Compared with Pidgeon process,the relative vacuum continuous magnesium smelting process reduces the ratio of material to magnesium by changing raw materials and the direct reduction after calcination of prefabricated ...Compared with Pidgeon process,the relative vacuum continuous magnesium smelting process reduces the ratio of material to magnesium by changing raw materials and the direct reduction after calcination of prefabricated pellets,so that the energy consumption per ton of magnesium produced is reduced by 30∼40%,and the carbon emission is reduced by 43∼52%,breaking through the vacuum conditions to achieve continuous production.However,in the process of industrialization,it was found that the magnesium yield in the condenser was low.Therefore,this paper constructs a condenser model of relative vacuum continuous magnesium refining process,and comprehensively analyzes the condensation mechanism of magnesium vapor through simulation and experiment.It is found that the dynamic characteristics of magnesium vapor condensation is an important index to measure its continuity.Under the condition offlowing argon as the protective gas,when the condensation plate spacing is 10 cm,the surface roughness amplitude variance is 2,and the carrier gasflow rate is 20×10^(-3) m/s,the magnesium vapor has a better condensation effect,and the condensation efficiency formula is derived.展开更多
Elastomers are widely used in various fields owing to their excellent tensile properties.Recyclable and self-healing properties are key to extending the service life of elastomers.Accumulating evidence indicates that ...Elastomers are widely used in various fields owing to their excellent tensile properties.Recyclable and self-healing properties are key to extending the service life of elastomers.Accumulating evidence indicates that dynamic covalent chemistry has emerged as a powerful tool for constructing recyclable and self-healing materials.In this work,we demonstrate the preparation of a recyclable and self-healable polydimethylsiloxane(PDMS)elastomer based on the Knoevenagel condensation(KC)reaction.This PDMS elastomer was prepared by the KC reaction catalyzed by 4-dimethylaminopyridine(DMAP).The obtained PDMS elastomer exhibited an elongation at break of 266%,a tensile strength of 0.57 MPa,and a good thermal stability(Td=357℃).In addition,because of the presence of dynamic C=C bonds formed by the KC reaction and low glass transition temperature(Tg=-117℃).This PDMS exhibited good self-healing and recycling properties at room temperature and could be reprocessed by hot pressing.In addition,the PDMS elastomer exhibits good application prospects in the fields of adhesives and flexible electronic devices.展开更多
Utilizing superwettability micro/nanostructures to enhance the condensation heat transfer(CHT)performance of engineering materials has attracted great interest due to its values in basic research and technological inn...Utilizing superwettability micro/nanostructures to enhance the condensation heat transfer(CHT)performance of engineering materials has attracted great interest due to its values in basic research and technological innovations.Currently,exploring facile micro/nanofabrication approaches to create high-efficiency CHT surfaces has been one of research hotspots.In this work,we propose and demonstrate a type of new superwettability hybrid surface for high-efficiency CHT,which consists of superhydrophobic nanoneedle arrays and triangularly-patterned superhydrophilic microdots(SMDs).Such hybrid surface can be fabricated by the facile growth of densely-packed ZnO nanoneedles on the Zn-electroplated copper surface followed by fluorosilane modification and mask-assisted photodegradation.Through regulating the diameters and interspaces of SMDs,we obtain the optimized triangularly-patterned hybrid surface,which shows 42.7%higher CHT coefficient than the squarely-patterned hybrid surface and 58.5%higher CHT coefficient than the superhydrophobic surface.The key of such hybrid surface design is to considerably increase CHT coefficient brought about by SMD-triggered drop sweeping at the cost of slightly reducing heat transfer area of superhydrophobic functional zone for drop jumping.Such new strategy helps develop advanced CHT surfaces for high-efficiency electronic cooling and energy utilization.展开更多
The self-condensation of n-butanal is an important reaction for carbon-chain extension in the commercial production of 2-ethylhexanol.Moreover,aldol condensation is one of the important reactions for the synthesis of ...The self-condensation of n-butanal is an important reaction for carbon-chain extension in the commercial production of 2-ethylhexanol.Moreover,aldol condensation is one of the important reactions for the synthesis of valuable organic chemicals or transportation fuels from biomass-derived platform compounds.So the investigation of the self-condensation of n-butanal is of significance in both academia and industry.This contribution reviewed the catalytic performance of heterogeneous catalysts in the self-condensation of n-butanal and the related reaction mechanism,network,and kinetics.The purpose of this review is to dedicate some help for further development of environmentally friendly catalysts and for a thorough comprehension of aldol condensation.展开更多
