall and convective wind gusts as examples, the present study examined the characteristics of radar reflectivity and several convective parameters. We analyzed nowcasting techniques by integrating a high-resolution numerical weather prediction model with these convective parameters. Based on the CMA-GD 1-km model and its assimilation system, we conducted repeated tests on radar reflectivity data assimilation and analyzed their impact on nowcasting accuracy. Based on these analyses, we proposed a method to improve model forecasts using the useful indicative information provided by high-frequency radar reflectivity data and convective parameters. The improved method was applied to the CMA-GD 1-km model for nowcasting tests. Evaluations from batch tests and case analysis show that the proposed method significantly reduced the model's false alarm rates and improved its nowcasting performance.展开更多
Active atmospheric convection on the monsoon coast is crucial for the Earth’s climate system.In particular,the upscale convective growth(UCG)from ordinary isolated convection to organized convective system is a key p...Active atmospheric convection on the monsoon coast is crucial for the Earth’s climate system.In particular,the upscale convective growth(UCG)from ordinary isolated convection to organized convective system is a key process causing severe weather,but its activities on the monsoon coast are less understood because of the lack of fine-resolution datasets.For the first time,we present the climatology of UCG on a typical monsoon coast using kilometer-mesh radar data from southern China.The UCG undergoes pronounced subseasonal and diurnal variations in the early-summer rainy season.The subseasonal UCG increase is attributed to the onshore flows shifting from easterlies in April to monsoon southwesterlies in June.UCG becomes vigorous following summer monsoon onset,with hotspots near windward coastal mountains.Daytime UCG first peaks near noontime along coastal land,where onshore flows are destabilized by boundary-layer heating and mountains.Afternoon inland peaks and off-coast minimums are recognized due to land–sea thermal contrast and sea-breeze circulation.Nighttime UCG is revived at the coast by nocturnally enhanced southerlies,followed by offshore activity as the convergence of land-breeze northerlies shifts seaward.The UCG thus responds strongly to changing atmospheric conditions,land heating/cooling,and thermally driven local circulations.Our results may help clarify the predictability of monsoon coastal convection.展开更多
This study explores the initiation mechanisms of convective wind events,emphasizing their variability across different atmospheric circulation patterns.Historically,the inadequate feature categorization within multi-f...This study explores the initiation mechanisms of convective wind events,emphasizing their variability across different atmospheric circulation patterns.Historically,the inadequate feature categorization within multi-faceted forecast models has led to suboptimal forecast efficacy,particularly for events in dynamically weak forcing conditions during the warm season.To improve the prediction accuracy of convective wind events,this research introduces a novel approach that combines machine learning techniques to identify varying meteorological flow regimes.Convective winds(CWs)are defined as wind speeds reaching or exceeding 17.2 m s^(-1)and severe convective winds(SCWs)as speeds surpassing 24.5 m s^(-1).This study examines the spatial and temporal distribution of CW and SCW events from 2013 to 2021 and their circulation dynamics associated with three primary flow regimes:cold air advection,warm air advection,and quasibarotropic conditions.Key circulation features are used as input variables to construct an effective weather system pattern recognition model.This model employs an Adaptive Boosting(AdaBoost)algorithm combined with Random Under-Sampling(RUS)to address the class imbalance issue,achieving a recognition accuracy of 90.9%.Furthermore,utilizing factor analysis and Support Vector Machine(SVM)techniques,three specialized and independent probabilistic prediction models are developed based on the variance in predictor distributions across different flow regimes.By integrating the type of identification model with these prediction models,an enhanced comprehensive model is constructed.This advanced model autonomously identifies flow types and accordingly selects the most appropriate prediction model.Over a three-year validation period,this improved model outperformed the initially unclassified model in terms of prediction accuracy.Notably,for CWs and SCWs,the maximum Peirce Skill Score(PSS)increased from 0.530 and 0.702 to 0.628 and 0.726,respectively,and the corresponding maximum Threat Score(TS)improved from 0.087 and 0.024 to 0.120 and 0.026.These improvements were significant across all samples,with the cold air advection type showing the greatest enhancement due to the significant spatial variability of each factor.Additionally,the model improved forecast precision by prioritizing thermal factors,which played a key role in modulating false alarm rates in warm air advection and quasi-barotropic flow regimes.The results confirm the critical contribution of circulation feature recognition and segmented modeling to enhancing the adaptability and predictive accuracy of weather forecast models.展开更多
The Hong Kong Observatory(HKO)installed an X-band dual-polarization Phased Array Weather Radar(PAWR)at its wind profiler station at Sha Lo Wan(SLW)in 2021 to monitor high-impact weather in Hong Kong.The PAWR could com...The Hong Kong Observatory(HKO)installed an X-band dual-polarization Phased Array Weather Radar(PAWR)at its wind profiler station at Sha Lo Wan(SLW)in 2021 to monitor high-impact weather in Hong Kong.The PAWR could complete a volume scan in one minute with a spatial resolution of 30 meters.Dual polarimetric variables from the SLW PAWR,including differential reflectivity(ZDR),specific differential phase(KDP),and hydro-classification(HCL)products,were used to diagnose the vertical motion and lightning characteristics of mesoscale convective storms(MCS).Through variational data assimilation,three-dimensional(3-D)wind fields were constructed to validate the SLW PAWR observations.Two MCS events that occurred on 18 September 2022 and 17 June 2023 are central to this study.The findings include(1)negative ZDR serves as a good indicator of the occurrence of intense downdrafts associated with an MCS,a premise further supported by the 3-D wind field analysis results,(2)negative KDP suggested the formation of vertically aligned ice crystals which facilitated cloud electrification,and(3)HCL products indicated the presence of mixed ice crystals and graupel above the 0℃melting layer which promoted active cloud-to-cloud and cloud-to-ground lightning strokes.These results show that the SLW PAWR provides essential observations,which,when coupled with 3-D wind field analysis,can aid in enhancing the understanding of the dynamics and electrification processes within an MCS.展开更多
