期刊文献+
共找到6,140篇文章
< 1 2 250 >
每页显示 20 50 100
Inter‑Skeleton Conductive Routes Tuning Multifunctional Conductive Foam for Electromagnetic Interference Shielding,Sensing and Thermal Management
1
作者 Xufeng Li Chunyan Chen +10 位作者 Zhenyang Li Peng Yi Haihan Zou Gao Deng Ming Fang Junzhe He Xin Sun Ronghai Yu Jianglan Shui Caofeng Pan Xiaofang Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期19-36,共18页
Conductive polymer foam(CPF)with excellent compressibility and variable resistance has promising applications in electromagnetic interference(EMI)shielding and other integrated functions for wearable electronics.Howev... Conductive polymer foam(CPF)with excellent compressibility and variable resistance has promising applications in electromagnetic interference(EMI)shielding and other integrated functions for wearable electronics.However,its insufficient change amplitude of resistance with compressive strain generally leads to a degradation of shielding performance during deformation.Here,an innovative loading strategy of conductive materials on polymer foam is proposed to significantly increase the contact probability and contact area of conductive components under compression.Unique inter-skeleton conductive films are constructed by loading alginate-decorated magnetic liquid metal on the polymethacrylate films hanged between the foam skeleton(denoted as AMLM-PM foam).Traditional point contact between conductive skeletons under compression is upgraded to planar contact between conductive films.Therefore,the resistance change of AMLM-PM reaches four orders of magnitude under compression.Moreover,the inter-skeleton conductive films can improve the mechanical strength of foam,prevent the leakage of liquid metal and increase the scattering area of EM wave.AMLM-PM foam has strain-adaptive EMI shielding performance and shows compression-enhanced shielding effectiveness,solving the problem of traditional CPFs upon compression.The upgrade of resistance response also enables foam to achieve sensitive pressure sensing over a wide pressure range and compression-regulated Joule heating function. 展开更多
关键词 Inter-skeleton conductive films conductive polymer foam Liquid metal Electromagnetic interference shielding
在线阅读 下载PDF
Electrically conductive“SMART”hydrogels for on-demand drug delivery
2
作者 Soumajyoti Ghosh Nikhil Kumar Santanu Chattopadhyay 《Asian Journal of Pharmaceutical Sciences》 2025年第1期26-47,共22页
In the current transformative era of biomedicine,hydrogels have established their presence in biomaterials due to their superior biocompatibility,tuneability and resemblance with native tissue.However,hydrogels typica... In the current transformative era of biomedicine,hydrogels have established their presence in biomaterials due to their superior biocompatibility,tuneability and resemblance with native tissue.However,hydrogels typically exhibit poor conductivity due to their hydrophilic polymer structure.Electrical conductivity provides an important enhancement to the properties of hydrogel-based systems in various biomedical applications such as drug delivery and tissue engineering.Consequently,researchers are developing combinatorial strategies to develop electrically responsive“SMART”systems to improve the therapeutic efficacy of biomolecules.Electrically conductive hydrogels have been explored for various drug delivery applications,enabling higher loading of therapeutic cargo with on-demand delivery.This review emphasizes the properties,mechanisms,fabrication techniques and recent advancements of electrically responsive“SMART”systems aiding on-site drug delivery applications.Additionally,it covers prospects for the successful translation of these systems into clinical research. 展开更多
关键词 HYDROGELS conductive polymers Electrically conductive hydrogels On-demand drug delivery
暂未订购
Artificial Intelligence-Assisted Conductive Hydrogel Dressings for Refractory Wounds Monitoring 被引量:2
3
作者 Yumo She He Liu +10 位作者 Hailiang Yuan Yiqi Li Xunjie Liu Ruonan Liu Mengyao Wang Tingting Wang Lina Wang Meihan Liu Wenyu Wan Ye Tian Kai Zhang 《Nano-Micro Letters》 2025年第12期492-525,共34页
