We introduce CURDIS,a template for algorithms to discretize arcs of regular curves by incrementally producing a list of support pixels covering the arc.In this template,algorithms proceed by finding the tangent quadra...We introduce CURDIS,a template for algorithms to discretize arcs of regular curves by incrementally producing a list of support pixels covering the arc.In this template,algorithms proceed by finding the tangent quadrant at each point of the arc and determining which side the curve exits the pixel according to a tailored criterion.These two elements can be adapted for any type of curve,leading to algorithms dedicated to the shape of specific curves.While the calculation of the tangent quadrant for various curves,such as lines,conics,or cubics,is simple,it is more complex to analyze how pixels are traversed by the curve.In the case of conic arcs,we found a criterion for determining the pixel exit side.This leads us to present a new algorithm,called CURDIS-C,specific to the discretization of conics,for which we provide all the details.Surprisingly,the criterion for conics requires between one and three sign tests and four additions per pixel,making the algorithm efficient for resource-constrained systems and feasible for fixed-point or integer arithmetic implementations.Our algorithm also perfectly handles the pathological cases in which the conic intersects a pixel twice or changes quadrants multiple times within this pixel,achieving this generality at the cost of potentially computing up to two square roots per arc.We illustrate the use of CURDIS for the discretization of different curves,such as ellipses,hyperbolas,and parabolas,even when they degenerate into lines or corners.展开更多
In this paper,based on the mean value theorem of differential,a new method of generating conics such as circles and parabolas is given,and the related algorithm for generating conics is designed.
In CAGD, the Said-Ball representation for a polynomial curve has two advantagesover the B′ezier representation, since the degrees of Said-Ball basis are distributed in a step type.One advantage is that the recursive ...In CAGD, the Said-Ball representation for a polynomial curve has two advantagesover the B′ezier representation, since the degrees of Said-Ball basis are distributed in a step type.One advantage is that the recursive algorithm of Said-Ball curve for evaluating a polynomialcurve runs twice as fast as the de Casteljau algorithm of B′ezier curve. Another is that theoperations of degree elevation and reduction for a polynomial curve in Said-Ball form are simplerand faster than in B′ezier form. However, Said-Ball curve can not exactly represent conics whichare usually used in aircraft and machine element design. To further extend the utilizationof Said-Ball curve, this paper deduces the representation theory of rational cubic and quarticSaid-Ball conics, according to the necessary and su?cient conditions for conic representation inrational low degree B′ezier form and the transformation formula from Bernstein basis to Said-Ballbasis. The results include the judging method for whether a rational quartic Said-Ball curve is aconic section and design method for presenting a given conic section in rational quartic Said-Ballform. Many experimental curves are given for confirming that our approaches are correct ande?ective.展开更多
The n-ary subdivision schemes contrast favorably with their binary analogues because they are capable to produce limit functions with the same (or higher) smoothness but smaller support. We present an algorithm to gen...The n-ary subdivision schemes contrast favorably with their binary analogues because they are capable to produce limit functions with the same (or higher) smoothness but smaller support. We present an algorithm to generate the 4-point n-ary non-stationary scheme for trigonometric, hyperbolic and polynomial case with the parameter for describing curves. The performance, analysis and comparison of the 4-point ternary scheme are also presented.展开更多
We analyze the configurations of conics and lines on a special class of Kummer octic surfaces. In particular, we bound the number of conics by 176 and show that there is a unique surface with 176 conics, all irreducib...We analyze the configurations of conics and lines on a special class of Kummer octic surfaces. In particular, we bound the number of conics by 176 and show that there is a unique surface with 176 conics, all irreducible: it admits a faithful action of one of the Mukai groups. Therefore, we also discuss conics and lines on Mukai surfaces: we discover a double plane(ramified at a smooth sextic curve) that contains 8,910 smooth conics.展开更多
In this paper,we introduce and prove three analytic results related to uniform convergence,properties of Newtonian potential,and convergence of sequences in Sobolev space constrained by their Laplacian.Then,utilizing ...In this paper,we introduce and prove three analytic results related to uniform convergence,properties of Newtonian potential,and convergence of sequences in Sobolev space constrained by their Laplacian.Then,utilizing our analytic results,we develop a complete proof of a crucial estimate appearing in the results of Guofang Wang and Xiaohua Zhu,which states the classification of extremal Hermitian metrics with finite energy and area on compact Riemann surfaces and finite singularities satisfying small singular angles.展开更多
This study examines the Carolina Bays and Nebraska Rainwater Basins,using high-resolution LiDAR elevation models to analyze their unique shapes.The research reveals that well-preserved Bays exhibit precise elliptical ...This study examines the Carolina Bays and Nebraska Rainwater Basins,using high-resolution LiDAR elevation models to analyze their unique shapes.The research reveals that well-preserved Bays exhibit precise elliptical geometry,distinguishing them from various oriented lakes they are often compared to.While the timing of their formation is discussed,the primary goal of this paper is to establish a repeatable method for quantifying the elliptical nature of these dominant geomorphic landforms.By applying the least squares method to points selected along the perimeters of these extraordinary basins,the study confirms their elliptical geometry with an error margin of less than 3%.This rigorous mathematical approach sets a high standard for any hypothesis attempting to explain the origin of these depressions using natural environmental conditions.Notably,the long axes of these elliptical basins converge near the Great Lakes region,and since ellipses can be described as conic sections,this finding supports the plausibility of a cosmic impact origin.The study suggests that these basins may be secondary impact features formed during a past glacial cycle of the Laurentide Ice Sheet.This research establishes a strong mathematical foundation to support future studies on the possible impact origin of the Carolina Bays and Nebraska Rainwater Basins.展开更多