Vanadium phosphorus oxide(VPO)catalyst is a promising candidate for the condensation reaction of formaldehyde(FA)and acetic acid(HAc)to produce acrylic acid(AA).However,the complexity of the active phases and their dy...Vanadium phosphorus oxide(VPO)catalyst is a promising candidate for the condensation reaction of formaldehyde(FA)and acetic acid(HAc)to produce acrylic acid(AA).However,the complexity of the active phases and their dynamic interconversion under redox conditions has led to controversies regarding the actual active phase in this reaction.To address this,this study systematically investigates the phase transition and underlying mechanism of VPO catalysts under reaction conditions.X-ray diffraction(XRD)patterns,Raman spectra,transmission electron microscopy images and X-ray photoelectron spectroscopy collectively demonstrated that the V^(4+)phase(VO)_(2)P_(2)O_(7)retained the bulk phase structure throughout the reaction,with only minor surface phase transition observed.In contrast,the V^(5+)phase underwent reduction to other phases in both bulk and surface regions.Specifically,theδ-VOPO_(4)phase rapidly transformed into theαII-VOPO_(4)phase,which could reversibly convert into the R1-VOHPO_(4)phase(V^(4+)).Controlled variable experiments,H_(2)-temperature programmed reduction and in-situ XRD experiments in a hydrogen atmosphere further demonstrated that these phase transitions were primarily attributed to the loss of lattice oxygen.The presence of V^(4+)phase in VPO catalysts enhanced the selectivity of acrylic acid,while the existence of V^(5+)phase promoted the activation of acetic acid.This work elucidates the redox-driven phase evolution of VPO catalysts and offers valuable insights for designing efficient catalysts for FA-HAc cross-condensation by balancing phase stability and activity.展开更多
Microcavity exciton-polaritons,formed by strong light-matter coupling,are essential for realizing Bose-Einstein condensation and low-threshold lasing.Such polaritonic lasing and condensation have been demonstrated in ...Microcavity exciton-polaritons,formed by strong light-matter coupling,are essential for realizing Bose-Einstein condensation and low-threshold lasing.Such polaritonic lasing and condensation have been demonstrated in Ⅲ-Ⅴ semiconductors at liquid helium temperatures.However,the complex fabrication of these microcavities and operating temperatures limit their room-temperature practical application.Here,we experimentally realize room-temperature exciton-polariton condensation and polaritonic lasing in a CsPbBr_(3)perovskite planar microcavity fabricated by the pressing process.Angleresolved photoluminescence spectra demonstrate the strong light-matter coupling and the formation of exciton-polaritons in such a pressed microcavity.Above the critical threshold,mass polaritons accumulating at the bottom of dispersion lead to a narrow emission linewidth and pronounced blueshift,further reinforcing the Bose-Einstein condensation and polaritonic lasing in this system.Our results offer a feasible and effective approach to investigate exciton-polariton condensation and polariton lasing at room temperature.展开更多
This work demonstrates that once a large number of pion is condensed in a high-energy hadron collision, the gamma-ray spectrum from π0decay takes on a typical broken power-law shape, which has been documented in many...This work demonstrates that once a large number of pion is condensed in a high-energy hadron collision, the gamma-ray spectrum from π0decay takes on a typical broken power-law shape, which has been documented in many astronomical observations, but we have not yet recognized it. We show that this pion condensation is caused by a large number of soft gluons condensed in protons.展开更多
Oxidation of organic amines(OAs)or aromatic hydrocarbons(AHs)produces carbonyls,which further react with OAs to form carbonyl-amine condensation products,threatening environmental quality and human health.However,ther...Oxidation of organic amines(OAs)or aromatic hydrocarbons(AHs)produces carbonyls,which further react with OAs to form carbonyl-amine condensation products,threatening environmental quality and human health.However,there is still a lack of systematic understanding of the carbonyl-amine condensation reaction processes of OAs or between OAs and AHs,and subsequent environmental health impact.This work systematically investigated the carbonyl-amine condensation coupled ozonolysis kinetics,reaction mechanism,secondary organic aerosol(SOA)formation and cytotoxicity fromthe mixture of dipropylamine(DPA)and styrene(STY)by a combined method of productmass spectrometry identification,particle property analysis and cell exposure evaluation.The results from ozonolysis of DPA and STY mixture revealed that STY inhibited the ozonolysis of DPA to different degrees to accelerate its own decay rate.The barycenter of carbonyl-amine condensation reactionswas shifted from inside of DPA to between DPA and STY,which accelerated STY ozonolysis,but slowed down DPA ozonolysis.For the first time,ozonolysis of DPA and STY mixture to complex carbonyl-amine condensation products through the reactions of DPA with its carbonyl products,DPA with STY’s carbonyl products and DPA’s bond breakage product with STY’s carbonyl products was confirmed.These condensation products significantly contributed to the formation and growth of SOA.The SOA containing particulate carbonyl-amine condensation products showed definite cytotoxicity.These findings are helpful to deeply and comprehensively understand the transformation,fate and environmental health effects of mixed organics in atmospheric environment.展开更多
Accurate descriptions of cloud droplet spectra from aerosol activation to vapor condensation using microphysical parameterization schemes are crucial for numerical simulations of precipitation and climate change in we...Accurate descriptions of cloud droplet spectra from aerosol activation to vapor condensation using microphysical parameterization schemes are crucial for numerical simulations of precipitation and climate change in weather forecasting and climate prediction models.Hence,the latest activation and triple-moment condensation schemes were combined to simulate and analyze the evolution characteristics of a cloud droplet spectrum from activation to condensation and compared with a high-resolution Lagrangian bin model and the current double-moment condensation schemes,in which the spectral shape parameter is fixed or diagnosed by an empirical formula.The results demonstrate