Refractory wounds cause significant harm to the health of patients and the most common treatments in clinical practice are surgical debridement and wound dressings.However,certain challenges,including surgical difficu... Refractory wounds cause significant harm to the health of patients and the most common treatments in clinical practice are surgical debridement and wound dressings.However,certain challenges,including surgical difficulty,lengthy recovery times,and a high recurrence rate persist.Conductive hydrogel dressings with combined monitoring and therapeutic properties have strong advantages in promoting wound healing due to the stimulation of endogenous current on wounds and are the focus of recent advancements.Therefore,this review introduces the mechanism of conductive hydrogel used for wound monitoring and healing,the materials selection of conductive hydrogel dressings used for wound monitoring,focuses on the conductive hydrogel sensor to monitor the output categories of wound status signals,proving invaluable for non-invasive,real-time evaluation of wound condition to encourage wound healing.Notably,the research of artificial intelligence(AI)model based on sensor derived data to predict the wound healing state,AI makes use of this abundant data set to forecast and optimize the trajectory of tissue regeneration and assess the stage of wound healing.Finally,refractory wounds including pressure ulcers,diabetes ulcers and articular wounds,and the corresponding wound monitoring and healing process are discussed in detail.This manuscript supports the growth of clinically linked disciplines and offers motivation to researchers working in the multidisciplinary field of conductive hydrogel dressings. 展开更多
关键词 Artificial intelligence conductive hydrogels Refractory wounds Wound healing Wound monitoring
暂未订购
Highly electrically conductive MOF/conducting polymer nanocomposites toward tunable electromagnetic wave absorption 被引量:1
4
作者 Xin Wu Peiyuan Kang +5 位作者 Yinghan Zhang Haocheng Guo Shuoying Yang Qi Zheng Lianjun Wang Wan Jiang 《Journal of Materials Science & Technology》 2025年第2期258-269,共12页
Metal-organic frameworks(MOFs)have attracted significant interest as self-templates and precursors for the synthesis of carbon-based composites aimed at electromagnetic wave(EMW)absorption.However,the utilization of h... Metal-organic frameworks(MOFs)have attracted significant interest as self-templates and precursors for the synthesis of carbon-based composites aimed at electromagnetic wave(EMW)absorption.However,the utilization of high-temperature treatments has introduced uncertainties regarding the compositions and microstructures of resulting derivatives.Additionally,complete carbonization has led to diminished yields of the produced carbon composites,significantly limiting their practical applications.Consequently,the exploration of pristine MOF-based EMW absorbers presents an intriguing yet challenging endeavor,primarily due to inherently low electrical conductivity.In this study,we showcase the utilization of structurally robust Zr-MOFs as scaffolds to build highly conductive Zr-MOF/PPy composites via an inner-outer dual-modification approach,which involves the production of conducting polypyrrole(PPy)both within the confined nanoporous channels and the external surface of Zr-MOFs via post-synthetic modification.The interconnection of confined PPy and surface-lined PPy together leads to a consecutive and extensive conducting network to the maximum extent.This therefore entails outstanding conductivity up to~14.3 S cm^(-1) in Zr-MOF/PPy composites,which is approximately 1-2 orders of magnitude higher than that for conductive MOF nanocomposites constructed from either inner or outer modification.Benefiting from the strong and tunable conduction loss,as well as the induced dielectric polarization originated from the porous structures and MOF-polymer interfaces,Zr-MOF/PPy exhibits excellent microwave attenuation capabilities and a tunable absorption frequency range.Specifically,with only 15 wt.%loading,the minimum reflection loss(RLmin)can reach up to-67.4 dB,accompanied by an effective absorption bandwidth(EAB)extending to 6.74 GHz.Furthermore,the microwave absorption characteristics can be tailored from the C-band to the Ku-band by adjusting the loading of PPy.This work provides valuable insights into the fabrication of conductive MOF composites by presenting a straightforward pathway to enhance and reg-ulate electrical conduction in MOF-based nanocomposites,thus paving a way to facilely fabricate pristine MOF-based microwave absorbers. 展开更多
关键词 conductive mof nanocomposites Electromagnetic wave absorption MOF/conducting polymer Electrical conductivity Zr-MOF/PPy
原文传递
Ultrasensitive electrospinning fibrous strain sensor with synergistic conductive network for human motion monitoring and human-computer interaction 被引量:1
5
作者 Jingwen Wang Shun Liu +6 位作者 Zhaoyang Chen Taoyu Shen Yalong Wang Rui Yin Hu Liu Chuntai Liu Changyu Shen 《Journal of Materials Science & Technology》 2025年第10期213-222,共10页