This study investigates the traction performance and efficiency of a conical friction continuously variable trans-mission.A new mathematical model was developed and validated through experimental measurements using a ...This study investigates the traction performance and efficiency of a conical friction continuously variable trans-mission.A new mathematical model was developed and validated through experimental measurements using a custom-built test rig to predict these parameters accurately.The results showed a close correlation between the-oretical predictions and experimental data.Key findings include the impact of load on efficiency and the model’s ability to predict performance under various operating conditions.The study provides detailed insights into the dynamics of conical friction variator and demonstrates the model’s effectiveness in predicting real-world behav-ior.The developed model can assist in selecting optimal parameters during the design phase and can be applied to other developing variator systems to achieve maximum efficiency.展开更多
Real-time identification of rock strength and cuttability based on monitoring while cutting during excavation is essential for key procedures such as the precise adjustment of excavation parameters and the in-situ mod...Real-time identification of rock strength and cuttability based on monitoring while cutting during excavation is essential for key procedures such as the precise adjustment of excavation parameters and the in-situ modification of hard rocks.This study proposes an in-telligent approach for predicting rock strength and cuttability.A database comprising 132 data sets is established,containing cutting para-meters(such as cutting depth and pick angle),cutting responses(such as specific energy and instantaneous cutting rate),and rock mech-anical parameters collected from conical pick-cutting experiments.These parameters serve as input features for predicting the uniaxial compressive strength and tensile strength of rocks using regression fitting and machine learning methodologies.In addition,rock cuttabil-ity is classified using a combination of the analytic hierarchy process and fuzzy comprehensive evaluation method,and subsequently iden-tified through machine learning approaches.Various models are compared to determine the optimal predictive and classification models.The results indicate that the optimal model for uniaxial compressive strength and tensile strength prediction is the genetic algorithm-optimized backpropagation neural network model,and the optimal model for rock cuttability classification is the radial basis neural network model.展开更多
Water-weakening presents a promising strategy for the in-situ improvement of rock cuttability.This study unveils the influences of water saturation on the mechanical response and fragmentation characteristics of rock ...Water-weakening presents a promising strategy for the in-situ improvement of rock cuttability.This study unveils the influences of water saturation on the mechanical response and fragmentation characteristics of rock samples.A series of rock-cutting tests using conical pick indentation was conducted on three types of sandstone samples under both dry and water-saturated conditions.The relationships between cutting force and indentation depth,as well as typical cuttability indices are determined and compared for dry and water-saturated samples.The experimental results reveal that the presence of water facilitates shearing failure in rock samples,as well as alleviates the fluctuations in the cutting force-indentation depth curve Furthermore,the peak cutting force(F_(p)),cutting work(W_(p)),and specific energy(SE)undergo apparent decrease after water saturation,whereas the trend in the indentation depth at rock failure(D_(f))varies across different rock types.Additionally,the water-induced percentage reductions in F_(p)and SE correlate positively with the quartz and swelling clay content within the rocks,suggesting that the cuttability improvement due to water saturation is attributed to the combined effects of stress corrosion and frictional reduction.These findings carry significant implications for improving rock cuttability in mechanized excavation of hard rock formations.展开更多
The oil and gas stored in deep and ultra-deep carbonate reservoirs is the focus of future exploration and development.Conical PDC(Polycrystalline Diamond Compact)cutter,which is a new kind of PDC cutter,can significan...The oil and gas stored in deep and ultra-deep carbonate reservoirs is the focus of future exploration and development.Conical PDC(Polycrystalline Diamond Compact)cutter,which is a new kind of PDC cutter,can significantly improve the rate of penetration(ROP)and extend PDC bit life in hard and abrasive formations.However,the breakage characteristics and failure mode of the conical PDC cutter cutting carbonate rock is still masked.In this paper,a series of single-cutter cutting tests were carried out with the conical and conventional PDC cutters.The cutting force,rock-breaking process,surface morphology of cutting grooves and cuttings characteristic were analyzed.Based on the derived formula of the brittle fracture index,the failure model of carbonate rock was quantitatively analyzed under the action of conical and conventional cutter.The results show that the average cutting force of the conical cutter is less than that of the conventional cutter,which means greater stability of the cutting process using the conical cutter.Carbonate rock with calcite as the main component tends to generate blocky rock debris by conical cutter.The height of the cuttings generated by the conical cutter is 0.5 mm higher than that generated by the conventional cutter.The conical cutter exhibits enhanced penetration capabilities within carbonate rock.The accumulation of rock debris in front of the conventional cutter is obvious.Whereas,the conical cutter facilitates the cuttings transport,thereby alleviating drilling stickiness slip.At different cutting depths,the conical cutter consistently causes asymmetric jagged brittle tensile fracture zones on both sides of the cutting groove.Calculations based on the brittle fracture index demonstrate that the brittle fracture index of the conical cutter generally doubles that of the conventional cutter.For carbonate rock,the conical cutter displays superior utilization of brittle fracture abilities.The research findings of this work offer insights into the breakage process and failure mode of carbonate rock by the conical cutter.展开更多