that the latest schemes effectively capture the evolution characteristics of the cloud droplet spectrum during activation and condensation,which is in line with the performance of the bin model.The simulation of the latest activation and condensation schemes in a parcel model shows that the cloud droplet spectrum gradually widens and exhibits a multimodal distribution during the activation process,accompanied by a decrease in the spectral shape and slope parameters over time.Conversely,during the condensation process,the cloud droplet spectrum gradually narrows,resulting in increases in the spectral shape and slope parameters.However,these double-moment schemes fail to accurately replicate the evolution of the cloud droplet spectrum and its multimodal distribution characteristics.Furthermore,the latest schemes were coupled into a 1.5D cumulus model,and an observation case was simulated.The simulations confirm that the cloud droplet spectrum appears wider at the supersaturated cloud base and cloud top due to activation,while it becomes narrower at the middle altitudes of the cloud due to condensation growth.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)ranks among the most prevalent and deadly malignancies,characterized by a high recurrence rate.Regulator of chromosome condensation 1(RCC1)serves as a principal guanine nucleoti...BACKGROUND Hepatocellular carcinoma(HCC)ranks among the most prevalent and deadly malignancies,characterized by a high recurrence rate.Regulator of chromosome condensation 1(RCC1)serves as a principal guanine nucleotide exchange factor for ras-related nuclear protein guanosine triphosphatase(GTPase)and is implicated in various cancers.However,the role of RCC1 in HCC remains unex-plored.AIM To elucidate the functional significance and molecular mechanisms of RCC1 in HCC.METHODS Bioinformatics were to examine the expression levels of RCC1 in HCC and to assess its impact on the prognosis of this malignancy.The cell counting kit-8 assay and flow cytometry were utilized to evaluate the cell viability and cell cycle of HCC cells.Furthermore,quantitative reverse transcription and immunoblotting were to investigate the influence of RCC1 on cyclin associated proteins.RESULTS Bioinformatics analysis revealed that RCC1 was highly expressed in HCC and correlated with poor prognosis in HCC patients.Functional studies showed that RCC1 overexpression promoted the malignant phenotype of HCC cells,especially the proliferation of HCC cells,whereas RCC1 knockdown had the opposite effect.Mechanistically,we identied cell division cycle-associated(CDCA)8 as a downstream target of RCC1 in HCC.RCC1 overexpression markedly increased CDCA8 levels,consequently enhancing cell proliferation and survival in HCC cells.Additionally,we discovered that RCC1 contributed to the development and progression of HCC by activating the phosphoinositide 3-kinase/protein kinase B/cyclin-dependent kinase inhibitor 1a pathway through CDCA8.CONCLUSION Our study provides profound insights into the pivotal role of RCC1 in HCC and its potential as a therapeutic target.展开更多
To investigate the characteristics of the condensation in gasoline vapor condensation recovery,the condensation process of gasoline vapor with turbulent flow in a vertical tube is simulated based on the gas-liquid two...To investigate the characteristics of the condensation in gasoline vapor condensation recovery,the condensation process of gasoline vapor with turbulent flow in a vertical tube is simulated based on the gas-liquid two-phase flow model.An effective diffusion coefficient is used to describe mass diffusion among the species of gasoline vapor.Several variables including temperature,pressure,liquid film thickness and the variation of the Nusselt number in the tube are simulated.The effects of the inlet-to-wall temperature difference and the Reynolds number on the condensation rate and the Nusselt number are obtained by modelling.The results show that heat transfer and condensation can be enhanced significantly by increasing the inlet Reynolds number.However,the increase in the inlet-to-wall temperature difference has little effect on the condensation rate.It is also found that the gasoline vapor condensation rate is influenced greatly by the mass transfer resistance.The comparison of results from the model with previous experiments shows a good agreement.展开更多
Recent findings related to coagulable magnesium vapor nucleation and growth in vacuum were assessed critically, with emphasis on understanding these processes at a fundamental molecular level. The effects of magnesium...Recent findings related to coagulable magnesium vapor nucleation and growth in vacuum were assessed critically, with emphasis on understanding these processes at a fundamental molecular level. The effects of magnesium vapor pressure, condensation temperature, and condensation zone temperature gradient on magnesium vapor nucleation in phase transitions and condensation from atomic collision and coacervation with collision under vacuum conditions were discussed. Magnesium powder and magnesium lump condensates were produced under different conditions and characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The right condensation zone temperature approach to the liquid transition primarily improved the magnesium vapor concentration rate. The gas-solid phase transition was primarily inhibited by setting a small condenser temperature gradient. Under the right condensation temperature and temperature gradients, increasing magnesium vapor partial pressure improved crystallization and reduced the oxidation rate.展开更多