The impacts of lateral boundary conditions(LBCs)provided by numerical models and data-driven networks on convective-scale ensemble forecasts are investigated in this study.Four experiments are conducted on the Hangzho...The impacts of lateral boundary conditions(LBCs)provided by numerical models and data-driven networks on convective-scale ensemble forecasts are investigated in this study.Four experiments are conducted on the Hangzhou RDP(19th Hangzhou Asian Games Research Development Project on Convective-scale Ensemble Prediction and Application)testbed,with the LBCs respectively sourced from National Centers for Environmental Prediction(NCEP)Global Forecast System(GFS)forecasts with 33 vertical levels(Exp_GFS),Pangu forecasts with 13 vertical levels(Exp_Pangu),Fuxi forecasts with 13 vertical levels(Exp_Fuxi),and NCEP GFS forecasts with the vertical levels reduced to 13(the same as those of Exp_Pangu and Exp_Fuxi)(Exp_GFSRDV).In general,Exp_Pangu performs comparably to Exp_GFS,while Exp_Fuxi shows slightly inferior performance compared to Exp_Pangu,possibly due to its less accurate large-scale predictions.Therefore,the ability of using data-driven networks to efficiently provide LBCs for convective-scale ensemble forecasts has been demonstrated.Moreover,Exp_GFSRDV has the worst convective-scale forecasts among the four experiments,which indicates the potential improvement of using data-driven networks for LBCs by increasing the vertical levels of the networks.However,the ensemble spread of the four experiments barely increases with lead time.Thus,each experiment has insufficient ensemble spread to present realistic forecast uncertainties,which will be investigated in a future study.展开更多
Fluid flow through porous spaces with variable porosity has wide-range applications,notably in biomedical and thermal engineering,where it plays a vital role in comprehending blood flow dynamics within cardiovascular ...Fluid flow through porous spaces with variable porosity has wide-range applications,notably in biomedical and thermal engineering,where it plays a vital role in comprehending blood flow dynamics within cardiovascular systems,heat transfer and thermal management systems improve efficiency using porous materials with variable porosity.Keeping these important applications in view,in current study blood-based hybrid nanofluid flow has considered on a convectively heated sheet.The sheet exhibits the properties of a porous medium with variable porosity and extends in both the x and y directions.Blood has used as base fluid in which the nanoparticles of Cu and Cu O have been mixed.Thermal radiation,space-dependent,and thermal-dependent heat sources have been incorporated into the energy equation,while magnetic effects have been integrated into the momentum equations.Dimensionless variables have employed to transform the modeled equations into dimensionless form and facilitating their solution using bvp4c approach.It has concluded in this study that,both the primary and secondary velocities augmented with upsurge in variable porous factor and declined with escalation in stretching ratio,Casson,magnetic,and slip factors along x-and y-axes.Thermal distribution has grown up with upsurge in Casson factor,magnetic factor,thermal Biot number,and thermal/space-dependent heat sources while has retarded with growth in variable porous and stretching ratio factors.The findings of this investigation have been compared with the existing literature,revealing a strong agreement among present and established results that ensured the validation of the model and method used in this work.展开更多
Convectively unstable processes caused by dense water subsidence are common occurrences in high-latitude oceanic regions,and significantly modulate mass and heat transport and mixing processes in the ocean.An idealize...Convectively unstable processes caused by dense water subsidence are common occurrences in high-latitude oceanic regions,and significantly modulate mass and heat transport and mixing processes in the ocean.An idealized numerical experiment using the large eddy simulation method was conducted to analyze the three-dimensional flow field structure and the mechanism for dense water subsidence.Specifically,a negative salt flux is set at the sea surface,in which salt flux enters the sea surface to simulate the icing and salting-out phenomena that occur at high latitudes.Results show that the mean-state 3D flow field of dense water subsidence exhibits a hollow conical distribution.The horizontal flow field is characterized by a cyclonic vortex that driven primarily by the pressure gradient and influenced by the Coriolis effect.Moreover,the inverse vertical pressure gradient generated by this vortex inhibits the sinking of the plume,leading to its off-axis deflection and the development of an anticyclonic precession.In addition,the impact of rotation on the structure of a sinking plume within a stratified environment is discussed.Both horizontal vortex intensity and cone angle of the hollow cone flow field are increased with increasing rotation rate,resulting in a decrease in the plume’s maximum sinking depth.Variances in rotation direction cause the horizontal vortex and sinking plumes of dense water in the northern and southern hemispheres to rotate in opposite directions.展开更多
A solid-phase sintering process for the low-cost fabrication of composite micro-channels was developed. Three kinds of composite micro-channels with metallic porous structures were designed. The sintering process was ...A solid-phase sintering process for the low-cost fabrication of composite micro-channels was developed. Three kinds of composite micro-channels with metallic porous structures were designed. The sintering process was studied and optimized to obtain porous-structured micro-channels with high porosity. The flow resistance and heat transfer performance in the composite micro-channels were investigated. The composite micro-channels show acceptable flow resistance, significant enhancement of heat transfer and dramatic improvement of flow boiling stability, which indicates a promising prospect for the application in forced convective heat transfer.展开更多