With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, ... With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, and human-computer interaction owing to their outstanding sensing performance. This paper reports a strain sensor with synergistic conductive network, consisting of stable carbon nanotube dispersion (CNT) layer and brittle MXene layer by dip-coating and electrostatic self-assembly method, and breathable three-dimensional (3D) flexible substrate of thermoplastic polyurethane (TPU) fibrous membrane prepared through electrospinning technology. The MXene/CNT@PDA-TPU (MC@p-TPU) flexible strain sensor had excellent air permeability, wide operating range (0–450 %), high sensitivity (Gauge Factor, GFmax = 8089.7), ultra-low detection limit (0.05 %), rapid response and recovery times (40 ms/60 ms), and excellent cycle stability and durability (10,000 cycles). Given its superior strain sensing capabilities, this sensor can be applied in physiological signals detection, human motion pattern recognition, and driving exoskeleton robots. In addition, MC@p-TPU fibrous membrane also exhibited excellent photothermal conversion performance and can be used as a wearable photo-heater, which has far-reaching application potential in the photothermal therapy of human joint diseases. 展开更多
关键词 Flexible strain sensors Synergistic conductive network Electrospinning fibrous membrane Motion monitoring Human-machine interface
原文传递
Laser‑Induced Highly Stable Conductive Hydrogels for Robust Bioelectronics
6
作者 Yibo Li Hao Zhou +1 位作者 Huayong Yang Kaichen Xu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期117-120,共4页
Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung H... Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung Hwan Ko and Taek-Soo Kim’s team introduced a laserinduced phase separation and adhesion method for fabricating conductive hydrogels consisting of pure poly(3,4-ethylenedioxythiophene):polystyrene sulfonate on polymer substrates.The laser-induced phase separation and adhesion treated conducting polymers can be selectively transformed into conductive hydrogels that exhibit wet conductivities of 101.4 S cm^(−1) with a spatial resolution down to 5μm.Moreover,they maintain impedance and charge-storage capacity even after 1 h of sonication.The micropatterned electrode arrays demonstrate their potential in long-term in vivo signal recordings,highlighting their promising role in the field of bioelectronics. 展开更多
关键词 Laser processing conductive hydrogels Stable interface Bio-interfacing electrodes Bioelectronic application
在线阅读 下载PDF
Effect of a Carbon Fibre-steel Fibre-graphite Conductive Filler on the Electrothermal Properties of Cementitious Materials
7
作者 FAN Yanan WEI Hong +1 位作者 ZHENG Hongyong DU Hongxiu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期141-151,共11页
Carbon fibre,steel fibre and graphite were used as conductive fillers to prepare cementitious materials with excellent electrothermal properties.The electrically conductive cementitious materials with different volume... Carbon fibre,steel fibre and graphite were used as conductive fillers to prepare cementitious materials with excellent electrothermal properties.The electrically conductive cementitious materials with different volume dosages were analysed through compressive and flexural strength,electrochemical impedance spectroscopy and temperature rise tests.An equivalent circuit model was established to study the electrically conductive heat generation mechanism in the electrically conductive cementitious composites.The results indicate that the mechanical properties of cementitious composite materials with a ternary conductive phase are better than those of pristine cementitious materials because the fibrous filler improves their mechanical properties.However,the incorporation of graphite in the material reduces its strength.Introducing fibrous and point-like conductive phase materials into the cementitious material enhances the overall conductive pathway and considerably reduces the electrical resistance of the cementitious material,enhancing its conductive properties.The volume ratios of carbon fibre,steel fibre and graphite that achieve an optimal complex doping in the cementitious material were 0.35%,0.6%and 6%,respectively.This was determined using the mutation point of each circuit element parameter as the percolation threshold.In addition,at a certain safety voltage,there is a uniform change between the internal and surface temperatures of the conductive cementitious material,and the heating effect in this materialis is considerably better than that in the pristine cementitious material. 展开更多
关键词 cementitious composites conductive fillers electrothermal properties electrochemical impedance spectroscopy
原文传递
Innovative self-healing conductive organogel:Pioneering the future of electronics
8
作者 Salim Ullah Jianliang Shen Hong-Tao Xu 《Chinese Chemical Letters》 2025年第3期3-5,共3页
Self-healing hydrogels utilize inherent intermolecular forces to autonomously heal physical damage resulting from excessive strain,pressure,or tearing.Applying these materials in soft robotics and tissue engineering c... Self-healing hydrogels utilize inherent intermolecular forces to autonomously heal physical damage resulting from excessive strain,pressure,or tearing.Applying these materials in soft robotics and tissue engineering could be beneficial.On the other hand,their efficacy in stretchable and mechanically resistant circuits is hindered by their limited electrical conductivity. 展开更多