The phenomenon of direct-contact condensation,used in steam driven jet injectors,nuclear reactor emergency core cooling systems and direct-contact heat exchangers,was investigated computationally by introducing a ther...The phenomenon of direct-contact condensation,used in steam driven jet injectors,nuclear reactor emergency core cooling systems and direct-contact heat exchangers,was investigated computationally by introducing a thermal equilibrium model for direct-contact condensation of steam in subcooled water.The condensation model presented was a two resistance model which takes care of the heat transfer process on both sides of the interface and uses a variable steam bubble diameter.The injection of supersonic steam jet in subcooled water tank was simulated using the Euler-Euler multiphase flow model of Fluent 6.3 code with the condensation model incorporated. The findings of the computational fluid dynamics(CFD) simulations were compared with the published experimental data and fairly good agreement was observed between the two,thus validating the condensation model.The results of CFD simulations for dimensionless penetration length of steam plume varies from 2.73-7.33,while the condensation heat transfer coefficient varies from 0.75-0.917 MW·(m ^2 ·K)^ -1 for water temperature in the range of 293-343 K.展开更多
Taking an extratropical cyclone that produced extreme precipitation as the research object,this paper calculates the contribution of condensation latent heat release(LHR)to relative vorticity tendency based on the com...Taking an extratropical cyclone that produced extreme precipitation as the research object,this paper calculates the contribution of condensation latent heat release(LHR)to relative vorticity tendency based on the complete-form vertical vorticity tendency equation.The results show that the heating rate of convectional condensation LHR can reach up to about 40 times that of stable condensation LHR.Both the stable and convectional heating centers are higher than 700 hPa,which would cause∂Q/∂z>0 and a positive vorticity source in the lower troposphere.The vertical gradient of stable condensation LHR contributes little to the growth of relative vorticity,while the relative vorticity tendency associated with the vertical gradient of convectional condensation LHR can be an order of magnitude higher than the former.The positive vorticity source is always located right below the latent heating center,and its maximum value can always be found in the lower troposphere.Convectional LHR is the primary factor for cyclone development from the perspective of diabatic heating.The horizontal gradient of total condensation LHR can contribute about 65%of the actual vorticity growth,but the effect of the vertical gradient of convectional condensation(LHR)can reach twice as much.The adiabatic heating from LHR can cause vorticity tendency directly.However,it can also change the vertical and horizontal gradient of potential temperature,which can further induce vorticity tendency.展开更多
Herein,we discovered that the surface-confined condensation of boronic acid can happen spontaneously at room temperature,by comparing the kinetics of condensation of boronic acids with and without the negative sample ...Herein,we discovered that the surface-confined condensation of boronic acid can happen spontaneously at room temperature,by comparing the kinetics of condensation of boronic acids with and without the negative sample bias,we found that the negative sample bias indeed accelerates the self-condensation reaction of boronic acid.Combining with in-situ STM images and ultraviolet photoemission spectrum(UPS)analysis,a reversible adsorption mechanism model was proposed and reasonably explains the reversible electric-field-induced phase transformation.展开更多
A mathematical model was established for condensation on surfaces of verticalcorrugated plates based on the mechanism of heat transfer enhancement to thin down the liquid filmdue to surface tension effect between corr...A mathematical model was established for condensation on surfaces of verticalcorrugated plates based on the mechanism of heat transfer enhancement to thin down the liquid filmdue to surface tension effect between corrugated plate surfaces and liquid films. The relative heattransfer coefficients of condensation on corrugation plates were calculated in contrast withequivalent vertical plane ones. The heat transfer enhancement effects for the main geometricparameters such as pitch, height, corrugation angle, tilt angle, and fillet radii of corrugationswere analyzed to guide the optimization of corrugation structure for application. A two-scalecorrugation is suggested, which can compromise both the enhanced heat transfer effect and adequatecross section area for flows, and it makes the heat transfer coefficient 1 to 2 times more than thatof an equivalent plane one.展开更多
Metal organic frameworks(MOFs) are an important platform for heterogeneous catalysts.Although MOFs with a smaller particle size exhibit better catalytic performance because of less diffusion limitations,their separa...Metal organic frameworks(MOFs) are an important platform for heterogeneous catalysts.Although MOFs with a smaller particle size exhibit better catalytic performance because of less diffusion limitations,their separation and recycling after catalytic reactions are difficult.The integration of MOFs with magnetic nanoparticles could facilitate their recovery and separation.Especially,the shell thickness of the core-shell structured composites is controllable.In this study,amino-functionalized Fe3O4@Cu3(BTC)2 was fabricated by a stepwise assembly method and its catalytic performance in Knoevenagel condensation was investigated.The results demonstrated that the magnetic hybrid material exhibited a core-shell structure,with a shell thickness of about 2 00 nm.Furthermore,it not only exhibited high catalytic activity,but remarkably,it could also be easily recovered magnetically and recycled without obvious loss of catalytic efficiency after three cycles.展开更多
基金the National Natural Science Foundation of China(U1908225,U1702253)the Special Funds for Ba-sic Research Operations of Central Universities(N182515007,N170908001,N2025004).