The strong heavy rainfall on 3–5 July 2003 causing the severe flooding in Huaihe River basin (HRB), China is studied. It is noted that there are sometimes mesoscale convective vortex (MCV) in East Asia during the...The strong heavy rainfall on 3–5 July 2003 causing the severe flooding in Huaihe River basin (HRB), China is studied. It is noted that there are sometimes mesoscale convective vortex (MCV) in East Asia during the mei-yu season. Simulation results from the ARPS (Advanced Regional Prediction) data analysis system (ADAS) and WRF model were used to study the development of the mesoscale convective system (MCS) and mesoscale convective vortex (MCV). It is confirmed that the MCV formed during the development of a previous severe MCS. A closed vortex circulation can be found below 600 hPa with a vorticity maximum in the middle troposphere. The evolution process of the MCV can be divided into three stages: initiation, maturation, and dissipation. During the mature stage of the MCV, a downdraft occurred in the center of the MCV and new convection developed in southeast of the MCV. The convergence and the tilting in the lower troposphere convergence and vertical advection in the middle troposphere were the main vorticity sources in the MCV initiation stage. Finally, a conceptual model between the mei-yu front and the embedded MCS and MCV is proposed. The mei-yu front was the background condition for the development of the MCS and MCV. A low level jet (LLJ) transported moisture and the weak cold air invasion via a trough aloft in the middle troposphere and triggering the severe convection. Furthermore, the intensified jet was able to result in the initiation of new "secondary" areas of convection in the eastern part of the MCV.展开更多
A distinguished category of operational fluids,known as hybrid nanofluids,occupies a prominent role among various fluid types owing to its superior heat transfer properties.By employing a dovetail fin profile,this wor...A distinguished category of operational fluids,known as hybrid nanofluids,occupies a prominent role among various fluid types owing to its superior heat transfer properties.By employing a dovetail fin profile,this work investigates the thermal reaction of a dynamic fin system to a hybrid nanofluid with shape-based properties,flowing uniformly at a velocity U.The analysis focuses on four distinct types of nanoparticles,i.e.,Al2O3,Ag,carbon nanotube(CNT),and graphene.Specifically,two of these particles exhibit a spherical shape,one possesses a cylindrical form,and the final type adopts a platelet morphology.The investigation delves into the pairing of these nanoparticles.The examination employs a combined approach to assess the constructional and thermal exchange characteristics of the hybrid nanofluid.The fin design,under the specified circumstances,gives rise to the derivation of a differential equation.The given equation is then transformed into a dimensionless form.Notably,the Hermite wavelet method is introduced for the first time to address the challenge posed by a moving fin submerged in a hybrid nanofluid with shape-dependent features.To validate the credibility of this research,the results obtained in this study are systematically compared with the numerical simulations.The examination discloses that the highest heat flux is achieved when combining nanoparticles with spherical and platelet shapes.展开更多
Severe weather reports and composite radar reflectivity data from 2010-14 over North China were used to analyze the distribution of severe convective wind(SCW) events and their organizational modes of radar reflecti...Severe weather reports and composite radar reflectivity data from 2010-14 over North China were used to analyze the distribution of severe convective wind(SCW) events and their organizational modes of radar reflectivity. The six organizational modes for SCW events(and their proportions) were cluster cells(35.4%), squall lines(18.4%), nonlinear-shaped systems(17.8%), broken lines(11.6%), individual cells(1.2%), and bow echoes(0.5%). The peak month for both squall lines and broken lines was June, whereas it was July for the other four modes. The highest numbers of SCW events were over the mountains, which were generally associated with disorganized systems of cluster cells. In contrast, SCW associated with linear systems occurred mainly over the plains, where stations recorded an average of less than one SCW event per year. Regions with a high frequency of SCW associated with nonlinear-shaped systems also experienced many SCW events associated with squall lines. Values of convective available potential energy, precipitable water, 0-3-km shear, and 0-6-km shear, were demonstrably larger over the plains than over the mountains, which had an evident effect on the organizational modes of SCW events. Therefore, topography may be an important factor in the organizational modes for SCW events over North China.展开更多
Several methods dealing with the moist adiabatic process are described in this paper. They are based on static energy conservation, pseudo-equivalent potential temperature conservation, the strict pseudo- adiabati...Several methods dealing with the moist adiabatic process are described in this paper. They are based on static energy conservation, pseudo-equivalent potential temperature conservation, the strict pseudo- adiabatic equation, and the reversible moist adiabatic process, respectively. Convective energy parame- ters, which are closely related to the moist adiabatic process and which re?ect the gravitational e?ects of condensed liquid water, are reintroduced or de?ned, including MCAPE [Modi?ed-CAPE (convective avail- able potential energy)], DCAPE (Downdraft-CAPE), and MDCAPE (Modi?ed-Downdraft-CAPE). Two real case analyses with special attention given to condensed liquid water show that the selection of moist adiabatic process does a?ect the calculated results of CAPE and the gravitational e?ects of condensed liq- uid water are not negligible in severe storms. Intercomparisons of these methods show that static energy conservation is consistent with pseudo-equivalent potential temperature conservation not only in physical properties but also in calculated results, and both are good approximations to the strict pseudo-adiabatic equation. The lapse rate linked with the reversible moist adiabatic process is relatively smaller than that linked with other moist adiabatic processes, especially when considering solidi?cation of liquid water in the reversible adiabatic process.展开更多
This study explores the complex dynamics of unsteady convective flow in micropolar nanofluids over a rough conical surface, with a focus on the effects of triple diffusive transport and Arrhenius activation energy. Th...This study explores the complex dynamics of unsteady convective flow in micropolar nanofluids over a rough conical surface, with a focus on the effects of triple diffusive transport and Arrhenius activation energy. The primary objective is to understand the interplay among nonlinear convection, micro-rotation effects, and species diffusion under the influence of thermal and electromagnetic forces. The analysis is motivated by practical applications of cryogenic fluids, specifically liquid hydrogen and liquid nitrogen,where precise control of heat and mass transport is critical. The conical surface roughness is mathematically modeled as a high-frequency, small-amplitude sinusoidal waveform.To address the non-similar nature of the boundary-layer equations, Mangler's transformations are employed, followed by the implementation of a finite difference scheme for numerical solutions. The methodology further integrates a machine learning-based neural network to predict the skin friction under the influence of roughness-induced perturbations, ensuring computational efficiency and improved generalization. The study yields several novel findings. Notably, the presence of surface roughness introduces the wavelike modulations in the local skin friction coefficient. It is also observed that nonlinear convective interactions, enhanced by temperature gradients and vortex viscosity parameters, significantly intensify near-wall velocity gradients. Moreover, key physical quantities are correlated with governing parameters using power-law relationships, providing generalized predictive models. The validation of the numerical results is achieved through consistency checks with the existing limiting solutions and convergence analysis, ensuring the reliability of the proposed computational framework.展开更多