关键词 soft robotics conductive organogels electrical conductivity intermolecular forces HYDROGELS tissue engineering autonomously heal physical damage self healing
原文传递
Super Tough, Highly Ionically Conductive, Self-healing Elastomers with Dynamic Metal Coordination Crosslinks for Flexible Sensors
9
作者 Ming-Jun Tang Jian-Hui Yan +3 位作者 Yu-Jun Liu Yi Wei Yu-Xi Li Xu-Ming Xie 《Chinese Journal of Polymer Science》 2025年第9期1565-1575,I0009,共12页
Integrated conductive elastomers with excellent mechanical performance,stable high conductivity,self-healing capabilities,and high transparency are critical for advancing wearable devices.Nevertheless,achieving an opt... Integrated conductive elastomers with excellent mechanical performance,stable high conductivity,self-healing capabilities,and high transparency are critical for advancing wearable devices.Nevertheless,achieving an optimal balance among these properties remains a significant challenge.Herein,through in situ free-radical copolymerization of 2-[2-(2-methoxyethoxy)ethoxy]ethyl acrylate(TEEA)and vinylimidazole(VI)in the presence of polyethylene glycol(PEG;Mn=400),tough P(TEEA-co-VI)/PEG elastomers with multiple functionalities were prepared,in which P(TEEA-co-VI)was dynamically cross-linked by imidazole-Zn^(2+)metal coordination crosslinks,and physically blended with PEG as polymer electrolyte to form a homogeneous mixture.Notably,Zn^(2+)has a negligible impact on the polymerization process,allowing for the in situ formation of numerous imidazole-Zn^(2+)metal coordination crosslinks,which can effectively dissipate energy upon stretching to largely reinforce the elastomers.The obtained P(TEEA-co-VI)/PEG elastomers exhibited a high toughness of 10.0 MJ·m^(-3) with a high tensile strength of 3.3 MPa and a large elongation at break of 645%,along with outstanding self-healing capabilities due to the dynamic coordination crosslinks.Moreover,because of the miscibility of PEG with PTEEA copolymer matrix,and Li+can form weak coordination interactions with the ethoxy(EO)units in PEG and PTEEA,acting as a bridge to integrate PEG into the elastomer network.The resulted P(TEEA-co-VI)/PEG elastomers showed high transparency(92%)and stable high conductivity of 1.09×10_(-4) S·cm^(-1).In summary,the obtained elastomers exhibited a well-balanced combination of high toughness,high ionic conductivity,excellent self-healing capabilities,and high transparency,making them promising for applications in flexible strain sensors. 展开更多
关键词 conductive elastomers TOUGH Metal-coordination SELF-HEALING POLYACRYLATE
原文传递
In Situ Formation of Bifunctional Interlayer on 3D Conductive Scaffold for Dendrite-Free Li Metal Batteries
10
作者 Yonghwan Kim Dohyeong Kim +7 位作者 Minjun Bae Yujin Chang Won Young An Hwichan Hong Seon Jae Hwang Dongwan Kim Jeongyeon Lee Yuanzhe Piao 《Energy & Environmental Materials》 2025年第3期68-81,共14页
Regulating lithium(Li)plating/stripping behavior in three-dimensional(3D)conductive scaffolds is critical to stabilizing Li metal batteries(LMBs).Surface protrusions and roughness in these scaffolds can induce uneven ... Regulating lithium(Li)plating/stripping behavior in three-dimensional(3D)conductive scaffolds is critical to stabilizing Li metal batteries(LMBs).Surface protrusions and roughness in these scaffolds can induce uneven distributions of the electric fields and ionic concentrations,forming“hot spots.”Hot spots may cause uncontrollable Li dendrites growth,presenting significant challenges to the cycle stability and safety of LMBs.To address these issues,we construct a Li ionic conductive-dielectric gradient bifunctional interlayer(ICDL)onto a 3D Li-injected graphene/carbon nanotube scaffold(LGCF)via in situ reaction of exfoliated hexagonal boron nitride(fhBN)and molten Li.Microscopic and spectroscopic analyses reveal that ICDL consists of fhBN-rich outer layer and inner layer enriched with Li_(3)N and Li-boron composites(Li-B).The outer layer utilizes dielectric properties to effectively homogenize the electric field,while the inner layer ensures high Li ion conductivity.Moreover,DFT calculations indicate that ICDL can effectively adsorb Li and decrease the Li diffusion barrier,promoting enhanced Li ion transport.The modulation of Li kinetics by ICDL increases the critical length of the Li nucleus,enabling suppression of Li dendrite growth.Attributing to these advantages,the ICDL-coated LGCF(ICDL@LGCF)demonstrates impressive long-term cycle performances in both symmetric cells and full cells. 展开更多