Because of their remarkable properties,room-temperature ionic liquids(RTILs)are used widely in electrochemistry,fuel cells,supercapacitors,and even DNA sequencing,and many of these applications involve the transport o...Because of their remarkable properties,room-temperature ionic liquids(RTILs)are used widely in electrochemistry,fuel cells,supercapacitors,and even DNA sequencing,and many of these applications involve the transport of RTILs in nanoscale media.Particularly for single-molecule detection,the RTIL must be mixed with a solvent(e.g.,water)so that the electrolyte has both high viscosity and conductivity to obtain excellent signals.If a RTIL contains a quantity of water in bulk,this has a significant effect on its properties(e.g.,the electrochemical window),thereby limiting some applications.However,the physicochemical properties of RTILs containing water in nanoconfined spaces remain unclear,especially their ionic transport behavior.Therefore,reported here is a study of the ionic transport behavior of mixed RTIL/water solutions at the nanoscale using a single conical nanochannel as a nanofluidic platform.The conductivity of the mixtures in the nanoconfined space was closely related to the nanochannel size,and highly diluted mixed solutions resulted in a nonlinear rectificationreversed current,which was possibly due to the adsorption of cations on the nanochannel wall.The maximum rectification ratio was 114,showing excellent rectification that could be used to realize newly conceptualized nanofluidic diodes.In summary,this work provides an exhaustive understanding of the nonlinear ion transport of RTIL/water mixtures and a theoretical foundation for applying RTILs in energy storage and conversion and bio-sensing.展开更多
This paper focuses on the effect of welding parameters on microstructure and tensile strength of joints welded by friction-stir welding(FSW).The effects of pin profile(threaded conical,non-threaded conical and triangu...This paper focuses on the effect of welding parameters on microstructure and tensile strength of joints welded by friction-stir welding(FSW).The effects of pin profile(threaded conical,non-threaded conical and triangular pin),tool rotational speed(800,1000,1250 and 1600 r·min^(-1))and welding speed(63,80,100 and 125 mm·min^(-1))on the mechanical and microstructural properties of joints welded in 5-mm 7075-T6 were investigated.The results depict that the pin profile has a major role in the shape and grain size of the weld nugget zone(WNZ).In other words,a wider weld nugget and a finer grain size by threaded conical pin are obtained in WNZ.The attained data of tensile tests show that the maximum ultimate tensile strength(UTS)belongs to the threaded conical pin which is attributed to a finer grain size generated in the weld nugget zone.Additionally,it is found that the tensile strength increases with the welding speed increasing,whereas rotational speed has a bilateral effect on the tensile strength.The microhardness tests show that the minimum hardness is obtained in the heat-affected zone(HAZ).展开更多
We constructed a new set of diabatic poten-tial energy surfaces(PESs)for the two low-est states involved in Li+Li_(2)reaction by us-ing the fundamental-invariant neural net-work method.The Li_(3)system exhibits a coni...We constructed a new set of diabatic poten-tial energy surfaces(PESs)for the two low-est states involved in Li+Li_(2)reaction by us-ing the fundamental-invariant neural net-work method.The Li_(3)system exhibits a coni-cal intersection(CI)at the geometric D_(3)h symmetries with the energy of the CI point significantly lower than the ground-state en-ab initio ergy of the diatomic molecule.The diabaitc PESs accurately reproduce adiabatic en-ergies,derivative coupling,and energy gradient information,thereby providing a high-fideli-ty description of the CI between the two lowest electronic states.Quantum dynamical calcu-lations have revealed significant non-adiabatic effects in the Li+Li_(2)reaction.展开更多
This paper investigates the active traveling wave vibration control of an elastic supported rotating porous aluminium conical shell(CS)under impact loading.Piezoelectric smart materials in the form of micro fiber comp...This paper investigates the active traveling wave vibration control of an elastic supported rotating porous aluminium conical shell(CS)under impact loading.Piezoelectric smart materials in the form of micro fiber composites(MFCs)are used as actuators and sensors.To this end,a metal pore truncated CS with MFCs attached to its surface is considered.Adding artificial virtual springs at two edges of the truncated CS achieves various elastic supported boundaries by changing the spring stiffness.Based on the first-order shear deformation theory(FSDT),minimum energy principle,and artificial virtual spring technology,the theoretical formulations considering the electromechanical coupling are derived.The comparison of the natural frequency of the present results with the natural frequencies reported in previous literature evaluates the accuracy of the present approach.To study the vibration control,the integral quadrature method in conjunction with the differential quadrature approximation in the length direction is used to discretize the partial differential dynamical system to form a set of ordinary differential equations.With the aid of the velocity negative feedback method,both the time history and the input control voltage on the actuator are demonstrated to present the effects of velocity feedback gain,pore distribution type,semi-vertex angle,impact loading,and rotational angular velocity on the traveling wave vibration control.展开更多