Based on the research of the convective boundary layer (CBL) temperature field in a convective tank, this paper studies the characteristics of the CBL velocity field in the convective tank. Aluminium powder (400 order...Based on the research of the convective boundary layer (CBL) temperature field in a convective tank, this paper studies the characteristics of the CBL velocity field in the convective tank. Aluminium powder (400 orders) is used as a tracer particle in the application of the particle image velocimetry (PIV) technique. The experiment demonstrates: the velocity distribution in the mixed layer clearly possesses the characteristics of CBL thermals; the velocity distribution in the top zone of the mixed layer shows entrainment layer characteristics; the vertical distribution of turbulent characteristic variables is reasonable, which is similar to field observations and other tank results; the error analysis demonstrates the validity of aluminium powder, which implies the reliability of the results.展开更多
Aim To develop a physical and mathematical model related to micropore para- meters of steady-state convective combustion of micropore propellants(MPP). Methods The micropore parameters were measured by WXT-88 mage ana...Aim To develop a physical and mathematical model related to micropore para- meters of steady-state convective combustion of micropore propellants(MPP). Methods The micropore parameters were measured by WXT-88 mage analysis apparatus and the convective combustion characteristic of MPP was measured by a large volume closed bomb, respectively. Rasults Statistical physical model of burning in the micropore and granular burning were developed. The burning rate equation of steady-state convective combustion of MPP was obtained. Conclusions This model correlates the convective burning rate with micropores para- meters for the first time,and the calculating values of convective burning rate are in agreement with test results.The model also can be used to estimate the effects of microporous parame- ters, basic mass burning rate, MPP density and pressure in combustion chamber on the convective combustion characteristics of MPP.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42305013)Joint Research Project for Meteorological Capacity Improvement(Grant Nos.23NLTSQ002 and 24NLTSQ001)+2 种基金China Meteorological Administration Tornado Key Laboratory(Grant No.TKL202307)the China Meteorological Administration Youth Innovation Team Fund(Grant No.CMA2024QN05)a research project of the Chinese Academy of Meteorological Science(Grant No.2023Z019)。
文摘This study presents a comprehensive analysis of 132 tornadic events in northeastern China from 2004 to 2023,utilizing radar and ERA5 reanalysis data to investigate the climatology,environmental drivers,and synoptic linkages with Northeast China cold vortices(NCCVs)of tornadic storms under different convective modes.Results reveal that discrete storms account for 70%of events,with clustered cells(CC)being the most frequent mode,while significant tornadoes(EF2+)are primarily associated with isolated cells(IC)and broken lines(BL).The storm mode distribution in northeastern China resembles that of the central United States but with a higher proportion of CC and lower IC.In contrast,southern China exhibits a higher frequency of quasi-linear(QL)modes(>50%),similar to European patterns.Although no single parameter clearly differentiates between all tornado modes,distinct morphological characteristics emerge through specific parameter combinations:NL modes are characterized by high 0-1 km storm-relative helicity(SRH1)and humidity but low 0-6 km shear(SR6),whereas IC modes display contrasting features with low SRH1 and high CAPE.Notably,83%of tornadoes are associated with NCCVs,preferentially forming in southeastern/southwestern quadrants.Strong tornadoes favor southeastern quadrants,while NCCV intensity correlates with tornadic distance from vortex centers.Three characteristic synoptic configurations emerge:(T1)strong deep vortices with vertically aligned cold troughs,generating southeast-dominant tornado clusters characterized by a high proportion of BL and QL modes;(T2)weaker vortices featuring sub-synoptic troughs,with southern-distributed events dominated by a predominance of the CC mode;(T3)transverse-trough systems exhibiting CAPE-SRH decoupling and reduced tornadic activity.This study enhances our understanding of tornadoes in northeastern China,informing future research on formation mechanisms,prediction methods,and disaster prevention strategies.
基金supported financially by the National Natural Science Foundation of China[grant numbers 42027804,41775026,and 41075012]。
文摘Studying the characteristics and mechanisms of convective and non-convective cirrus clouds over the South China Sea is vital for their impact on regional climate dynamics,and enhancing predictive models for weather and climate forecasts.This study utilizes eight years of CALIPSO data(from March 2007 to February 2015)to investigate convective and non-convective cirrus clouds.Explicit new insights include the observation that convective cirrus cloud samples are three times more numerous than non-convective cirrus clouds.Convective cirrus clouds are associated with humid conditions and demonstrate higher ice water content(IWC)values ranging from 10^(−3)to 10^(−1)g m^(−3),whereas non-convective cirrus clouds tend to be drier,exhibiting IWC values ranging from 10^(−4)to 10^(−3)g m^(−3).Both cirrus cloud types exhibit a maximum cloud fraction at 10°N.Convective cirrus reach their peak cloud fraction at an altitude of 14 km,while non-convective cirrus typically occur at altitudes between 15 and 16 km.The seasonal variability of the convective cirrus cloud fraction primarily reflects bottom-up positive specific humidity anomalies originating from convective activity,whereas the non-convective cirrus cloud fraction is influenced by top-down negative temperature anomalies.
基金Supported by Special Project for Review and Summary of China Meteorological Administration(FPZJ2025-097)Self-supporting Scientific Research Project of Guilin Meteorological Bureau(202408).