关键词 3D conductive scaffolds bifunctional interlayer dielectric Li ion conductivity lithium metal anodes
在线阅读 下载PDF
Perinatal risk factors and preliminary prediction of conductive hearing loss in infancy
11
作者 Jiao Zhang Minghui Zhao +5 位作者 Wei Shi Haina Ding Lan Lan Yun Gao Dayong Wang Qiuju Wang 《Journal of Otology》 2025年第1期33-38,共6页
Purpose To investigate the perinatal risk factors for conductive hearing loss(CHL)in infancy and develop an initial prediction model to facilitate accurate diagnosis and early detection of CHL.Method This retrospectiv... Purpose To investigate the perinatal risk factors for conductive hearing loss(CHL)in infancy and develop an initial prediction model to facilitate accurate diagnosis and early detection of CHL.Method This retrospective study utilized data from the Newborn Cohort Study of Hearing Loss(ChiCTR2100049765).Infants who underwent diagnostic audiological assessments at our hospital between January 2003 and June 2024 were included.Data analysis was conducted using R(version 4.4.1)to construct an initial prediction model for CHL in infancy,applying the LASSO regression technique.Results A total of 661 infants(1322 ears)were included,with 1253 ears in the normal hearing group and 69 ears in the CHL group.Statistically significant differences were observed between the groups in the following factors:parent-reported infant response to sound,craniofacial deformities,neonatal hemolysis,jaundice treatment,and neonatal hypoglycemia.A multivariate prediction model and nomogram for CHL in infancy were developed and validated,achieving an accuracy of 92.5%and a specificity of 91.3%.Conclusions This study identified key risk factors for CHL in infancy and developed a preliminary predictive model,improving the diagnostic accuracy for CHL.Improved diagnostic precision can decrease misdiagnoses,reduce delays in treatment,and limit unnecessary antimicrobial prescriptions for infants. 展开更多
关键词 conductive hearing loss INFANT PERINATAL risk factors PREDICTION
暂未订购
Review of Conductive Polymer Coatings for Metallic Bipolar Plates in Proton Exchange Membrane Fuel Cells
12
作者 Ziyang Niu Xiaofen Wang +5 位作者 Yuanyuan Li Zhuo He Feng Huang Qianjun Deng Fei Hu Qiongyu Zhou 《Journal of Polymer Materials》 2025年第1期57-80,共24页
Proton exchange membrane fuel cells(PEMFCs)have gained increasing interests as promising power sources due to their ability to convert hydrogen and oxygen directly into electricity with high efficiency and zero greenh... Proton exchange membrane fuel cells(PEMFCs)have gained increasing interests as promising power sources due to their ability to convert hydrogen and oxygen directly into electricity with high efficiency and zero greenhouse gas emissions.Bipolar plates(BPs)are considered as a critical component of PEMFCs,serving to collect current,separate gases,distribute the flow field,and conduct heat.This paper reviews the technical status and advancements in BP materials,with special focus on strategies for enhancing interfacial contact resistance(ICR)and corrosion resistance through conductive polymer(CP)coatings.First,commonly used BP materials in PEMFCs are summarized.Then,the advantages and limitations of various coatings for metallic BPs are discussed.Finally,recent progress in CP coatings for metallic BPs,aimed at achieving high corrosion resistance and low ICR,is comprehensively reviewed. 展开更多
关键词 PEMFC bipolar plate conductive polymer coating POLYPYRROLE POLYANILINE
在线阅读 下载PDF
Highly stable and antifouling solid-contact ion-selective electrode for K^(+)detection in complex system based on multifunctional peptide and conductive MOF
13
作者 Xianghua Zeng Weichen Meng +4 位作者 Xiaochun Han Jiachen Yang Kaiqi Wu Fengxian Gao Xiliang Luo 《Chinese Chemical Letters》 2025年第8期607-612,共6页
An all-solid-state ion-selective electrode(ISE)for the detection of potassium ions in complex media was developed based on functional peptides with both antibacterial and antifouling properties.While exhibiting unique... An all-solid-state ion-selective electrode(ISE)for the detection of potassium ions in complex media was developed based on functional peptides with both antibacterial and antifouling properties.While exhibiting unique antifouling property,the ISE capitalized on the high surface area of the conductive metalorganic framework(MOF)solid transducer layer to facilitate rapid ion-electron transfer,consequently improving the electrode stability.For a short period,the application of a±1 n A current to the ISE resulted in a slight potential drift of 2.5μV/s,while for a long-term stability test,the ISE maintained a stable Nernstian response slope over 8 days.The antifouling and antibacterial peptide effectively eradicated bacteria from the electrode surface while inhibited the adhesion of bacteria and other biological organisms.Both theoretical calculations and experimental results indicated that the incorporation of peptides in the sensing membrane did not compromise the detection performance of the ISE.The prepared antifouling potassium ion-selective electrode exhibited a Nernstian response range spanning from 1.0×10^(–8)mol/L to 1.0×10–3mol/L,with a detection limit of 2.51 nmol/L.Crucially,the prepared solid-contact ISE maintained excellent antifouling and sensing capabilities in actual seawater and human urine,indicating a promising feasibility of this strategy for constructing ISEs suitable for practical application in complex systems. 展开更多