Based on the finite-discrete element method,a three-dimensional numerical model for axial impact rock breaking was established and validated.A computational method for energy conversion during impact rock breaking was...Based on the finite-discrete element method,a three-dimensional numerical model for axial impact rock breaking was established and validated.A computational method for energy conversion during impact rock breaking was proposed,and the effects of conical tooth forward rake angle,rock temperature,and impact velocity on rock breaking characteristics and energy transfer laws were analyzed.The results show that during single impact rock breaking with conical tooth bits,merely 7.52%to 12.51%of the energy is utilized for rock breaking,while a significant 57.26%to 78.10%is dissipated as frictional loss.An insufficient forward rake angle increases tooth penetration depth and frictional loss,whereas an excessive forward rake angle reduces penetration capability,causing bit rebound and greater energy absorption by the drill rod.Thus,an optimal forward rake angle exists.Regarding environmental factors,high temperatures significantly enhance impact-induced rock breaking.Thermal damage from high temperatures reduces rock strength and inhibits its energy absorption.Finally,higher impact velocities intensify rock damage,yet excessively high velocities increase frictional loss and reduce the proportion of energy absorbed by the rock,thereby failing to substantially improve rock breaking efficiency.An optimal impact velocity exists.展开更多
A new two-state diabatic potential energy matrix(DPEM)for H3 has been constructed,based on the fun-damental invariant neural network(FI-NN)diabatization method pro-posed in our previous work[Phys.Chem.Chem.Phys.21,150...A new two-state diabatic potential energy matrix(DPEM)for H3 has been constructed,based on the fun-damental invariant neural network(FI-NN)diabatization method pro-posed in our previous work[Phys.Chem.Chem.Phys.21,15040(2019)].In that initial effort,a two-state DPEM was constructed only with a 10 eV energy threshold.The current work aims to expand the en-ergy range and improve the accura-cy of DPEM.This is achieved by the utilization of full configuration inter-action(FCI)with aug-cc-pVnZ ba-sis sets and complete basis set(CBS)extrapolation.The original dataset is augmented with additional points with higher adiabatic energies,which give rise to a total of 10985 data points.The DPEM constructed in this work now enables accurate representation of adiabatic energies up to 18 eV.Quantum dynamic calculations based on this DPEM are nearly identical to those obtained from benchmark surfaces,which makes it the most accurate DPEM for the H3 system to date,therefore facilitating detailed exploration of reaction mechanisms at higher collision energies.展开更多
The necessary and sufficient conditions are presented for NURBS currves of an arbitrary degree to precisely represent circular arcs. NURBS curves of degree 2 or degree 3 representing circular arcs can be regarded as s...The necessary and sufficient conditions are presented for NURBS currves of an arbitrary degree to precisely represent circular arcs. NURBS curves of degree 2 or degree 3 representing circular arcs can be regarded as special cases of the conditions. It is studied whether two NURBS curves of degree three are equivalent. Classifications of conic section curves represented by cubic or quadratic NURBS curves are proposed.展开更多
A DP curve is a new kind of parametric curve defined by Delgado and Pena (2003); Jt has very good properties when used in both geometry and algebra, i.e., it is shape preserving and has a linear time complexity for ...A DP curve is a new kind of parametric curve defined by Delgado and Pena (2003); Jt has very good properties when used in both geometry and algebra, i.e., it is shape preserving and has a linear time complexity for evaluation. It overcomes the disadvantage of some generalized Ball curves that are fast for evaluation but cannot preserve shape, and the disadvantage of the B6zier curve that is shape preserving but slow for evaluation. It also has potential applications in computer-aided design and manufacturing (CAD/CAM) systems. As conic section is often used in shape design, this paper deduces the necessary and suffi- cient conditions for rational cubic or quartic DP representation of conics to expand the application area of DP curves. The main idea is based on the transformation relationship between low degree DP basis and Bemstein basis, and the representation tbeory of conics in rational low degree B6zier form. The results can identify whether a rational low degree DP curve is a conic section and also express a given conic section in rational low degree DP form, i.e., give positions of the control points and values of the weights of rational cubic or quartic DP conics. Finally, several numerical examples are presented to validate the effectiveness of the method.展开更多
Seismic isolation effectively reduces seismic demands on building structures by isolating the superstructure from ground vibrations during earthquakes.However,isolation strategies give less attention to acceleration-s...Seismic isolation effectively reduces seismic demands on building structures by isolating the superstructure from ground vibrations during earthquakes.However,isolation strategies give less attention to acceleration-sensitive systems or equipment.Meanwhile,as the isolation layer’s displacement grows,the stiffness and frequency of traditional rolling and sliding isolation bearings increases,potentially causing self-centering and resonance concerns.As a result,a new conical pendulum bearing has been selected for acceleration-sensitive equipment to increase self-centering capacity,and additional viscous dampers are incorporated to enhance system damping.Moreover,the theoretical formula for conical pendulum bearings is supplied to analyze the device’s dynamic parameters,and shake table experiments are used to determine the proposed device’s isolation efficiency under various conditions.According to the test results,the newly proposed devices have remarkable isolation performance in terms of minimizing both acceleration and displacement responses.Finally,a numerical model of the isolation system is provided for further research,and the accuracy is demonstrated by the aforementioned experiments.展开更多