文摘Using conventional observation data and Guilin Doppler weather radar data,the atmospheric circulation situation,environmental conditions and mesoscale characteristics of convective storms during the severe convective weather process in Guilin,Guangxi on April 19,2025 were analyzed in detail.The results showed that the severe convective process was dominated by short-term heavy rainfall,accompanied by thunderstorm and gale.This was a strong convective weather process in the warm region.On the south side of warm shear line,with the south branch fluctuation moving eastward,strong convection occurred near the surface convergence line.With the establishment of low-level jet at night,organized development of convection system was obtained.The environmental conditions showed unstable stratification,inversion layer,small convective effective potential energy,large K value and strong wind shear,and the inverted V-shaped structure was at low level.The convective storm that produced short-term heavy rainfall presented as low centroid precipitation echo.The mixed convection in Xinlong,Baishou,Yongfu was caused by heavy rainfall supercell and presented as high centroid precipitation echo,with weak echo area,bounded weak echo area and medium-intensity mesocyclone.
基金supported by the National Natural Science Foundation of China(Grant No.42305169)the Basic Research Fund of CAMS(Grant No.2023Y001)the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(Earth Lab)。
文摘Accurately simulating mesoscale convective systems(MCSs)is essential for predicting global precipitation patterns and extreme weather events.Despite the ability of advanced models to reproduce MCS climate statistics,capturing extreme storm cases over complex terrain remains challenging.This study utilizes the Global–Regional Integrated Forecast System(GRIST)with variable resolution to simulate an eastward-propagating MCS event.The impact of three microphysics schemes,including two single-moment schemes(WSM6,Lin)and one double-moment scheme(Morrison),on the model sensitivity of MCS precipitation simulations is investigated.The results demonstrate that while all the schemes capture the spatial distribution and temporal variation of MCS precipitation,the Morrison scheme alleviates overestimated precipitation compared to the Lin and WSM6 schemes.The ascending motion gradually becomes weaker in the Morrison scheme during the MCS movement process.Compared to the runs with convection parameterization,the explicit-convection setup at 3.5-km resolution reduces disparities in atmospheric dynamics due to microphysics sensitivity in terms of vertical motions and horizontal kinetic energy at the high-wavenumber regimes.The explicit-convection setup more accurately captures the propagation of both main and secondary precipitation centers during the MCS development,diminishing the differences in both precipitation intensity and propagation features between the Morrison and two single-moment schemes.These findings underscore the importance of microphysics schemes for global nonhydrostatic modeling at the kilometer scale.The role of explicit convection for reducing model uncertainty is also outlined.
基金supported by the Demonstration System for High Resolution Meteorological Application(Ⅱ)[grant number 32-Y30F08-9001-20/22]the National Natural Science Foundation of China[grant numbers 12292981 and 12292984]。
文摘Early detection of convective clouds is vital for minimizing hazardous impacts.Forecasting convective initiation(CI)using current multispectral geostationary meteorological satellites is often challenged by high false-alarm rates and missed detections caused by limited resolution.In contrast,high-resolution earth observation satellites offer more detailed texture information,improving early detection capabilities.The authors propose a novel methodology that integrates the advanced features of China’s latest-generation satellites,Gaofen-4(GF-4)and Fengyun-4A(FY-4A).This fusion method retains GF’s high-resolution details and FY-4A’s multispectral information.Two cases from different observational scenarios and weather conditions under GF-4’s staring mode were carried out to compare the CI forecast results based on fused data and solely on FY-4A data.The fused data demonstrated superior performance in detecting smaller-scale convective clouds,enabling earlier forecasting with a lead time of 15–30 minutes,and more accurate location identification.Integrating high-resolution earth observation satellites into early convective cloud detection provides valuable insights for forecasters and decision-makers,particularly given the current resolution limitations of geostationary meteorological satellites.
基金Key-Area Research and Development Program of Guangdong (2020B1111200001)National Natural Science Foundation of China (42230105, U2142213, 42175167)。
文摘Taking short-duration heavy rainfall and convective wind gusts as examples, the present study examined the characteristics of radar reflectivity and several convective parameters. We analyzed nowcasting techniques by integrating a high-resolution numerical weather prediction model with these convective parameters. Based on the CMA-GD 1-km model and its assimilation system, we conducted repeated tests on radar reflectivity data assimilation and analyzed their impact on nowcasting accuracy. Based on these analyses, we proposed a method to improve model forecasts using the useful indicative information provided by high-frequency radar reflectivity data and convective parameters. The improved method was applied to the CMA-GD 1-km model for nowcasting tests. Evaluations from batch tests and case analysis show that the proposed method significantly reduced the model's false alarm rates and improved its nowcasting performance.
基金the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030004)the National Natural Science Foundation of China(Grant Nos.42275002 and 42275006)+1 种基金the National Institute of Natural Hazards,Ministry of Emergency Management of China(Grant Nos.ZDJ2024-01 and ZDJ2024-25)the Science and Technology Planning Project of Guangdong Province(Grant No.2023B1212060019).
文摘Active atmospheric convection on the monsoon coast is crucial for the Earth’s climate system.In particular,the upscale convective growth(UCG)from ordinary isolated convection to organized convective system is a key process causing severe weather,but its activities on the monsoon coast are less understood because of the lack of fine-resolution datasets.For the first time,we present the climatology of UCG on a typical monsoon coast using kilometer-mesh radar data from southern China.The UCG undergoes pronounced subseasonal and diurnal variations in the early-summer rainy season.The subseasonal UCG increase is attributed to the onshore flows shifting from easterlies in April to monsoon southwesterlies in June.UCG becomes vigorous following summer monsoon onset,with hotspots near windward coastal mountains.Daytime UCG first peaks near noontime along coastal land,where onshore flows are destabilized by boundary-layer heating and mountains.Afternoon inland peaks and off-coast minimums are recognized due to land–sea thermal contrast and sea-breeze circulation.Nighttime UCG is revived at the coast by nocturnally enhanced southerlies,followed by offshore activity as the convergence of land-breeze northerlies shifts seaward.The UCG thus responds strongly to changing atmospheric conditions,land heating/cooling,and thermally driven local circulations.Our results may help clarify the predictability of monsoon coastal convection.