文摘Compared with Pidgeon process,the relative vacuum continuous magnesium smelting process reduces the ratio of material to magnesium by changing raw materials and the direct reduction after calcination of prefabricated pellets,so that the energy consumption per ton of magnesium produced is reduced by 30∼40%,and the carbon emission is reduced by 43∼52%,breaking through the vacuum conditions to achieve continuous production.However,in the process of industrialization,it was found that the magnesium yield in the condenser was low.Therefore,this paper constructs a condenser model of relative vacuum continuous magnesium refining process,and comprehensively analyzes the condensation mechanism of magnesium vapor through simulation and experiment.It is found that the dynamic characteristics of magnesium vapor condensation is an important index to measure its continuity.Under the condition offlowing argon as the protective gas,when the condensation plate spacing is 10 cm,the surface roughness amplitude variance is 2,and the carrier gasflow rate is 20×10^(-3) m/s,the magnesium vapor has a better condensation effect,and the condensation efficiency formula is derived.
基金supported by the National Natural Science Foundation of China(Nos.51973025 and 52222307)Jilin Science and Technology Bureau(Nos.20220204107YY and 20230204086YY)+1 种基金Changchun Science and Technology Bureau(No.21ZGY06)Jilin Province Development and Reform Commission(No.2023C028-4).
文摘Elastomers are widely used in various fields owing to their excellent tensile properties.Recyclable and self-healing properties are key to extending the service life of elastomers.Accumulating evidence indicates that dynamic covalent chemistry has emerged as a powerful tool for constructing recyclable and self-healing materials.In this work,we demonstrate the preparation of a recyclable and self-healable polydimethylsiloxane(PDMS)elastomer based on the Knoevenagel condensation(KC)reaction.This PDMS elastomer was prepared by the KC reaction catalyzed by 4-dimethylaminopyridine(DMAP).The obtained PDMS elastomer exhibited an elongation at break of 266%,a tensile strength of 0.57 MPa,and a good thermal stability(Td=357℃).In addition,because of the presence of dynamic C=C bonds formed by the KC reaction and low glass transition temperature(Tg=-117℃).This PDMS exhibited good self-healing and recycling properties at room temperature and could be reprocessed by hot pressing.In addition,the PDMS elastomer exhibits good application prospects in the fields of adhesives and flexible electronic devices.
基金supported by National Natural Science Foundation of China(No.21573276)Natural Science Foundation of Jiangsu Province(No.BK20170007)Jiangsu Funding Program for Excellent Postdoctoral Talent(No.2022ZB846).
文摘Utilizing superwettability micro/nanostructures to enhance the condensation heat transfer(CHT)performance of engineering materials has attracted great interest due to its values in basic research and technological innovations.Currently,exploring facile micro/nanofabrication approaches to create high-efficiency CHT surfaces has been one of research hotspots.In this work,we propose and demonstrate a type of new superwettability hybrid surface for high-efficiency CHT,which consists of superhydrophobic nanoneedle arrays and triangularly-patterned superhydrophilic microdots(SMDs).Such hybrid surface can be fabricated by the facile growth of densely-packed ZnO nanoneedles on the Zn-electroplated copper surface followed by fluorosilane modification and mask-assisted photodegradation.Through regulating the diameters and interspaces of SMDs,we obtain the optimized triangularly-patterned hybrid surface,which shows 42.7%higher CHT coefficient than the squarely-patterned hybrid surface and 58.5%higher CHT coefficient than the superhydrophobic surface.The key of such hybrid surface design is to considerably increase CHT coefficient brought about by SMD-triggered drop sweeping at the cost of slightly reducing heat transfer area of superhydrophobic functional zone for drop jumping.Such new strategy helps develop advanced CHT surfaces for high-efficiency electronic cooling and energy utilization.
基金supported by the National Natural Science Foundation of China(21476058,U21A20306,21506046 and 21978066)。
文摘The self-condensation of n-butanal is an important reaction for carbon-chain extension in the commercial production of 2-ethylhexanol.Moreover,aldol condensation is one of the important reactions for the synthesis of valuable organic chemicals or transportation fuels from biomass-derived platform compounds.So the investigation of the self-condensation of n-butanal is of significance in both academia and industry.This contribution reviewed the catalytic performance of heterogeneous catalysts in the self-condensation of n-butanal and the related reaction mechanism,network,and kinetics.The purpose of this review is to dedicate some help for further development of environmentally friendly catalysts and for a thorough comprehension of aldol condensation.