关键词 Multifunctional peptide conductive MOF lon-selective electrode ANTIFOULING Potassium ion
原文传递
Conductive nanofabrics as multifunctional interlayer of sulfur-loading cathode towards durable lithium-sulfur batteries
14
作者 Min Chen Xinxin Li +10 位作者 Weijie Cai Xinxin Han Chuancong Zhou Ke Zheng Ruomeng Duan Yanfei Zhao Mengmeng Shao Wenlong Wang Kaihong Zheng Bo Feng Xiaodong Shi 《Chinese Chemical Letters》 2025年第9期602-607,共6页
Active sulfur dissolution and shuttle effect of lithium polysulfides(LiPSs)are the main obstacles hindering the practical application of lithium-sulfur batteries(LSBs),which is primarily induced by the direct interact... Active sulfur dissolution and shuttle effect of lithium polysulfides(LiPSs)are the main obstacles hindering the practical application of lithium-sulfur batteries(LSBs),which is primarily induced by the direct interaction between sulfur-loading cathode and liquid electrolyte.The introduction of functional interlayer within the separator and cathode is an effective strategy to stabilize the electrode/electrolyte interface reaction and improve the utilization rate of active sulfur.Herein,conductive composite nanofabrics(CCN)with multifunctional groups are employed as the interlayer of sulfur-loading cathode,in which the PMIA/PAN supporting fibers offer robust mechanical strength and high thermostable performance,and gelatin/polypyrrole functional fibers ensure high electrical conductivity and strong chemical interaction for LiPSs.As demonstrated by the experimental data and material characterizations,the presence of CCN interlayer not only blocks the shuttle behavior of LiPSs,but also strengthens the interface stability of both Li anode and sulfur-loading cathode.Interestingly,the assembled LSBs with CCN interlayer can maintain stable capacity of 686 mAh/g after 200 cycles at 0.5 A/g.This work will provide new ideas for the elaborate design of functional in terlayers/se para tors for LSBs and lithium metal batteries. 展开更多
关键词 conductive nanofabrics interlayer Lithium polysulfides Shuttle effect Gelatin polypyrrole composite Lithium-sulfur batteries
原文传递
Mechanical tough,non-swelling,self-adhesive and highly conductive amphibious hydrogels for motion sensing in complex conditions
15
作者 Zhi-Chao Xu Yu-Qin Yang +4 位作者 Xiao-Wen Pang Yu-Tong Xu Li-Xiu Gong Long-Cheng Tang Shi-Neng Li 《Journal of Materials Science & Technology》 2025年第34期10-19,共10页
Ideal conductive hydrogels with their mechanical ductility,high conductivity and self-adhesion are es-sential for potential promising application as fascinating sensing materials in wearable electronic devices.Unfortu... Ideal conductive hydrogels with their mechanical ductility,high conductivity and self-adhesion are es-sential for potential promising application as fascinating sensing materials in wearable electronic devices.Unfortunately,due to the inevitable performance degeneration stemming from swelling features in aque-ous conditions,the applicability of hydrogel-based sensors is greatly reduced in aquatic environments.Herein,an amphibious hydrogel with mechanical ductile,self-adhesive,anti-freezing,and high strain sensitivity underwater is developed.The hydrogel produces a rapid self-gelation behavior at ambient conditions(several minutes)through a catechol redox reaction based on lignocellulosic nanofibril-Ag^(+).The tough polymer network by the virtue of strong hydrogen bonding and nano-reinforcement enables the resultant hydrogel with improved mechanical performance.Meanwhile,outstanding properties in-cluding high conductivity(2.12 S/m),strain sensing ability(maximum GF:3.98),good water resistance(equilibrium swelling ratio of 1.2%after 30 d)as well as other solvents,air/underwater adhesiveness,and anti-freezing performance can be obtained simultaneously.A sensor based on such hydrogel can be conveniently conformed and attached to the human limbs for achieving non-invasive,high stability and continuous underwater communications and habits tracking of marine.Briefly,this work provides an innovative route to develop multifunctional integration hydrogel-based flexible devices for information transmission in marine environments. 展开更多
关键词 conductive amphibious hydrogel Lignocellulosic nanofibrils Fast gelation Non-swelling Underwater communication