基金Guangdong S&T Program(2024A1111120024)CMA Innovation and Development Fund(CXFZ2024J014)+3 种基金CMA Youth Innovation Team(CMA2024QN01)PRB Meteorological Open Research Fund(ZJLY202425-GD02)GBA Meteorological S&T Program(GHMA2024Y04)Guangzhou Meteorological Research Project(Z202401)。
文摘This study explores the initiation mechanisms of convective wind events,emphasizing their variability across different atmospheric circulation patterns.Historically,the inadequate feature categorization within multi-faceted forecast models has led to suboptimal forecast efficacy,particularly for events in dynamically weak forcing conditions during the warm season.To improve the prediction accuracy of convective wind events,this research introduces a novel approach that combines machine learning techniques to identify varying meteorological flow regimes.Convective winds(CWs)are defined as wind speeds reaching or exceeding 17.2 m s^(-1)and severe convective winds(SCWs)as speeds surpassing 24.5 m s^(-1).This study examines the spatial and temporal distribution of CW and SCW events from 2013 to 2021 and their circulation dynamics associated with three primary flow regimes:cold air advection,warm air advection,and quasibarotropic conditions.Key circulation features are used as input variables to construct an effective weather system pattern recognition model.This model employs an Adaptive Boosting(AdaBoost)algorithm combined with Random Under-Sampling(RUS)to address the class imbalance issue,achieving a recognition accuracy of 90.9%.Furthermore,utilizing factor analysis and Support Vector Machine(SVM)techniques,three specialized and independent probabilistic prediction models are developed based on the variance in predictor distributions across different flow regimes.By integrating the type of identification model with these prediction models,an enhanced comprehensive model is constructed.This advanced model autonomously identifies flow types and accordingly selects the most appropriate prediction model.Over a three-year validation period,this improved model outperformed the initially unclassified model in terms of prediction accuracy.Notably,for CWs and SCWs,the maximum Peirce Skill Score(PSS)increased from 0.530 and 0.702 to 0.628 and 0.726,respectively,and the corresponding maximum Threat Score(TS)improved from 0.087 and 0.024 to 0.120 and 0.026.These improvements were significant across all samples,with the cold air advection type showing the greatest enhancement due to the significant spatial variability of each factor.Additionally,the model improved forecast precision by prioritizing thermal factors,which played a key role in modulating false alarm rates in warm air advection and quasi-barotropic flow regimes.The results confirm the critical contribution of circulation feature recognition and segmented modeling to enhancing the adaptability and predictive accuracy of weather forecast models.
文摘The Hong Kong Observatory(HKO)installed an X-band dual-polarization Phased Array Weather Radar(PAWR)at its wind profiler station at Sha Lo Wan(SLW)in 2021 to monitor high-impact weather in Hong Kong.The PAWR could complete a volume scan in one minute with a spatial resolution of 30 meters.Dual polarimetric variables from the SLW PAWR,including differential reflectivity(ZDR),specific differential phase(KDP),and hydro-classification(HCL)products,were used to diagnose the vertical motion and lightning characteristics of mesoscale convective storms(MCS).Through variational data assimilation,three-dimensional(3-D)wind fields were constructed to validate the SLW PAWR observations.Two MCS events that occurred on 18 September 2022 and 17 June 2023 are central to this study.The findings include(1)negative ZDR serves as a good indicator of the occurrence of intense downdrafts associated with an MCS,a premise further supported by the 3-D wind field analysis results,(2)negative KDP suggested the formation of vertically aligned ice crystals which facilitated cloud electrification,and(3)HCL products indicated the presence of mixed ice crystals and graupel above the 0℃melting layer which promoted active cloud-to-cloud and cloud-to-ground lightning strokes.These results show that the SLW PAWR provides essential observations,which,when coupled with 3-D wind field analysis,can aid in enhancing the understanding of the dynamics and electrification processes within an MCS.
基金supported by the Strategic Research and Consulting Project of the Chinese Academy of Engineering[grant number 2024-XBZD-14]the National Natural Science Foundation of China[grant numbers 42192553 and 41922036]the Fundamental Research Funds for the Central Universities–Cemac“GeoX”Interdisciplinary Program[grant number 020714380207]。
文摘The impacts of lateral boundary conditions(LBCs)provided by numerical models and data-driven networks on convective-scale ensemble forecasts are investigated in this study.Four experiments are conducted on the Hangzhou RDP(19th Hangzhou Asian Games Research Development Project on Convective-scale Ensemble Prediction and Application)testbed,with the LBCs respectively sourced from National Centers for Environmental Prediction(NCEP)Global Forecast System(GFS)forecasts with 33 vertical levels(Exp_GFS),Pangu forecasts with 13 vertical levels(Exp_Pangu),Fuxi forecasts with 13 vertical levels(Exp_Fuxi),and NCEP GFS forecasts with the vertical levels reduced to 13(the same as those of Exp_Pangu and Exp_Fuxi)(Exp_GFSRDV).In general,Exp_Pangu performs comparably to Exp_GFS,while Exp_Fuxi shows slightly inferior performance compared to Exp_Pangu,possibly due to its less accurate large-scale predictions.Therefore,the ability of using data-driven networks to efficiently provide LBCs for convective-scale ensemble forecasts has been demonstrated.Moreover,Exp_GFSRDV has the worst convective-scale forecasts among the four experiments,which indicates the potential improvement of using data-driven networks for LBCs by increasing the vertical levels of the networks.However,the ensemble spread of the four experiments barely increases with lead time.Thus,each experiment has insufficient ensemble spread to present realistic forecast uncertainties,which will be investigated in a future study.