文摘Vanadium phosphorus oxide(VPO)catalyst is a promising candidate for the condensation reaction of formaldehyde(FA)and acetic acid(HAc)to produce acrylic acid(AA).However,the complexity of the active phases and their dynamic interconversion under redox conditions has led to controversies regarding the actual active phase in this reaction.To address this,this study systematically investigates the phase transition and underlying mechanism of VPO catalysts under reaction conditions.X-ray diffraction(XRD)patterns,Raman spectra,transmission electron microscopy images and X-ray photoelectron spectroscopy collectively demonstrated that the V^(4+)phase(VO)_(2)P_(2)O_(7)retained the bulk phase structure throughout the reaction,with only minor surface phase transition observed.In contrast,the V^(5+)phase underwent reduction to other phases in both bulk and surface regions.Specifically,theδ-VOPO_(4)phase rapidly transformed into theαII-VOPO_(4)phase,which could reversibly convert into the R1-VOHPO_(4)phase(V^(4+)).Controlled variable experiments,H_(2)-temperature programmed reduction and in-situ XRD experiments in a hydrogen atmosphere further demonstrated that these phase transitions were primarily attributed to the loss of lattice oxygen.The presence of V^(4+)phase in VPO catalysts enhanced the selectivity of acrylic acid,while the existence of V^(5+)phase promoted the activation of acetic acid.This work elucidates the redox-driven phase evolution of VPO catalysts and offers valuable insights for designing efficient catalysts for FA-HAc cross-condensation by balancing phase stability and activity.
基金support from theNational Natural Science Foundation(Grant No.12204111)the National Key Research and Development Program ofChina(Grant No.2023YFA1407100)Shanghai Pilot Pro-gram for Basic Research(Grant No.22JC1403202)。
文摘Microcavity exciton-polaritons,formed by strong light-matter coupling,are essential for realizing Bose-Einstein condensation and low-threshold lasing.Such polaritonic lasing and condensation have been demonstrated in Ⅲ-Ⅴ semiconductors at liquid helium temperatures.However,the complex fabrication of these microcavities and operating temperatures limit their room-temperature practical application.Here,we experimentally realize room-temperature exciton-polariton condensation and polaritonic lasing in a CsPbBr_(3)perovskite planar microcavity fabricated by the pressing process.Angleresolved photoluminescence spectra demonstrate the strong light-matter coupling and the formation of exciton-polaritons in such a pressed microcavity.Above the critical threshold,mass polaritons accumulating at the bottom of dispersion lead to a narrow emission linewidth and pronounced blueshift,further reinforcing the Bose-Einstein condensation and polaritonic lasing in this system.Our results offer a feasible and effective approach to investigate exciton-polariton condensation and polariton lasing at room temperature.
基金partly supported by the National Key R&D Program of China (Grant No. 2023YFB3001502)the National Natural Science of China (Grant No. 12373002)。
文摘This work demonstrates that once a large number of pion is condensed in a high-energy hadron collision, the gamma-ray spectrum from π0decay takes on a typical broken power-law shape, which has been documented in many astronomical observations, but we have not yet recognized it. We show that this pion condensation is caused by a large number of soft gluons condensed in protons.
基金supported by the National Natural Science Foundation of China(Nos.42177354 and 42020104001)the National Key R&D Program of China(No.2019YFC0214402)+1 种基金the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01Z032)Guangdong Basic and Applied Basic Research Foundation(No.2019B151502064).
文摘Oxidation of organic amines(OAs)or aromatic hydrocarbons(AHs)produces carbonyls,which further react with OAs to form carbonyl-amine condensation products,threatening environmental quality and human health.However,there is still a lack of systematic understanding of the carbonyl-amine condensation reaction processes of OAs or between OAs and AHs,and subsequent environmental health impact.This work systematically investigated the carbonyl-amine condensation coupled ozonolysis kinetics,reaction mechanism,secondary organic aerosol(SOA)formation and cytotoxicity fromthe mixture of dipropylamine(DPA)and styrene(STY)by a combined method of productmass spectrometry identification,particle property analysis and cell exposure evaluation.The results from ozonolysis of DPA and STY mixture revealed that STY inhibited the ozonolysis of DPA to different degrees to accelerate its own decay rate.The barycenter of carbonyl-amine condensation reactionswas shifted from inside of DPA to between DPA and STY,which accelerated STY ozonolysis,but slowed down DPA ozonolysis.For the first time,ozonolysis of DPA and STY mixture to complex carbonyl-amine condensation products through the reactions of DPA with its carbonyl products,DPA with STY’s carbonyl products and DPA’s bond breakage product with STY’s carbonyl products was confirmed.These condensation products significantly contributed to the formation and growth of SOA.The SOA containing particulate carbonyl-amine condensation products showed definite cytotoxicity.These findings are helpful to deeply and comprehensively understand the transformation,fate and environmental health effects of mixed organics in atmospheric environment.