原文传递
Electronic Conductive Metal–Organic Frameworks for Aqueous Rechargeable Zinc-Ion Battery Cathodes:Design,Progress,and Prospects
16
作者 Chuntao Yang Youlin Xiang Yingjian Yu 《Carbon Energy》 2025年第7期63-87,共25页
Zinc-ion batteries(ZIBs)have significant potential for advancements in energy storage systems owing to their high level of safety and theoretical capacity.However,ZIBs face several challenges,such as cathode capacity ... Zinc-ion batteries(ZIBs)have significant potential for advancements in energy storage systems owing to their high level of safety and theoretical capacity.However,ZIBs face several challenges,such as cathode capacity degradation and short cycle life.Ordinary metal–organic frameworks(MOFs)are characterized by high specific surface areas,large pore channels,and controllable structures and functions,making them suitable for use in ZIB cathodes with good performance.However,the insulating properties of MOFs hinder their further development.In contrast,electronic conductive MOFs(EC-MOFs)show high electronic conductivity,which facilitates rapid electron transport and ameliorates the charging and discharging efficiency of ZIBs.This paper introduces the unique conduction mechanism of EC-MOFs and elaborates various strategies for constructing EC-MOFs with high conductivity and stability.Additionally,the synthesis methods of EC-MOF-based cathode materials and their properties in ZIBs are elucidated.Finally,this paper presents a summary and outlook on the advancements of EC-MOFs for ZIB cathodes.This review provides guidance for designing and applying EC-MOFs in ZIBs and other energy storage devices. 展开更多
关键词 cathode DESIGN electronic conductive metal-organic framework synthesis method zinc-ion battery
在线阅读 下载PDF
Stabilized Conductive Agent/Sulfide Solid Electrolyte Interface via a Halide Solid Electrolyte Coating for All-Solid-State Batteries
17
作者 Seungwoo Lee Hyungjun Lee +10 位作者 Seungmin Han Yeseung Lee Seho Sun Jaeik Kim Joonhyeok Park Seunggun Choi Jiwoon Kim Jinhee Jung Jinwoo Jeong Taeseup Song Ungyu Paik 《Carbon Energy》 2025年第8期48-59,共12页
All-solid-state batteries(ASSBs)have garnered significant interest as the next-generation in battery technology,praised for their superior safety and high energy density.However,a conductive agent accelerates the unde... All-solid-state batteries(ASSBs)have garnered significant interest as the next-generation in battery technology,praised for their superior safety and high energy density.However,a conductive agent accelerates the undesirable side reactions of sulfide-based solid electrolytes(SEs),resulting in poor electrochemical properties with increased interfacial resistance.Here,we propose a wet chemical method rationally designed to achieve a conformal coating of lithium-indium chloride(Li_(3)InCl_(6))onto vapor-grown carbon fibers(VGCFs)as conductive agents.First,with the advantage of the Li_(3)InCl_(6) protective layer,use of VGCF@Li_(3)InCl_(6) leads to enhanced interfacial stability and improved electrochemical properties,including stable cycle performance.These results indicate that the Li_(3)InCl_(6) protective layer suppresses the unwanted reaction between Li_(6)PS_(5)Cl(LPSCl)and VGCF.Second,VGCF@Li_(3)InCl_(6) effectively promotes polytetrafluoroethylene(PTFE)fibrillization,leading to a homogeneous electrode microstructure.The uniform distribution of the cathode active material(CAM)in the electrode results in reduced charge-transfer resistance(R_(ct))and enhanced Li-ion kinetics.As a result,a full cell with the LiNi_(x)Mn_(y)Co_(z)O_(2)(NCM)/VGCF@Li_(3)InCl_(6) electrode shows an areal capacity of 7.7mAhcm^(−2) at 0.05 C and long-term cycle stability of 77.9%over 400 cycles at 0.2 C.This study offers a strategy for utilizing stable carbon-based conductive agents in sulfide-based ASSBs to enhance their electrochemical performance. 展开更多
关键词 all-solid-state batteries conductive agent halide solid electrolyte protection layer solvent-free electrode sulfide solid electrode
在线阅读 下载PDF
Functionalized Aluminum Nitride for Improving Hydrolysis Resistances of Highly Thermally Conductive Polysiloxane Composites
18
作者 Mukun He Lei Zhang +8 位作者 Kunpeng Ruan Junliang Zhang Haitian Zhang Peng Lv Yongqiang Guo Xuetao Shi Hua Guo Jie Kong Junwei Gu 《Nano-Micro Letters》 2025年第6期198-211,共14页