基金supported via funding from Prince Sattam bin Abdulaziz University(Grant No.PSAU/2024/R/1446)。
文摘Fluid flow through porous spaces with variable porosity has wide-range applications,notably in biomedical and thermal engineering,where it plays a vital role in comprehending blood flow dynamics within cardiovascular systems,heat transfer and thermal management systems improve efficiency using porous materials with variable porosity.Keeping these important applications in view,in current study blood-based hybrid nanofluid flow has considered on a convectively heated sheet.The sheet exhibits the properties of a porous medium with variable porosity and extends in both the x and y directions.Blood has used as base fluid in which the nanoparticles of Cu and Cu O have been mixed.Thermal radiation,space-dependent,and thermal-dependent heat sources have been incorporated into the energy equation,while magnetic effects have been integrated into the momentum equations.Dimensionless variables have employed to transform the modeled equations into dimensionless form and facilitating their solution using bvp4c approach.It has concluded in this study that,both the primary and secondary velocities augmented with upsurge in variable porous factor and declined with escalation in stretching ratio,Casson,magnetic,and slip factors along x-and y-axes.Thermal distribution has grown up with upsurge in Casson factor,magnetic factor,thermal Biot number,and thermal/space-dependent heat sources while has retarded with growth in variable porous and stretching ratio factors.The findings of this investigation have been compared with the existing literature,revealing a strong agreement among present and established results that ensured the validation of the model and method used in this work.
基金Supported by the National Natural Science Foundation of China(Nos.42250710152,42192562)the Southern Laboratory of Ocean Science and Engineering(Guangdong Zhuhai)(No.SML 2020 SP 007)。
文摘Convectively unstable processes caused by dense water subsidence are common occurrences in high-latitude oceanic regions,and significantly modulate mass and heat transport and mixing processes in the ocean.An idealized numerical experiment using the large eddy simulation method was conducted to analyze the three-dimensional flow field structure and the mechanism for dense water subsidence.Specifically,a negative salt flux is set at the sea surface,in which salt flux enters the sea surface to simulate the icing and salting-out phenomena that occur at high latitudes.Results show that the mean-state 3D flow field of dense water subsidence exhibits a hollow conical distribution.The horizontal flow field is characterized by a cyclonic vortex that driven primarily by the pressure gradient and influenced by the Coriolis effect.Moreover,the inverse vertical pressure gradient generated by this vortex inhibits the sinking of the plume,leading to its off-axis deflection and the development of an anticyclonic precession.In addition,the impact of rotation on the structure of a sinking plume within a stratified environment is discussed.Both horizontal vortex intensity and cone angle of the hollow cone flow field are increased with increasing rotation rate,resulting in a decrease in the plume’s maximum sinking depth.Variances in rotation direction cause the horizontal vortex and sinking plumes of dense water in the northern and southern hemispheres to rotate in opposite directions.
基金Project(51146010)supported by the National Natural Science Foundation of ChinaProject(S2011040003189)supported by the Doctoral Research Fund of Guangdong Natural Science Foundation,ChinaProject supported by the Fundation of Key Laboratory of Surface Functional Structure Manufacturing of Guangdong Higher Education Institutes,South China University of Technology
文摘A solid-phase sintering process for the low-cost fabrication of composite micro-channels was developed. Three kinds of composite micro-channels with metallic porous structures were designed. The sintering process was studied and optimized to obtain porous-structured micro-channels with high porosity. The flow resistance and heat transfer performance in the composite micro-channels were investigated. The composite micro-channels show acceptable flow resistance, significant enhancement of heat transfer and dramatic improvement of flow boiling stability, which indicates a promising prospect for the application in forced convective heat transfer.
基金supported by the project of State Key Labo-ratory of Severe Weather, Chinese Academy of Meteoro-logical Sciences (No. 2009LASW-A03) the National Natural Science Foundation of China under Grants Nos.40875021 and 40930951
文摘The strong heavy rainfall on 3–5 July 2003 causing the severe flooding in Huaihe River basin (HRB), China is studied. It is noted that there are sometimes mesoscale convective vortex (MCV) in East Asia during the mei-yu season. Simulation results from the ARPS (Advanced Regional Prediction) data analysis system (ADAS) and WRF model were used to study the development of the mesoscale convective system (MCS) and mesoscale convective vortex (MCV). It is confirmed that the MCV formed during the development of a previous severe MCS. A closed vortex circulation can be found below 600 hPa with a vorticity maximum in the middle troposphere. The evolution process of the MCV can be divided into three stages: initiation, maturation, and dissipation. During the mature stage of the MCV, a downdraft occurred in the center of the MCV and new convection developed in southeast of the MCV. The convergence and the tilting in the lower troposphere convergence and vertical advection in the middle troposphere were the main vorticity sources in the MCV initiation stage. Finally, a conceptual model between the mei-yu front and the embedded MCS and MCV is proposed. The mei-yu front was the background condition for the development of the MCS and MCV. A low level jet (LLJ) transported moisture and the weak cold air invasion via a trough aloft in the middle troposphere and triggering the severe convection. Furthermore, the intensified jet was able to result in the initiation of new "secondary" areas of convection in the eastern part of the MCV.