基金supported by the National Natural Science Foundations of China(Grant Nos.42305163 and U22A20577)the Construction Project of Weather Modification Ability in Central China(Grant No.ZQC-H22256)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0760300)the Projects of the Earth System Numerical Simulation Facility(Grant Nos.2024-EL-PT-000707,2023-ELPT-000482,2023-EL-ZD-00026,and 2022-EL-PT-00083)the STS Program of the Inner Mongolia Meteorological Service,Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences,and Institute of Atmospheric Physics,Chinese Academy of Sciences(Grant No.2021CG0047)。
文摘Accurate descriptions of cloud droplet spectra from aerosol activation to vapor condensation using microphysical parameterization schemes are crucial for numerical simulations of precipitation and climate change in weather forecasting and climate prediction models.Hence,the latest activation and triple-moment condensation schemes were combined to simulate and analyze the evolution characteristics of a cloud droplet spectrum from activation to condensation and compared with a high-resolution Lagrangian bin model and the current double-moment condensation schemes,in which the spectral shape parameter is fixed or diagnosed by an empirical formula.The results demonstrate that the latest schemes effectively capture the evolution characteristics of the cloud droplet spectrum during activation and condensation,which is in line with the performance of the bin model.The simulation of the latest activation and condensation schemes in a parcel model shows that the cloud droplet spectrum gradually widens and exhibits a multimodal distribution during the activation process,accompanied by a decrease in the spectral shape and slope parameters over time.Conversely,during the condensation process,the cloud droplet spectrum gradually narrows,resulting in increases in the spectral shape and slope parameters.However,these double-moment schemes fail to accurately replicate the evolution of the cloud droplet spectrum and its multimodal distribution characteristics.Furthermore,the latest schemes were coupled into a 1.5D cumulus model,and an observation case was simulated.The simulations confirm that the cloud droplet spectrum appears wider at the supersaturated cloud base and cloud top due to activation,while it becomes narrower at the middle altitudes of the cloud due to condensation growth.
基金Supported by the National Natural Science Foundation of China,No.82002940 and No.82203336Shaanxi Natural Science Foundation,No.2023-JC-YB-166.
文摘BACKGROUND Hepatocellular carcinoma(HCC)ranks among the most prevalent and deadly malignancies,characterized by a high recurrence rate.Regulator of chromosome condensation 1(RCC1)serves as a principal guanine nucleotide exchange factor for ras-related nuclear protein guanosine triphosphatase(GTPase)and is implicated in various cancers.However,the role of RCC1 in HCC remains unex-plored.AIM To elucidate the functional significance and molecular mechanisms of RCC1 in HCC.METHODS Bioinformatics were to examine the expression levels of RCC1 in HCC and to assess its impact on the prognosis of this malignancy.The cell counting kit-8 assay and flow cytometry were utilized to evaluate the cell viability and cell cycle of HCC cells.Furthermore,quantitative reverse transcription and immunoblotting were to investigate the influence of RCC1 on cyclin associated proteins.RESULTS Bioinformatics analysis revealed that RCC1 was highly expressed in HCC and correlated with poor prognosis in HCC patients.Functional studies showed that RCC1 overexpression promoted the malignant phenotype of HCC cells,especially the proliferation of HCC cells,whereas RCC1 knockdown had the opposite effect.Mechanistically,we identied cell division cycle-associated(CDCA)8 as a downstream target of RCC1 in HCC.RCC1 overexpression markedly increased CDCA8 levels,consequently enhancing cell proliferation and survival in HCC cells.Additionally,we discovered that RCC1 contributed to the development and progression of HCC by activating the phosphoinositide 3-kinase/protein kinase B/cyclin-dependent kinase inhibitor 1a pathway through CDCA8.CONCLUSION Our study provides profound insights into the pivotal role of RCC1 in HCC and its potential as a therapeutic target.
文摘To investigate the characteristics of the condensation in gasoline vapor condensation recovery,the condensation process of gasoline vapor with turbulent flow in a vertical tube is simulated based on the gas-liquid two-phase flow model.An effective diffusion coefficient is used to describe mass diffusion among the species of gasoline vapor.Several variables including temperature,pressure,liquid film thickness and the variation of the Nusselt number in the tube are simulated.The effects of the inlet-to-wall temperature difference and the Reynolds number on the condensation rate and the Nusselt number are obtained by modelling.The results show that heat transfer and condensation can be enhanced significantly by increasing the inlet Reynolds number.However,the increase in the inlet-to-wall temperature difference has little effect on the condensation rate.It is also found that the gasoline vapor condensation rate is influenced greatly by the mass transfer resistance.The comparison of results from the model with previous experiments shows a good agreement.
基金Project(51304095)supported by the National Natural Science Foundation of ChinaProject(S2013FZ029)supported by Science and Technology Planning Project of Yunnan Province
文摘Recent findings related to coagulable magnesium vapor nucleation and growth in vacuum were assessed critically, with emphasis on understanding these processes at a fundamental molecular level. The effects of magnesium vapor pressure, condensation temperature, and condensation zone temperature gradient on magnesium vapor nucleation in phase transitions and condensation from atomic collision and coacervation with collision under vacuum conditions were discussed. Magnesium powder and magnesium lump condensates were produced under different conditions and characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The right condensation zone temperature approach to the liquid transition primarily improved the magnesium vapor concentration rate. The gas-solid phase transition was primarily inhibited by setting a small condenser temperature gradient. Under the right condensation temperature and temperature gradients, increasing magnesium vapor partial pressure improved crystallization and reduced the oxidation rate.