文摘We introduce CURDIS,a template for algorithms to discretize arcs of regular curves by incrementally producing a list of support pixels covering the arc.In this template,algorithms proceed by finding the tangent quadrant at each point of the arc and determining which side the curve exits the pixel according to a tailored criterion.These two elements can be adapted for any type of curve,leading to algorithms dedicated to the shape of specific curves.While the calculation of the tangent quadrant for various curves,such as lines,conics,or cubics,is simple,it is more complex to analyze how pixels are traversed by the curve.In the case of conic arcs,we found a criterion for determining the pixel exit side.This leads us to present a new algorithm,called CURDIS-C,specific to the discretization of conics,for which we provide all the details.Surprisingly,the criterion for conics requires between one and three sign tests and four additions per pixel,making the algorithm efficient for resource-constrained systems and feasible for fixed-point or integer arithmetic implementations.Our algorithm also perfectly handles the pathological cases in which the conic intersects a pixel twice or changes quadrants multiple times within this pixel,achieving this generality at the cost of potentially computing up to two square roots per arc.We illustrate the use of CURDIS for the discretization of different curves,such as ellipses,hyperbolas,and parabolas,even when they degenerate into lines or corners.
文摘In this paper,based on the mean value theorem of differential,a new method of generating conics such as circles and parabolas is given,and the related algorithm for generating conics is designed.
基金Supported by the National Natural Science Foundations of China(61070065, 60933007)the Zhejiang Provincial Natural Science Foundation of China(Y6090211)
文摘In CAGD, the Said-Ball representation for a polynomial curve has two advantagesover the B′ezier representation, since the degrees of Said-Ball basis are distributed in a step type.One advantage is that the recursive algorithm of Said-Ball curve for evaluating a polynomialcurve runs twice as fast as the de Casteljau algorithm of B′ezier curve. Another is that theoperations of degree elevation and reduction for a polynomial curve in Said-Ball form are simplerand faster than in B′ezier form. However, Said-Ball curve can not exactly represent conics whichare usually used in aircraft and machine element design. To further extend the utilizationof Said-Ball curve, this paper deduces the representation theory of rational cubic and quarticSaid-Ball conics, according to the necessary and su?cient conditions for conic representation inrational low degree B′ezier form and the transformation formula from Bernstein basis to Said-Ballbasis. The results include the judging method for whether a rational quartic Said-Ball curve is aconic section and design method for presenting a given conic section in rational quartic Said-Ballform. Many experimental curves are given for confirming that our approaches are correct ande?ective.
文摘The n-ary subdivision schemes contrast favorably with their binary analogues because they are capable to produce limit functions with the same (or higher) smoothness but smaller support. We present an algorithm to generate the 4-point n-ary non-stationary scheme for trigonometric, hyperbolic and polynomial case with the parameter for describing curves. The performance, analysis and comparison of the 4-point ternary scheme are also presented.
文摘We analyze the configurations of conics and lines on a special class of Kummer octic surfaces. In particular, we bound the number of conics by 176 and show that there is a unique surface with 176 conics, all irreducible: it admits a faithful action of one of the Mukai groups. Therefore, we also discuss conics and lines on Mukai surfaces: we discover a double plane(ramified at a smooth sextic curve) that contains 8,910 smooth conics.
基金Supported by the National Natural Science Foundation of China(11971450)partially supported by the Project of Stable Support for Youth Team in Basic Research Field,CAS(YSBR-001)。
文摘In this paper,we introduce and prove three analytic results related to uniform convergence,properties of Newtonian potential,and convergence of sequences in Sobolev space constrained by their Laplacian.Then,utilizing our analytic results,we develop a complete proof of a crucial estimate appearing in the results of Guofang Wang and Xiaohua Zhu,which states the classification of extremal Hermitian metrics with finite energy and area on compact Riemann surfaces and finite singularities satisfying small singular angles.
文摘This study examines the Carolina Bays and Nebraska Rainwater Basins,using high-resolution LiDAR elevation models to analyze their unique shapes.The research reveals that well-preserved Bays exhibit precise elliptical geometry,distinguishing them from various oriented lakes they are often compared to.While the timing of their formation is discussed,the primary goal of this paper is to establish a repeatable method for quantifying the elliptical nature of these dominant geomorphic landforms.By applying the least squares method to points selected along the perimeters of these extraordinary basins,the study confirms their elliptical geometry with an error margin of less than 3%.This rigorous mathematical approach sets a high standard for any hypothesis attempting to explain the origin of these depressions using natural environmental conditions.Notably,the long axes of these elliptical basins converge near the Great Lakes region,and since ellipses can be described as conic sections,this finding supports the plausibility of a cosmic impact origin.The study suggests that these basins may be secondary impact features formed during a past glacial cycle of the Laurentide Ice Sheet.This research establishes a strong mathematical foundation to support future studies on the possible impact origin of the Carolina Bays and Nebraska Rainwater Basins.