文摘A distinguished category of operational fluids,known as hybrid nanofluids,occupies a prominent role among various fluid types owing to its superior heat transfer properties.By employing a dovetail fin profile,this work investigates the thermal reaction of a dynamic fin system to a hybrid nanofluid with shape-based properties,flowing uniformly at a velocity U.The analysis focuses on four distinct types of nanoparticles,i.e.,Al2O3,Ag,carbon nanotube(CNT),and graphene.Specifically,two of these particles exhibit a spherical shape,one possesses a cylindrical form,and the final type adopts a platelet morphology.The investigation delves into the pairing of these nanoparticles.The examination employs a combined approach to assess the constructional and thermal exchange characteristics of the hybrid nanofluid.The fin design,under the specified circumstances,gives rise to the derivation of a differential equation.The given equation is then transformed into a dimensionless form.Notably,the Hermite wavelet method is introduced for the first time to address the challenge posed by a moving fin submerged in a hybrid nanofluid with shape-dependent features.To validate the credibility of this research,the results obtained in this study are systematically compared with the numerical simulations.The examination discloses that the highest heat flux is achieved when combining nanoparticles with spherical and platelet shapes.
基金supported by the National Natural Science Foundation of China (Grant No.41375051 and 41505038)
文摘Severe weather reports and composite radar reflectivity data from 2010-14 over North China were used to analyze the distribution of severe convective wind(SCW) events and their organizational modes of radar reflectivity. The six organizational modes for SCW events(and their proportions) were cluster cells(35.4%), squall lines(18.4%), nonlinear-shaped systems(17.8%), broken lines(11.6%), individual cells(1.2%), and bow echoes(0.5%). The peak month for both squall lines and broken lines was June, whereas it was July for the other four modes. The highest numbers of SCW events were over the mountains, which were generally associated with disorganized systems of cluster cells. In contrast, SCW associated with linear systems occurred mainly over the plains, where stations recorded an average of less than one SCW event per year. Regions with a high frequency of SCW associated with nonlinear-shaped systems also experienced many SCW events associated with squall lines. Values of convective available potential energy, precipitable water, 0-3-km shear, and 0-6-km shear, were demonstrably larger over the plains than over the mountains, which had an evident effect on the organizational modes of SCW events. Therefore, topography may be an important factor in the organizational modes for SCW events over North China.
基金the National Natural Science Fourdation of China under Grant Nos.40375016 , 40428002 InnovationProject of the Chinese Academy of Sciences under Grant No.KZCX-SW-213.
文摘Several methods dealing with the moist adiabatic process are described in this paper. They are based on static energy conservation, pseudo-equivalent potential temperature conservation, the strict pseudo- adiabatic equation, and the reversible moist adiabatic process, respectively. Convective energy parame- ters, which are closely related to the moist adiabatic process and which re?ect the gravitational e?ects of condensed liquid water, are reintroduced or de?ned, including MCAPE [Modi?ed-CAPE (convective avail- able potential energy)], DCAPE (Downdraft-CAPE), and MDCAPE (Modi?ed-Downdraft-CAPE). Two real case analyses with special attention given to condensed liquid water show that the selection of moist adiabatic process does a?ect the calculated results of CAPE and the gravitational e?ects of condensed liq- uid water are not negligible in severe storms. Intercomparisons of these methods show that static energy conservation is consistent with pseudo-equivalent potential temperature conservation not only in physical properties but also in calculated results, and both are good approximations to the strict pseudo-adiabatic equation. The lapse rate linked with the reversible moist adiabatic process is relatively smaller than that linked with other moist adiabatic processes, especially when considering solidi?cation of liquid water in the reversible adiabatic process.
基金the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/111/46
文摘This study explores the complex dynamics of unsteady convective flow in micropolar nanofluids over a rough conical surface, with a focus on the effects of triple diffusive transport and Arrhenius activation energy. The primary objective is to understand the interplay among nonlinear convection, micro-rotation effects, and species diffusion under the influence of thermal and electromagnetic forces. The analysis is motivated by practical applications of cryogenic fluids, specifically liquid hydrogen and liquid nitrogen,where precise control of heat and mass transport is critical. The conical surface roughness is mathematically modeled as a high-frequency, small-amplitude sinusoidal waveform.To address the non-similar nature of the boundary-layer equations, Mangler's transformations are employed, followed by the implementation of a finite difference scheme for numerical solutions. The methodology further integrates a machine learning-based neural network to predict the skin friction under the influence of roughness-induced perturbations, ensuring computational efficiency and improved generalization. The study yields several novel findings. Notably, the presence of surface roughness introduces the wavelike modulations in the local skin friction coefficient. It is also observed that nonlinear convective interactions, enhanced by temperature gradients and vortex viscosity parameters, significantly intensify near-wall velocity gradients. Moreover, key physical quantities are correlated with governing parameters using power-law relationships, providing generalized predictive models. The validation of the numerical results is achieved through consistency checks with the existing limiting solutions and convergence analysis, ensuring the reliability of the proposed computational framework.
文摘Based on the research of the convective boundary layer (CBL) temperature field in a convective tank, this paper studies the characteristics of the CBL velocity field in the convective tank. Aluminium powder (400 orders) is used as a tracer particle in the application of the particle image velocimetry (PIV) technique. The experiment demonstrates: the velocity distribution in the mixed layer clearly possesses the characteristics of CBL thermals; the velocity distribution in the top zone of the mixed layer shows entrainment layer characteristics; the vertical distribution of turbulent characteristic variables is reasonable, which is similar to field observations and other tank results; the error analysis demonstrates the validity of aluminium powder, which implies the reliability of the results.
文摘Aim To develop a physical and mathematical model related to micropore para- meters of steady-state convective combustion of micropore propellants(MPP). Methods The micropore parameters were measured by WXT-88 mage analysis apparatus and the convective combustion characteristic of MPP was measured by a large volume closed bomb, respectively. Rasults Statistical physical model of burning in the micropore and granular burning were developed. The burning rate equation of steady-state convective combustion of MPP was obtained. Conclusions This model correlates the convective burning rate with micropores para- meters for the first time,and the calculating values of convective burning rate are in agreement with test results.The model also can be used to estimate the effects of microporous parame- ters, basic mass burning rate, MPP density and pressure in combustion chamber on the convective combustion characteristics of MPP.