A series of divinylphenyl-acryloyl chloride copolymers(PDVB-co-PACl)is synthesized via atom transfer radical polymerization employing tert-butyl acrylate and divinylbenzene as monomers.PDVB-co-PACl is utilized to graf... A series of divinylphenyl-acryloyl chloride copolymers(PDVB-co-PACl)is synthesized via atom transfer radical polymerization employing tert-butyl acrylate and divinylbenzene as monomers.PDVB-co-PACl is utilized to graft on the surface of spherical aluminum nitride(AlN)to prepare functionalized AlN(AlN@PDVB-co-PACl).Polymethylhydrosiloxane(PMHS)is then used as the matrix to prepare thermally conductive AlN@PDVB-co-PACl/PMHS composites with AlN@PDVB-co-PACl as fillers through blending and curing.The grafting of PDVB-co-PACl synchronously enhances the hydrolysis resistance of AlN and its interfacial compatibility with PMHS matrix.When the molecular weight of PDVB-co-PACl is 5100 g mol^(-1)and the grafting density is 0.8 wt%,the composites containing 75 wt%of AlN@PDVB-co-PACl exhibit the optimal comprehensive performance.The thermal conductivity(λ)of the composite is 1.14 W m^(-1)K^(-1),which enhances by 20%and 420%compared to theλof simply physically blended AlN/PMHS composite and pure PMHS,respectively.Meanwhile,AlN@PDVB-co-PACl/PMHS composites display remarkable hydrothermal aging resistance by retaining 99.1%of itsλafter soaking in 90°C deionized water for 80 h,whereas theλof the blended AlN/PMHS composites decreases sharply to 93.7%. 展开更多
关键词 POLYMETHYLHYDROSILOXANE Aluminum nitride COPOLYMER Thermally conductive composites
在线阅读 下载PDF
Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes
19
作者 Huanyan Liu Jiajun Long +2 位作者 Hua Yu Shichao Zhang Wenbo Liu 《Chinese Chemical Letters》 2025年第3期483-487,共5页
Anode active materials involving transition metal oxides and sulfides are of great significance for high energy density lithium-ion batteries(LIBs),but the huge volume expansion and inferior electronic conductivity up... Anode active materials involving transition metal oxides and sulfides are of great significance for high energy density lithium-ion batteries(LIBs),but the huge volume expansion and inferior electronic conductivity upon cycling critically constrain their further application.Herein,from a new perspective,a highly conductive and stable 3D flexible composite current collector is rationally designed by facilely electrodepositing metallic Ni thin layer onto the carbon cloth(CC/Ni),which endows the supported active materials with exceptional electronic conductivity and structural stability.In addition,the homogeneously distributed metallic Ni protrusions external CC can strongly bond with the active components,ensuring the structural integrity of electrodes upon cycling.More importantly,the 3D network structure with large specific surface area provides abundant space to alleviate the volume expansion and more active sites for electrochemical reactions.Therefore,taking Ni_(3)S_(2)nanosheet(Ni_(3)S_(2)NS)anode as an example,the prepared Ni_(3)S_(2)NS@CC/Ni electrode shows a high specific capacity of 2.32 mAh/cm^(2)at 1mA/cm^(2)and high capacity retention of 1.68 mAh/cm^(2)at a high rate of 8mA/cm^(2).This study provides a universal approach to obtain highly conductive and stable 3D flexible current collectors towards high performance metal-ion batteries beyond LIBs. 展开更多
关键词 Lithium-ion battery Composite current collector Highly conductive electrode High performance Metal sulfide
原文传递
Direct Ink Writing Method of Fractal Wearable Flexible Sensor Based on Conductive Graphene/Polydimethylsiloxane Ink
20
作者 CHEN Junling GAO Feiyang +1 位作者 ZHANG Liming ZHENG Xiongfei 《Journal of Shanghai Jiaotong university(Science)》 2025年第1期18-26,共9页
Flexible electronic technology has laid the foundation for complex human-computer interaction system,and has attracted great attention in the field of human motion detection and soft robotics.Graphene has received an ... Flexible electronic technology has laid the foundation for complex human-computer interaction system,and has attracted great attention in the field of human motion detection and soft robotics.Graphene has received an extensive attention due to its excellent electrical conductivity;however,how to use it to fabricate wearable flexible sensors with complex structures remains challenging.In this study,we studied the rheological behavior of graphene/polydimethylsiloxane ink and proposed an optimal graphene ratio,which makes the ink have an good printability and conductivity at the same time.Then,based on the theory of Peano fractal layout,we proposed a two-dimensional structure that can withstand multi-directional tension by replacing the traditional arris structure with the arc structure.After that,we manufactured circular arc fractal structure sensor by adjusting ink composition and printing structure through direct ink writing method.Finally,we evaluated the detection performance and repeatability of the sensor.This method provides a simple and effective solution for fabricating wearable flexible sensors and exhibits the potential to fabricate 3D complex flexible electronic devices. 展开更多
关键词 direct ink writing conductive graphene ink wearable flexible sensor strain sensing fractal structure
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部