基金supported by the Czech Technical University in Prague(Grant no.SGS23/108/OHK2/2T/12).
文摘This study investigates the traction performance and efficiency of a conical friction continuously variable trans-mission.A new mathematical model was developed and validated through experimental measurements using a custom-built test rig to predict these parameters accurately.The results showed a close correlation between the-oretical predictions and experimental data.Key findings include the impact of load on efficiency and the model’s ability to predict performance under various operating conditions.The study provides detailed insights into the dynamics of conical friction variator and demonstrates the model’s effectiveness in predicting real-world behav-ior.The developed model can assist in selecting optimal parameters during the design phase and can be applied to other developing variator systems to achieve maximum efficiency.
基金supported by the National Natural Science Foundation of China(Nos.52174099 and 52474168)the Science and Technology Innovation Program of Hunan Province,China(No.2023RC3050)+1 种基金the Natural Science Foundation of Hunan,China(No.2024JJ4064)the Open Fund of the State Key Laboratory of Safety Technology of Metal Mines(No.kfkt2023-01).
文摘Real-time identification of rock strength and cuttability based on monitoring while cutting during excavation is essential for key procedures such as the precise adjustment of excavation parameters and the in-situ modification of hard rocks.This study proposes an in-telligent approach for predicting rock strength and cuttability.A database comprising 132 data sets is established,containing cutting para-meters(such as cutting depth and pick angle),cutting responses(such as specific energy and instantaneous cutting rate),and rock mech-anical parameters collected from conical pick-cutting experiments.These parameters serve as input features for predicting the uniaxial compressive strength and tensile strength of rocks using regression fitting and machine learning methodologies.In addition,rock cuttabil-ity is classified using a combination of the analytic hierarchy process and fuzzy comprehensive evaluation method,and subsequently iden-tified through machine learning approaches.Various models are compared to determine the optimal predictive and classification models.The results indicate that the optimal model for uniaxial compressive strength and tensile strength prediction is the genetic algorithm-optimized backpropagation neural network model,and the optimal model for rock cuttability classification is the radial basis neural network model.
基金supported by financial grants from the National Natural Science Foundation of China(Grant Nos.52334003 and 52104111)the National Key R&D Program of China(Grant No.2022YFC2905600)。
文摘Water-weakening presents a promising strategy for the in-situ improvement of rock cuttability.This study unveils the influences of water saturation on the mechanical response and fragmentation characteristics of rock samples.A series of rock-cutting tests using conical pick indentation was conducted on three types of sandstone samples under both dry and water-saturated conditions.The relationships between cutting force and indentation depth,as well as typical cuttability indices are determined and compared for dry and water-saturated samples.The experimental results reveal that the presence of water facilitates shearing failure in rock samples,as well as alleviates the fluctuations in the cutting force-indentation depth curve Furthermore,the peak cutting force(F_(p)),cutting work(W_(p)),and specific energy(SE)undergo apparent decrease after water saturation,whereas the trend in the indentation depth at rock failure(D_(f))varies across different rock types.Additionally,the water-induced percentage reductions in F_(p)and SE correlate positively with the quartz and swelling clay content within the rocks,suggesting that the cuttability improvement due to water saturation is attributed to the combined effects of stress corrosion and frictional reduction.These findings carry significant implications for improving rock cuttability in mechanized excavation of hard rock formations.
基金supported by the NSFC Key International(Regional)Cooperative Research Projects(No.52020105001)National Natural Science Foundation of China(52304014)+2 种基金China Postdoctoral Science Foundation funded project(2023M733873)the Science Foundation of China University of Petroleum,Beijing(No.2462023SZBH003)General Program of National Natural Science Foundation of China(52374016,52274016)。
文摘The oil and gas stored in deep and ultra-deep carbonate reservoirs is the focus of future exploration and development.Conical PDC(Polycrystalline Diamond Compact)cutter,which is a new kind of PDC cutter,can significantly improve the rate of penetration(ROP)and extend PDC bit life in hard and abrasive formations.However,the breakage characteristics and failure mode of the conical PDC cutter cutting carbonate rock is still masked.In this paper,a series of single-cutter cutting tests were carried out with the conical and conventional PDC cutters.The cutting force,rock-breaking process,surface morphology of cutting grooves and cuttings characteristic were analyzed.Based on the derived formula of the brittle fracture index,the failure model of carbonate rock was quantitatively analyzed under the action of conical and conventional cutter.The results show that the average cutting force of the conical cutter is less than that of the conventional cutter,which means greater stability of the cutting process using the conical cutter.Carbonate rock with calcite as the main component tends to generate blocky rock debris by conical cutter.The height of the cuttings generated by the conical cutter is 0.5 mm higher than that generated by the conventional cutter.The conical cutter exhibits enhanced penetration capabilities within carbonate rock.The accumulation of rock debris in front of the conventional cutter is obvious.Whereas,the conical cutter facilitates the cuttings transport,thereby alleviating drilling stickiness slip.At different cutting depths,the conical cutter consistently causes asymmetric jagged brittle tensile fracture zones on both sides of the cutting groove.Calculations based on the brittle fracture index demonstrate that the brittle fracture index of the conical cutter generally doubles that of the conventional cutter.For carbonate rock,the conical cutter displays superior utilization of brittle fracture abilities.The research findings of this work offer insights into the breakage process and failure mode of carbonate rock by the conical cutter.