文摘The phenomenon of direct-contact condensation,used in steam driven jet injectors,nuclear reactor emergency core cooling systems and direct-contact heat exchangers,was investigated computationally by introducing a thermal equilibrium model for direct-contact condensation of steam in subcooled water.The condensation model presented was a two resistance model which takes care of the heat transfer process on both sides of the interface and uses a variable steam bubble diameter.The injection of supersonic steam jet in subcooled water tank was simulated using the Euler-Euler multiphase flow model of Fluent 6.3 code with the condensation model incorporated. The findings of the computational fluid dynamics(CFD) simulations were compared with the published experimental data and fairly good agreement was observed between the two,thus validating the condensation model.The results of CFD simulations for dimensionless penetration length of steam plume varies from 2.73-7.33,while the condensation heat transfer coefficient varies from 0.75-0.917 MW·(m ^2 ·K)^ -1 for water temperature in the range of 293-343 K.
基金This study was supported by the Natural Science Foundation of Jiangsu Province[grant number BK20161603]the National Natural Science Foundation of China[grant numbers 41575010 and 41575070]the China Meteorological Administration[grant number CMAYBY2018-028].
文摘Taking an extratropical cyclone that produced extreme precipitation as the research object,this paper calculates the contribution of condensation latent heat release(LHR)to relative vorticity tendency based on the complete-form vertical vorticity tendency equation.The results show that the heating rate of convectional condensation LHR can reach up to about 40 times that of stable condensation LHR.Both the stable and convectional heating centers are higher than 700 hPa,which would cause∂Q/∂z>0 and a positive vorticity source in the lower troposphere.The vertical gradient of stable condensation LHR contributes little to the growth of relative vorticity,while the relative vorticity tendency associated with the vertical gradient of convectional condensation LHR can be an order of magnitude higher than the former.The positive vorticity source is always located right below the latent heating center,and its maximum value can always be found in the lower troposphere.Convectional LHR is the primary factor for cyclone development from the perspective of diabatic heating.The horizontal gradient of total condensation LHR can contribute about 65%of the actual vorticity growth,but the effect of the vertical gradient of convectional condensation(LHR)can reach twice as much.The adiabatic heating from LHR can cause vorticity tendency directly.However,it can also change the vertical and horizontal gradient of potential temperature,which can further induce vorticity tendency.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.21872103,52073208).
文摘Herein,we discovered that the surface-confined condensation of boronic acid can happen spontaneously at room temperature,by comparing the kinetics of condensation of boronic acids with and without the negative sample bias,we found that the negative sample bias indeed accelerates the self-condensation reaction of boronic acid.Combining with in-situ STM images and ultraviolet photoemission spectrum(UPS)analysis,a reversible adsorption mechanism model was proposed and reasonably explains the reversible electric-field-induced phase transformation.
文摘Unexpected condensation products from β-keto-δ-valerolactones were obtained. Theirstructures were confirmed by 'HNMR spectrum and elemental analysis.
文摘A mathematical model was established for condensation on surfaces of verticalcorrugated plates based on the mechanism of heat transfer enhancement to thin down the liquid filmdue to surface tension effect between corrugated plate surfaces and liquid films. The relative heattransfer coefficients of condensation on corrugation plates were calculated in contrast withequivalent vertical plane ones. The heat transfer enhancement effects for the main geometricparameters such as pitch, height, corrugation angle, tilt angle, and fillet radii of corrugationswere analyzed to guide the optimization of corrugation structure for application. A two-scalecorrugation is suggested, which can compromise both the enhanced heat transfer effect and adequatecross section area for flows, and it makes the heat transfer coefficient 1 to 2 times more than thatof an equivalent plane one.
基金supported by the National Natural Science Foundation of China (21203017)the Open Fund of State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences(N-11-3)+1 种基金the Program for Liaoning Excellent Talents in University (LNET)the Fundamental Research Funds for the Central Universities (DC201502020304)~~
文摘Metal organic frameworks(MOFs) are an important platform for heterogeneous catalysts.Although MOFs with a smaller particle size exhibit better catalytic performance because of less diffusion limitations,their separation and recycling after catalytic reactions are difficult.The integration of MOFs with magnetic nanoparticles could facilitate their recovery and separation.Especially,the shell thickness of the core-shell structured composites is controllable.In this study,amino-functionalized Fe3O4@Cu3(BTC)2 was fabricated by a stepwise assembly method and its catalytic performance in Knoevenagel condensation was investigated.The results demonstrated that the magnetic hybrid material exhibited a core-shell structure,with a shell thickness of about 2 00 nm.Furthermore,it not only exhibited high catalytic activity,but remarkably,it could also be easily recovered magnetically and recycled without obvious loss of catalytic efficiency after three cycles.