基金supported by the Guangdong high level Innovation Research Institute(Grant No.2021B0909050006).
文摘Because of their remarkable properties,room-temperature ionic liquids(RTILs)are used widely in electrochemistry,fuel cells,supercapacitors,and even DNA sequencing,and many of these applications involve the transport of RTILs in nanoscale media.Particularly for single-molecule detection,the RTIL must be mixed with a solvent(e.g.,water)so that the electrolyte has both high viscosity and conductivity to obtain excellent signals.If a RTIL contains a quantity of water in bulk,this has a significant effect on its properties(e.g.,the electrochemical window),thereby limiting some applications.However,the physicochemical properties of RTILs containing water in nanoconfined spaces remain unclear,especially their ionic transport behavior.Therefore,reported here is a study of the ionic transport behavior of mixed RTIL/water solutions at the nanoscale using a single conical nanochannel as a nanofluidic platform.The conductivity of the mixtures in the nanoconfined space was closely related to the nanochannel size,and highly diluted mixed solutions resulted in a nonlinear rectificationreversed current,which was possibly due to the adsorption of cations on the nanochannel wall.The maximum rectification ratio was 114,showing excellent rectification that could be used to realize newly conceptualized nanofluidic diodes.In summary,this work provides an exhaustive understanding of the nonlinear ion transport of RTIL/water mixtures and a theoretical foundation for applying RTILs in energy storage and conversion and bio-sensing.
文摘This paper focuses on the effect of welding parameters on microstructure and tensile strength of joints welded by friction-stir welding(FSW).The effects of pin profile(threaded conical,non-threaded conical and triangular pin),tool rotational speed(800,1000,1250 and 1600 r·min^(-1))and welding speed(63,80,100 and 125 mm·min^(-1))on the mechanical and microstructural properties of joints welded in 5-mm 7075-T6 were investigated.The results depict that the pin profile has a major role in the shape and grain size of the weld nugget zone(WNZ).In other words,a wider weld nugget and a finer grain size by threaded conical pin are obtained in WNZ.The attained data of tensile tests show that the maximum ultimate tensile strength(UTS)belongs to the threaded conical pin which is attributed to a finer grain size generated in the weld nugget zone.Additionally,it is found that the tensile strength increases with the welding speed increasing,whereas rotational speed has a bilateral effect on the tensile strength.The microhardness tests show that the minimum hardness is obtained in the heat-affected zone(HAZ).
基金supported by the National Natural Science Foundation of China(Nos.22103084 and 22233003 to Jiayu Huang,and No.22288201 to Dong H.Zhang)the Innovation Program for Quantum Science and Technology(No.2021ZD0303305)to Dong H.Zhangthe Dalian Innovation Support Program(No.2021RD05)to Dong H.Zhang.
文摘We constructed a new set of diabatic poten-tial energy surfaces(PESs)for the two low-est states involved in Li+Li_(2)reaction by us-ing the fundamental-invariant neural net-work method.The Li_(3)system exhibits a coni-cal intersection(CI)at the geometric D_(3)h symmetries with the energy of the CI point significantly lower than the ground-state en-ab initio ergy of the diatomic molecule.The diabaitc PESs accurately reproduce adiabatic en-ergies,derivative coupling,and energy gradient information,thereby providing a high-fideli-ty description of the CI between the two lowest electronic states.Quantum dynamical calcu-lations have revealed significant non-adiabatic effects in the Li+Li_(2)reaction.
基金Supported by the National Natural Science Foundation of China(Nos.12272056 and 11832002)。
文摘This paper investigates the active traveling wave vibration control of an elastic supported rotating porous aluminium conical shell(CS)under impact loading.Piezoelectric smart materials in the form of micro fiber composites(MFCs)are used as actuators and sensors.To this end,a metal pore truncated CS with MFCs attached to its surface is considered.Adding artificial virtual springs at two edges of the truncated CS achieves various elastic supported boundaries by changing the spring stiffness.Based on the first-order shear deformation theory(FSDT),minimum energy principle,and artificial virtual spring technology,the theoretical formulations considering the electromechanical coupling are derived.The comparison of the natural frequency of the present results with the natural frequencies reported in previous literature evaluates the accuracy of the present approach.To study the vibration control,the integral quadrature method in conjunction with the differential quadrature approximation in the length direction is used to discretize the partial differential dynamical system to form a set of ordinary differential equations.With the aid of the velocity negative feedback method,both the time history and the input control voltage on the actuator are demonstrated to present the effects of velocity feedback gain,pore distribution type,semi-vertex angle,impact loading,and rotational angular velocity on the traveling wave vibration control.
基金Supported by Major Instrument Project of National Natural Science Foundation of China(52327803)Major Project of National Natural Science Foundation of China(52192622).
文摘Based on the finite-discrete element method,a three-dimensional numerical model for axial impact rock breaking was established and validated.A computational method for energy conversion during impact rock breaking was proposed,and the effects of conical tooth forward rake angle,rock temperature,and impact velocity on rock breaking characteristics and energy transfer laws were analyzed.The results show that during single impact rock breaking with conical tooth bits,merely 7.52%to 12.51%of the energy is utilized for rock breaking,while a significant 57.26%to 78.10%is dissipated as frictional loss.An insufficient forward rake angle increases tooth penetration depth and frictional loss,whereas an excessive forward rake angle reduces penetration capability,causing bit rebound and greater energy absorption by the drill rod.Thus,an optimal forward rake angle exists.Regarding environmental factors,high temperatures significantly enhance impact-induced rock breaking.Thermal damage from high temperatures reduces rock strength and inhibits its energy absorption.Finally,higher impact velocities intensify rock damage,yet excessively high velocities increase frictional loss and reduce the proportion of energy absorbed by the rock,thereby failing to substantially improve rock breaking efficiency.An optimal impact velocity exists.
基金supported by the National Natural Science Foundation of China(No.22288201)the Inno-vation Program for Quantum Science and Technology(No.2021ZD0303305)the Dalian Innovation Sup-port Program(No.2021RD05).
文摘A new two-state diabatic potential energy matrix(DPEM)for H3 has been constructed,based on the fun-damental invariant neural network(FI-NN)diabatization method pro-posed in our previous work[Phys.Chem.Chem.Phys.21,15040(2019)].In that initial effort,a two-state DPEM was constructed only with a 10 eV energy threshold.The current work aims to expand the en-ergy range and improve the accura-cy of DPEM.This is achieved by the utilization of full configuration inter-action(FCI)with aug-cc-pVnZ ba-sis sets and complete basis set(CBS)extrapolation.The original dataset is augmented with additional points with higher adiabatic energies,which give rise to a total of 10985 data points.The DPEM constructed in this work now enables accurate representation of adiabatic energies up to 18 eV.Quantum dynamic calculations based on this DPEM are nearly identical to those obtained from benchmark surfaces,which makes it the most accurate DPEM for the H3 system to date,therefore facilitating detailed exploration of reaction mechanisms at higher collision energies.
文摘The necessary and sufficient conditions are presented for NURBS currves of an arbitrary degree to precisely represent circular arcs. NURBS curves of degree 2 or degree 3 representing circular arcs can be regarded as special cases of the conditions. It is studied whether two NURBS curves of degree three are equivalent. Classifications of conic section curves represented by cubic or quadratic NURBS curves are proposed.
基金supported by the National Natural Science Foundation of China (Nos.60873111 and 60933007)the Natural Science Foundation of Zhejiang Province,China (No.Y6090211)
文摘A DP curve is a new kind of parametric curve defined by Delgado and Pena (2003); Jt has very good properties when used in both geometry and algebra, i.e., it is shape preserving and has a linear time complexity for evaluation. It overcomes the disadvantage of some generalized Ball curves that are fast for evaluation but cannot preserve shape, and the disadvantage of the B6zier curve that is shape preserving but slow for evaluation. It also has potential applications in computer-aided design and manufacturing (CAD/CAM) systems. As conic section is often used in shape design, this paper deduces the necessary and suffi- cient conditions for rational cubic or quartic DP representation of conics to expand the application area of DP curves. The main idea is based on the transformation relationship between low degree DP basis and Bemstein basis, and the representation tbeory of conics in rational low degree B6zier form. The results can identify whether a rational low degree DP curve is a conic section and also express a given conic section in rational low degree DP form, i.e., give positions of the control points and values of the weights of rational cubic or quartic DP conics. Finally, several numerical examples are presented to validate the effectiveness of the method.
基金Scientific Research Fund of Institute of Engineering Mechanics,CEA under Grant No.2019A03Scientific Research Fund of Institute of Engineering Mechanics,CEA under Grant No.2021D12National Key R&D Program of China under No.2018YFC1504404。
文摘Seismic isolation effectively reduces seismic demands on building structures by isolating the superstructure from ground vibrations during earthquakes.However,isolation strategies give less attention to acceleration-sensitive systems or equipment.Meanwhile,as the isolation layer’s displacement grows,the stiffness and frequency of traditional rolling and sliding isolation bearings increases,potentially causing self-centering and resonance concerns.As a result,a new conical pendulum bearing has been selected for acceleration-sensitive equipment to increase self-centering capacity,and additional viscous dampers are incorporated to enhance system damping.Moreover,the theoretical formula for conical pendulum bearings is supplied to analyze the device’s dynamic parameters,and shake table experiments are used to determine the proposed device’s isolation efficiency under various conditions.According to the test results,the newly proposed devices have remarkable isolation performance in terms of minimizing both acceleration and displacement responses.Finally,a numerical model of the isolation system is provided for further research,and the accuracy is demonstrated by the aforementioned experiments.